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We analyze long-distance contributions to the K — wm amplitudes
relevant for the AJ = 1/2 selection rule in the framework of the 1/N. ex-
pansion. We use a modified prescription for the identification of meson mo-
menta in the chiral loop corrections to gain a consistent matching with the
short-distance part. Our approach involves a separation of non-factorizable
and factorizable 1/N, corrections. Along these lines we calculate the one-
loop contributions from the lowest order Lagrangian. Our main result is
an additional enhancement of the AJ = 1/2 channel amplitude which we
find in good agreement with experiment.

PACS numbers: 12.38. Lg, 12.39. Fe, 13.20. Es, 14.40. Aq

1. Introduction

Since the first observation of the Al = 1/2 enhancement more than
40 years ago [1], there have been many attempts to find dynamical mech-
anisms responsible for it, in particular within the standard model. This
AT = 1/2 rule was particularly enigmatic before the birth of QCD when only
the current-current operator Q, arising from the W exchange was consid-
ered and, consequently, the ratio ReA(K — (7n7)=0)/ReA(K — (77)1=2)=
ReAg/ReA; = R was expected to be about one order of magnitude smaller
than the experimentally observed value R = 22.2. Now, since the esta-
blishment of QCD, our understanding of this rule has improved considera-
bly. Within QCD, the K — nm amplitudes are obtained from the effective
hamiltonian for AS = 1 transitions [2-4],

7 = OE ViV 2 e Qilh) (1)

=1
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involving the Wilson coefficients ¢;(u) which can be calculated for a scale
1 2 1 GeV using perturbative renormalization group techniques, as well
as, the local four-quark operators @Q;{u). The hadronic matrix elements of
these operators are difficult to calculate but can be estimated using non-
perturbative techniques generally for p around a scale of 1 GeV. For the
Al = 1/2 rule, only the z; part of the Wilson coefficient ¢; is numerically
relevant, with ¢;(u) = z;(p) — y: (1) Ve Via/ (Vs Vi,g) - The dominant operators
are

Q1 = 48Lv*dLuLyuu , Q2 = 45,7 uLinvudy , Qs = —8 Y 5Lgr GrAL

g=u,d,s

2)
with ¢gp |, = %(1 + v5)¢. Major improvements were obtained when it was
observed that the QCD (and electroweakly) induced effective hamiltonian
of Eq. (1) can explain various large enhancements. These can be of short-
distance (SD) nature, like the first identified octet enhancement [2] in the
Q1-Q2 sector dominated by the increase of z when p evolves from My down
to 4 ~ 1 GeV. Another important SD enhancement was found to arise in
the sector of the QCD penguin operators, in particular for zg, through the
proper inclusion of the threshold effects (and the associated incomplete GIM
cancellation) [5]. Enhancements are also of long-distance (LD) nature like
the first identified LD enhancement of the matrix elements of the QCD pen-
guin operators over the matrix elements of @J; and Q,. The latter was first
conjectured and estimated in Ref. [3] using the vacuum insertion method.
Due to the non-perturbative character of the LD contribution, a large variety
of techniques has been proposed to estimate it (for some recent publications
see Ref. [6]). Among the analytical methods, the 1/N, approach [5] associ-
ated with the chiral effective Lagrangian is particularly interesting. In this
approach, an additional LD enhancement is obtained from inclusion of chiral
loop effects in the (};-Q)3 sector. The net result of all enhancements men-
tioned above is a value of R in the range of 70-75% [5] of the measured value
R = 22.2, suggesting that the bulk of the Al = 1/2 rule in K — 77 decays
is now understood.! One might note that the agreement with experiment is
not improved by inclusion of the NLO renormalization group equations for
the z’s [7].

In this proceeding, we reconsider the calculation of K — w7 amplitudes
relevant for the AT = 1/2 rule in the 1/N. approach of Ref. [5]. Our main
improvement consists in the fact that we use a modified matching procedure
in order to remove previous ambiguities. This will be done treating the

! In fact, the A = 3/2 channel is usually obtained “sufficiently suppressed” whereas the
Al = 1/2 enhancement is obtained only partially. In Ref. [5], for m,(1 GeV) = 150
MeV and Aqep = A™ =300 MeV, the latter channel was reproduced to =~ 70%.
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factorizable (F) and non-factorizable (NF) contributions differently. Only
the NF diagrams are matched with the SD contributions to cancel the scale
dependence of the SD Wilson coefficients (after having, as we will see, facto-
rized out the scale dependence of the coefficient 1/m? in the matrix elements
of the operator (Jg). Factorizable loop contributions which refer uniquely to
the strong sector of the theory can be calculated in full chiral perturbation
theory (YPT), the corresponding scale dependence being absorbed in the
renormalization of the various parameters in the Lagrangian. As a result
of this procedure. performing a matching with the SD Wilson coefficients,
we obtain an additional enhancement of the Al = 1/2 channel which we
find to be in good agreement with experiment. The Al = 3/2 channel,
however, exhibits a large dependence on the matching scale, resulting from
the difference of two large numbers, but is found to be equal or smaller than
the experimental value in such a way that the ratio R = 22.2 is reproduced
or even passed beyond.

2. General framework

To calculate the matrix elements, we start from the chiral effective La-
grangian for pseudoscalar mesons which involves an expansion in momenta
where terms up to O(p*) are included [8],

2
Loy = L (@U100) + 2o(nUt -0 0)? 4 MU+ UMY)

+rLs(9,UT*UMIU + UTM)) | (3)

with (A) denoting the trace of A and M = diag(m,, mq4, m,). f and r are
free parameters related to the pion decay constant F, (= 93 MeV) and to
the quark condensate. respectively, with r = —2(gq)/f2. Up to terms of
O(p*) and to leading order in the 1/N, expansion, the Lagrangian of Eq. (3)
has the most general structure relevant for the operators Q;, Q2 and Qg.
The degrees of freedom of the complex matrix U are identified with the
pseudoscalar meson nonet given in a non-linear representation:

i

U = exp fH, I =nr%\,, (AaAs) = 284p , (4)
where, in terms of the physical states,
70+ %an + \/gbn’ V2rt V2Kt
= Var- 70+ dman+ /267’ V2K?® :

V2K~ V2K° —«\%bn + \/gan'
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with @ = cosf — v/2sin 6 and /2b = sin 8 + /2 cos 8. 6 is the n — 7’ mixing
angle satisfying the relation [9]

2 -1
tan 26 = —————22”?/80 —=2V2 {1 - 5 230/ 3 J ; (6)
mé, — mig 2(mé, — m2)

which yields 8 ~ —19°. Note that we treat the singlet as a dynamical degree
of freedom. Consequently. in Eq. (3), we include the strong anomaly term,
with the instanton parameter o (=~ 0.72 GeV?), which gives a non-vanishing
mass of the 7 in the chiral limit (m, = 0) reflecting the explicit breaking
of the axial U(1) symmetry. The Lagrangian of Eq. (3) is equivalent to the
one of Ref. [5] (provided we identify the coefficient 1/A2 of Ref. [5] with
4Ls5/ f*), except for the fact that we explicitly include the 7q.

A straightforward bosonization yields the chiral representation of the
quark currents and densities

2
)5 = Grr*air = —z‘i;—(tﬂa“lf)ﬁ +irLs (UM - MI9HU
+orUtu M — UTMUTB“U)

Jt

2
(DL)ij = (DR)ij = Girgiz = —7 (%—UT + Lsc")uUTE)“UU") (8

Jt

Using Eqs (7)-(8). the operators Q;, Q2 and Qg can be expressed in terms
of the meson fields.

The 1/N. corrections to the matrix elements (Q;); are calculated by
chiral loop diagrams. The loop expansion involves a series in 1/f% ~ 1/N,
which is in direct correspondence with the short-distance expansion in terms
of as/m ~ 1/N¢. In these diagrams, we encounter integrals which are regular-
ized by a finite cutoff as it was introduced in Ref. [5]. Due to the truncation
to pseudoscalar mesons, the cutoff has to be taken at or, preferably, below
the O(1GeV). This restriction is a common feature of the phenomenological
approaches at hand in which higher resonances are not included.

To retain the physical amplitudes Ay, which as a matter of principle are
scale-independent, the long- and the short-distance contributions are eva-
luated at the cutoff scale, i.e.. the LD ultraviolet scale is identified with the
SD infrared one. Performing this identification we must take into account
that, within the cutoff regularization, there is a dependence on the way we
define the momentum variable inside the loop.

In the standard approach of Refs. [5, 10, 11], the cutoff is associated
to the virtual meson, i.e., the integration variable is identified with the
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meson momentum. Consequently, as there is no corresponding quantity
in the short-distance part, a rigorous matching of long- and short-distance
contributions is not possible.

The ambiguity is removed by associating the cutoff to the effective color
singlet gauge boson as introduced within a study of the Kp-Kg mass dif-
ference [12]. This is done by identifying in the LD, as well as in the SD
part, the momentum variable in the loop integration with the momentum
flow between the two currents or densities. With respect to the standard
approach, the momentum of the virtual meson is shifted by the external
momentum, the former being no longer identical with the integration vari-
able, which affects both the ultraviolet, as well as the infrared structure
of the 1/N. corrections. Note that the matching prescription advocated in
Ref. [12] was also used for current-current operators in the chiral limit in
Ref. [13]. The authors showed that the coefficient of the quadratic term
in the cutoff is increased by a factor 3/2 relative to the one obtained from
the standard matching prescription [5,10, 11]. This provides an additional
octet enhancement which, however, has to be confirmed by a full calculation
of the amplitudes relevant for the Al = 1/2 rule. As we will argue, from
this calculation we performed, we confirm this enhancement which is even
largely increased by the effects beyond the chiral limit.

Obviously, the modified procedure described above is applicable to the
non-factorizable part of the interaction and not to the factorizable ones.
The factorizable part, however, refers to the strong sector of the theory, and
has not to be matched with any SD contribution. Consequently, it can be
calculated in pure YPT. In this case dimensional regularization can (and
will) be used. Therefore, no momentum prescription ambiguities appear.
This separation of F and NF contributions was already applied in a similar
way to investigate the By parameter [14].

3. Calculation of the amplitudes and results

Expanding the Lagrangian of Eq. (3), as well as, the currents and den-
sities of Eqs (7)—(8) in terms of pseudoscalars fields, the various F' and NF
one-loop diagrams to be calculated are given in Fig. 1 and Fig. 2, respec-
tively.

In addition to these diagrams, the effect of the wave function renorma-
lization must be included, and the values of the various parameters in the
Lagrangian must be expressed in terms of physical quantities. This we did in
pure YPT following our general procedure for the factorizable contributions.
We checked that the scale dependence coming from the factorizable diagrams
is completely cancelled by the scale dependence of the various parameters
in the tree level expression of the matrix elements. Explicitly, we obtain the



2484 T. HAMBYE

>@ ® o— >—® ® ®—
(dg) (gs) (dg) (as) dq) (qs) (dq) (q5)

>@Q on >._,,Q ¢

{dq) (g8) >(g) (qs) (dg) (q3) %

#@ ®o— >Qe + (A9 > (g9
(dg) (qs) dq) (g8} dq) (g9

Fig. 1. Factorizable diagrams contributing to the matrix elements of the operators
@Q:. Crossed circles represent the currents or densities (with indices (dq) (gs) here
specified for Qg); black circles denote strong vertices. The lines represent the
pseudoscalar mesons.

E (dq) (gs) : (dq) (gs) E (da) (g9
ﬁ; + (g es(gs)
(dg) (as)

Fig. 2. Non-factorizable diagrams with indices here specified for Qs.

following expressions:

{rtrT|Qo KO = —i(x%20|Q | KO = X(l + ‘g’zgmi) : (9)

H{rtrT|Q KO = i(x%7%Qa| KO =0, (10)
2 2

(e IQoK)F = iR IQel)F =~ () g (1)

with X = v2F,(m% — m2) and L} defined by the relation

P _ | AL

i W(m%{ - m2) . (12)

™

For the reason of brevity, in Eqs (9)~(11) we omit scale-independent (finite)
terms resulting from the one-loop corrections which, nevertheless, are taken
into account within the numerical analysis.
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Note that in the definition of Lf, in the denominator on the left-hand side
of Eq. (12), we used F, rather than f. Formally, the difference represents
higher order effects. Nevertheless, the appearance of f in Eq. (12) would
induce residual scale dependence in Egs (9)—(11) which has no counterpart at
the SD level. Therefore, the choice of F is more adequate as it ensures that
no scale dependence appears in the complete factorizable LD contribution
of the matrix elements except the scale dependence of m;. To be explicit,
in accordance with current conservation, there is no scale dependence in
Egs (9)-(10); as to the density-density operator of Eq. (11), we are just
left with the scale dependence of 1/m2. This is to be expected since the
evolution of m; is just inverse to the evolution of a single density operator.
Consequently, the scale dependence of Eq. (11) (which is of leading order in
N.) exactly cancels the corresponding diagonal evolution of z¢ at SD. This
characteristic has already been observed in Ref. [5] .

The non-factorizable contributions are calculated from the diagrams of
Fig. 2, by means of introducing a cutoff regulator Ay g. Using the improved
matching prescription as explained above, we obtain

(r0x0 | Q| KON = o, (13)
1@y KONF = ngz(_gA?\,FJr (m} +12m2)In A%r), (14)
{7070 Qq| KONF = 167;\;}7’,? ( Ak g+ 3(m1‘ — 6m2)In A% ), (15)
i(n T |Qa KON = IG;EF% (g/lNF+ (mf - %m ) In ANF) (16)
i(70 70| Qe KOYNF = —16%?-3 12 In A2 p, (17)
Ur T |Qe| KONE = _W;_";F;rfgpzm Adp. (18)

Here again we omit finite terms which, however, are taken into account in
the numerical analysis. The scale-dependent terms in Eqgs (13)—(18) have to
be matched with the Wilson coeflicients. To this end, we use the numerical
values presented in the leading logarithm analyze of Ref. [15].

Note that in the denominators of Egs (13)-(18) we took the physical
value F rather than f, in the same way as for the factorizable diagrams.
Again, the difference represents higher order effects. However, the scale
dependence of f in Eqgs (13)-(18) has no counterpart in the SD and will
be absorbed at the next order of the chiral expansion. Note also that in
Ref. [5] only the tree level contribution was taken into account in the matrix
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elements of Qg. The latter are proportional to the Ls coefficient, as the
tree level contribution of the O(p®) coming from L(p?) vanishes due to the
unitarity of U. From the point of the N, counting, it is justified to consider
only the tree level contribution for Qg, since the zg coefficient is O(1/N,).
In Ref. |5], only the one-loop diagrams induced by the operators @; and
Q, were considered. Loops over Qg from L(p?), on the other hand, were
assumed to be zero as the corresponding tree level contribution from £(p?)
is zero. However, an explicit calculation of the NF one-loop contributions
to the matrix elements of Qg coming from £(p?) yields a non-trivial cutoff
dependence, as shown in Eqgs (17) and (18), which has to be matched with
the SD part. This effect cannot be neglected since it corresponds to the
leading non-vanishing order of the twofold series expansion in 1/N. and p?;
i.e., it is of the same order as the tree level term proportional to Ls (the
former, being of O(p®/N,), is the leading term in the p? expansion, while
the latter, being of order O(p?), is leading in the 1/N, expansion). The
resulting scale dependence, however, is only of minor importance within the
analysis of the AT = 1/2 rule.?

0.5
i Al=1 /7 4 Ngep — 405 Mev
05 [ " Ag = 325 MeV
I * Ngep = 245 MeV
0.4

0.25 |

0.2 555" "650 700 750 800 850 900

A (VeV)
Fig. 3. ReAo in units of 1073 MeV for m,(1 Gev) = 150 MeV as a function of the
matching scale Axp. The experimental value is represented by the dashed line.

2 It is actually important within the analysis of the ratio ¢’/e. Further details on this
new calculation of the matrix elements of Q¢ will be presented elsewhere [16].



New Analysis of the AI = 1/2 rule in the 1/N. Ezpansion for K — nm 2487

Our numerical result for the amplitude ReAg is shown in Fig. 3. It shows
an additional enhancement which renders the amplitude in good agreement
with the observed value. The new contribution arises from the ¢; and
Q2 operators. It is due to the modified matching prescription in the NF
sector (except for approximately one fifth of it which is due to the choice of
the physical value F; in Egs (13)—(18) as explained above). Our result is
remarkably stable with respect to the matching scale. The main uncertainty
displayed in Fig. 3 originates from the dependence of the Wilson coefficients
on Aqcp (= AW, On the other hand, the isospin 3/2 amplitude shown
in Fig. 4 is highly unstable. The large uncertainty can be understood from
the fact that it is obtained from the difference of two large amplitudes of
approximately the same size [namely A(K — 7*7~) and A(K — #°x%))].
Consequently, the 3/2 amplitude is not well reproduced except that, and
this is a crucial point, it comes out to be sufficiently suppressed whatever
the particular chosen scale is between 500 MeV and 1 GeV.

0.02
| A]:j/Q A Ngep = 405 MeV
0018 E " Agy = 325 MeV
0.016 & Ny = 245 MeV

i [P IR T ST I WV ST S IS
500 550 600 650 700 750 800 850 900 950 1000
A (MeV)

Fig. 4. ReAj; in units of 1072 MeV for m, (1 Gev) = 150 MeV. The experimental
value is represented by the dashed line.

In conclusion, it is certainly premature to say that the AT = 1/2 rule for
K — mr decays is now understood completely since the 1/N, approach we
use is only an approximate method. In particular, vector mesons and higher
resonances should be included in order to take a higher and more secure
value for the matching scale. (It is probable that the vector mesons play
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an important role for As). Nevertheless, we believe that the enhancement
reported here is a further important indication that the 1/N. approach can
account for the bulk of the Al =1/2 rule for K — 77 decays.

This work has been done in collaboration with G. Kohler, E.A. Paschos
and P. Soldan. We wish to thank W. Bardeen, J. Bijnens and J. Gérard for
helpful comments. The author thanks the Deutsche Forschungsgemeinschaft
for a postdoctoral fellowship in the Graduate Program for Elementary Par-
ticle Physics at the University of Dortmund.
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