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After a brief review of the parton model in deep inelastic lepton-proton
scattering DGLAP evolution and its relationship to BFKL evolution is dis-
cussed. The dipole picture of BFKL evolution is developed in the context of
heavy onium-heavy onium scattering. The BFKL evolution equation is de-
rived and solved. At very high energies BFKL behavior leads to scattering
cross sections that exceed unitarity limits. A simple picture of unitarity is
described in dipole language. Finally, the present state of the experimental
search for BFKL evolution is given.

PACS numbers: 12.38. -t, 12.38. Cy

1. Introduction

This written version of two lectures given at the XXXVII Cracow School
attempts to furnish an introduction to small-x physics, in particular the
small-x physics that relates to Balitsky, Fadin, Kuraev and Lipatov (BFKL)
[1,2] evolution. BFKL evolution is particularly interesting because it leads to
high density partonic (mainly gluonic) systems where nonlinear QCD effects
should become prominent. However, BFKL evolution does not show up so
easily in the simplest observables in deep inelastic lepton-proton or hadron-
hadron collisions. For that reason it is particularly important to carefully
consider where and how to find BFKL evolution as well as to describe the
dynamics of BFKL evolution itself.

We begin our discussion with a brief review of deep inelastic lepton-
proton scattering and the parton model followed by a description of Dok-
shitzer, Gribov, Lipatov, Altarelli and Parisi (DGLAP) [3-5] evolution in
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Section 2. A brief comparison of DGLAP and BFKL evolution is given, and
it is noted that the latter is really a part of the former. In Section 3, we
describe the dipole picture of BFKL evolution [6-8]. The dipole picture is
a particularly simple way of arriving at BFKL evolution in the context of
large N. QCD, although the large N, limit is not necessary for the main
result we aim at. In Section 4 a qualitative discussion is given concerning
what happens at very high energies when unitarity corrections to BFKL
evolution become important. Finally, in Section 5, we describe how to find
BFKL evolution experimentally and the current status of the experimental
results.

2. Deep inelastic scattering, the parton model
and the DGLAP equation

2.1. Deep inelastic scattering and the parton model

The deep inelastic lepton-nucleon reaction is illustrated in Fig. 1. The
cross section for scattering an unpolarized lepton off an unpolarized nucleon
is given in terms of structure functions Wy and W5 as

do o (E)T 2(?_) , 2(9)} ,
TR = oL [Wgcos 5 + 2W sin 5 (1)

proton

Fig. 1

in the rest frame of the nucleon. E’ is the energy of the outgoing lepton and
# is the angle of scattering between the initial and final lepton directions.
Qep, is the usual fine structure constant and Q2 = —gq,q, is the invariant
momentum transfer carried by the virtual photon. Wy and W are structure
functions defined in terms of the structure tensor

A2 .
Wanlpoa) = T2 [ @ e (p] ju(2)3,(0) |9 )
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by

W =- (gw - qu q”) Wﬁ—% q(p#9v+pu qu)+ (f 2()];)3 G 9| We

3)
In the above m is the nucleon mass, and a spin average over nucleon spin
orientations is assumed.

In describing deep inelastic lepton-nucleon scattering in the parton model
it is important to refer to a particular frame, the Bjorken or infinite momen-
tum frame, in order that the parton picture be manifest. In that frame the
proton and virtual photon momenta take the form

and

~—

q= (q07 f]» q: = 0) (3b

as p becomes arbltrarﬂy large. In terms of the two invariants Q2 and 1/ =&

one finds ¢g = p which becomes small as p becomes large so that q Q2

as p — oo. In what follows we shall generally take Q? and =z = = 2 a5 the

2
two independent invariants on which W, and W, can depend. -
In discussing the physical basis of the parton model it is useful to consider
T, defined as in (2) but with j,(2)7.(0) replaced by T'(j.(z)j.(0)) with T
the usual time-ordering symbol. Then

W, =2ImT,, , (4)

where T, is forward elastic scattering amplitude for virtual photons on a
proton.

To arrive at the parton model it is necessary to consider the time evo-
lution of the proton state in the interaction picture. The proton consists
of three valence quarks along with a quark- antiquark sea and gluons. The
sea quarks and gluons are created and reabsorbed with the passage of time.
In the proton’s rest system the typical time between interactions should be
1/A since A &~ 200 MeV is the only genuine scale in light quark QCD. In
the Bjorken frame, we can expect this scale to be time-dilated so that -
becomes the natural scale for virtual fluctuations. Now the lifetime of the
virtual photon, the time between its emission by the lepton and its absorp-
tion by a quark, is given by

=t << P (
K fgl—QONQ mA

[
Z
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in the Bjorken frame. Thus one may view the photon as being absorbed
instantaneously by some quark in the proton so long as we use the Bjorken
frame.

Suppose the quark which absorbs the photon has longitudinal momentum
k. Then, upon absorbing the virtual photon, the struck quark becomes highly
virtual with a lifetime of size %, and since this time is much shorter than the
normal interaction time between quarks in the proton the struck quark must
re-emit the photon before an interaction with the other quarks and gluons
in the proton take place. Finally, since the transverse momentum of the
absorbed photon is | ¢ |= @ the photon must be absorbed, and re-emitted,
over a transverse coordinate region Az = 5 That is the quark which
absorbs the virtual photon, the struck quark having longitudinal momentum
fraction k = zp, is pointlike (bare) down to a transverse size Az ~ -(lj

Thus, our picture of T}, and from (4) of W,,, is that the scattering
by the virtual photon takes place essentially instantaneously and over a
very small, almost pointlike, spatial region. Since the photon interacts only
with a single quark we expect T}, and W, to be given in terms of number
densities of quarks in the proton times the T,,, or W,,,, of a single quark. We
stress that this physical picture of deep inelastic scattering as a measurement
of the number density of quarks in the wavefunction of the proton only holds
in the infinite momentum frame of the proton. In terms of formulas

vWo(z,Q?) Zefof z,Q%), (6)

where Py (z,Q?) is the number density of quarks, or antiquarks, in the proton
and ey is the change, in units of the proton’s charge.

2.2. The DGLAP equation

The formula given in (6) is valid in the (QCD improved) parton model.
At higher orders in a(Q) there are corrections to (6) which are systemati-
cally described by the DGLAP equation. In order to describe this write, in
general,

vWy(z, Q%) = I/da' P;(z E< ,,a(Q)), (7)

where the coefficient function is calculable, order by order in a(Q),

Ei(z,a) = €*§(z — 1) + aE(l)(x a) 4. (8)



Small-z Physics and BFKL Dynamics 2561

and where the parton densities obey the DGLAP equation

@ 5 Pie, @ Z/ Loi(Ze@)pEed. o

The anomalous dimension matrix also can be expanded in powers of a(Q)
as

(2, 0) = o [yP(@) + erP@) + -] - (10)

The standard procedure for describing deep inelastic scattering is to
evaluate 7;r(z, ) up to a given order and solve for P;(z,Q?) using (9) in
terms of P;(x,Q32) for some chosen Q3. Calculating E; to the corresponding
order allows one to calculate ¥Wy(z,Q?) in terms of the initial distribution
P;(z,Q2) which is then fit to data. For example, if one takes only the o
term in v;; and the lowest order term in E; one obtains the QCD improved
parton model as the first order DGLAP analysis. Taking the @ and o? terms
of 7;; and the a® and « terms in E; is the second order DGLAP analysis,
and this is the level at which one currently works. In the not too distant
future we can expect a third order DGLAP analysis to become the standard.
This procedure works very well so long as x is not too small. However, there

n—1
are terms in 'y}n)(z‘) of size (ln%) so that when «(Q)In L is of order one
we must expect that the standard ordering in DGLAP analyses will break
down. The procedure must be modified when aln(al—:) is of order one. In

that case, one writes [9-12]

[oe]

1 n
_ r - (r,n)
Y(a,z) =« E oY (alnz) 0% . (11)

n,r=0

The series ¥(®®) is known and we can soon expect to have v{"™® which
will put resumed perturbation theory on the same footing as the standard
DGLAP analysis [13-16].

DGLAP analyses apply to problems having two transverse momentum
scales. For deep inelastic scattering there is the scale A coming from the
details of the soft structure of the proton while the hard scale ¢? is set by
the virtual photon probe. BFKL evolution, on the other hand, applies, in
its most straightforward way, only to problems having a single transverse
momentum and only when that scale is hard. Thus, for example, the high
energy dependence of the total virtual photon-virtual photon cross section,
(@) +v*(Q) — hadrons [17-20], is such a process. Later we shall describe
processes, for which preliminary measurements already exist at Fermilab and
HERA, where BFKL dynamics determines the energy dependence. From
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a theoretical point of view the simplest laboratory for describing BFKL
dynamics is in high energy heavy onium-heavy onium scattering [6-8]. The
single transverse momentum scale is given by the inverse radius of the onium
which is large when the heavy quark mass is sufficiently large.

3. The dipole picture of BFKL evolution
3.1. Lowest order
At lowest order the cross section for heavy onium-heavy onium scattering

is given in terms of the amplitude illustrated in Fig. 2, where the lines P —k,
and P’ — k| are heavy quarks and the lines k; and k] are heavy antiquarks.

P_k]
2o, 1 — 2
Ty, 21
Z15 21
24, 1 — 21

We find it convenient to describe the onium wavefunctions using trans-
verse coordinate space variables, zg, z;, 2}, 2}, and longitudinal momentum
fractions, z;,1 — z1, 21,1 — 21, as indicated in Fig. 2. The coordinate and
momentum space wavefunctions are related by

O (204, 1) :/%6@1.&0%’(0)(1‘71 21) (12)
’ (27)2 T ’

where 2y, = 2, — z, and the superscript (0) indicates a lowest order (no
soft gluons) wavefunction. In terms of ®{%) =| 1(®) |2 the lowest order cross
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section 1s

1 1
o® = /(12:1:01/(12145(0)(%1,zl)/d2x61/dz{fﬁ(o)(x{)l,z{)add(zm,mgl),
0 0

(13)
where 044 is the dipole-dipole scattering cross section
ogi(z,2') = 27ra23:2< <1 + lnx—>) (14)
T<

with 25 the greater of z and 2z’ and with z. the lesser. Our normalization
is such that

/d2x/ldzd5(0)(:c,z) —1. (15)

Problem 1 : Show

/ 2 d2 /
04da(To1, Tp1) = @ /——

[K]f (2 - eiﬁ-ﬁm’] - 6—i£~£o1)(2 _ ez’_{-ﬂ’n _ e_iﬁ‘zol)

and use

T de 1 s
0

to get (14) when orientations of xy, and z{,; are averaged over.

3.2. One soft gluon in the wavefunction

The onium wavefunction having a single soft gluon, along with the heavy
quark- antiquark, is calculated from the graphs in Fig. 3, where softness
means zg << 1. In the large N, limit the emission of a gluon changes a
dipole into two dipoles. The original dipole, the heavy quark-antiquark
pair, becomes two dipoles consisting of the heavy quark and the antiquark
part of the gluon making up the first dipole and the quark part of the gluon
along with the heavy antiquark making up the second dipole. We illustrate
the sum of the two graphs in Fig. 3 by the single graph of Fig. 4 where the
dipole structure is emphasized.

In order to derive the BFKL equation one needs only to calculate the
graphs of Fig. 3 in lightcone gauge where the polarization of the gluon is

A AA ek A
eu(k) = (e4,e2,e7) = (0,‘k =N ) : (16)
+
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-k, 121"
k, koo 12r% kK 1721772

_ﬁf_lsz,zz ﬁkz,zz
—LLf: N~ k-7,

lil’zl

@ (b)

Fig. 4

In the soft gluon approximation, which corresponds to the usual leading
logarithmic approximation in which BFKL dynamics is formulated, one need
only keep e in (16) because the 1/k4 is a large quantity. Using the fact
that the e polarization couples to the classical current of a high momentum
quark or antiquark we can immediately write down the contribution of the
graphs in Fig. 3 to the wavefunction of the onium as

_}__é;g(zp(o)(kl + ko, 2) — O (ky, 21))
k3/2k2y kot
(17)

where T¢ is the color matrix for a gluon of color a, and [k2/2kqt)7 ! is
the energy denominator which is dominated by the soft gluon. Going to
transverse coordinate space by

P (ky, kg, 21, 29) = gT*°

2 2
fi_kl_.@_%eifil “Zoy 1

) (2og, 221, 21, 22) =/ ooz op (W (ky, kg, 21,22)  (18)

(2m)*
one finds, using (17),
wgTe [z z
¢(1)(x02, T21y 21, 22) = ¢(0)(CL‘017 Zl) g (Z(%Z— -+ __21.> . (19)
T 1‘02 21
Squaring and taking a trace over colors gives
2aN, =}
V) = ¢ (zq1, 21) @ 2%12 . (20)
T T13%02

In obtaining (20) we have taken Cp = N./2 in the large N limit.
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Problem 2: Show

2 2
y (Lo , I T01
Z[§ '<T+ T)} =53

> Io2 I Z12T02

Including a phase space factor

d2.’172 dZQ
d{2 =
Q 27 222
one arrives at the factor
2 12
L gy = 2N w‘;‘d 2 dys (21)
95( ) w2 T, Ty

as the probability of emitting a soft gluon, and where we have defined dy, =
dzy/z3. Eq. (21) is illustrated in Fig. 4.

3.3. Arbitrary numbers of soft gluons

Once a single soft gluon emission has been calculated it is straightforward
to add more, even softer gluons. The time sequence for soft gluons to appear
in the wavefunction follows their longitudinal momentum. The hardest of
the soft gluons appears first, then the next hardest of the soft gluons, etc.
In each case the emission of a soft gluon creates a transition from a color
dipole to two color dipoles with the probability factor given by (21). In order
to express this most succinctly it is convenient to introduce a generating
functional, Z, obeying

2aN, N
Z(army,u):exp{— O; Hn(xpm)} (3?01)+
T
(v - y)ln(—«—;jl)]Z(xm,y,u)zm,y,u).

/%1 @ mQ/duexp[
wfy @
(22)

R is a cutoff and indicates that one take zgo > p,z12 > p as the region of
integration. Eq. (22) is illustrated in Fig. 5. Z is the generating functional
for soft gluons and has the following properties:

) ) o é
du(Dzy) du(Azq) Su(Azy)

z lu:O (23)
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gives, when multiplied by &) (zq,, 2) the exclusive probability of having
n — 1 soft gluons in the onium wavefunction with the soft gluons and the
heavy quark-antiquark pair making up n dipoles of sizes Azy, Azg,--- . If
one takes u = 1, rather than u = 0, the expression (23) becomes the inclusive
probability of having n — 1 measured soft gluons, along with an arbitrary
number of unmeasured gluons, in the onium wavefunction. Finally,

Z(zo1, Y, u) lu=1=1 (24)

is probability conservation and is obtained by including the probability con-
serving exponential factors in (22) which correspond to virtual loop correc-
tions in the wavefunction [21].

P e
f 1
i

Fig. 5

Problem 3 : Show that the virtual corrections, the terms in the exponentials
in (22) can be obtained using probability conservation by integrating single
gluon emission over the available (cutoff) phase space. That is

aNe /“’01“2 /d 20Ney 1 TOL L 002 .
2n? 4’302712 P

In summary (22) represents the soft gluon wavefunction of a high energy
heavy onium. The longitudinal momentum integrations have been done in
a leading logarithmic approximation, while the transverse integrations have
been handled exactly. The cutoff p will disappear when a physical problem
is considered. The large N, limit is essential to obtain (22).

3.4. Scattering in the BFKL approzimation

In terms of the heavy onia lightcone wavefunctions, high energy onium-
onium scattering is very simple and is reminiscent of partonic expressions in
hard scattering. Suppose the scattering takes place in the center of mass.

Then the scattering proceeds by the interaction (scattering) of a single
dipole in the left-moving onium with a single dipole in the right-moving
onium as illustrated in Fig. 6. The equation is

2y Y
a(Y) = if—T—5N<;E, ——)N (a;', %)add(;r, 2’y (25)

222 () 2
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Fig.6

where N(z,Y) is the number density of dipoles of size z, in a rapidity interval
Y, in the onium wavefunction. More explicitly,

N(z,Y) = / P261d518 (201, 21)n(201, 2, Y) (26)
with 52( Y, u)
) 2 Zo1, ¥, U

77,(.1017 Z, Y) =T /d¢(2:.) (SU(Q)) |u=1 3 (27)

where d¢(z) indicates an integration over the orientations of the dipole di-
rection z. m obeys the dipole version of the BFKL equation

2O(NC .7701] OzNC / .’U%l d2$2

n(zoy,z,Y) = xé(x—xm)exp[— Yin—| +

m P 2 1y Ty

Y

201Nc Zo1

< [y exp| -y — "L nforazy) (29
J p
illustrated in Fig. 7.

X0 X0 X0
X =1

1 X
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Problem 4 : Use (22) and (27) to derwe (28).

In order to solve (28) it is convenient to write it as an evolution equation
in Y. Taking a Y-derivative on both sides of (28) gives

20,’17\70 -
a?n(xm z, Y) - ! )n(.’L'llz,CB,}) (29)
with
CL‘2 o1
K(zo, 2 /d:z: (22— 2 {——-9-1——271'5 — zo)n }
(o1, 215) 2 (o1 = @) g-rz — 2782 — zo)ln (= —1)
(30)

The limit p — 0 can be taken in (30) leaving K a scale covariant kernel.
Thus

/ de1a K (zor, 212) 23] ™ = x(v)ag! ™ (31)
from the scale covariance. Explicit calculation [6] gives
x(v) = $(1) = 39(5 +iv) = ¥ (5 - ), (32)

thus proving that K is the usual BFKL kernel in a different guise. Using
(31) in (29) gives

® 1+2iv i
n(zor,z,Y)=c / ;gy (xm) e%"(”)} . (33)
Vs

Problem 5 : Use n(zo1,z,0) = z6(z01 — ) to show that c =2 in (33).

Problem 6 : Use the fact that v = 0 is a saddle point of x(v), along with
the results x(0) = 2 In 2 and X" (0) = —14¢(3), to get

{ap-1)Y rlnz(m>
o1 € T
n{zgy,2,Y) = —————— exp | - (34)
(zor ) 2z /%Q‘NCC(S)Y 14aN.((3)Y
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Finally, using (26) and (34) in (25) gives

elop—1)Y

o(Y) = 167’ R? (35)
with 5
ap — 1= 4(}NCIn; (36)
and
) 1
= 5/(121701/d215501¢(0)($01,21)- (37)
0

4. Beyond BFKL (unitarity corrections)

From (35) one sees that when @Y < 1 the onium-onium cross section
is small. However, as aY becomes larger than 1 the cross section grows
rapidly. We can expect corrections to the BFKL result when a(Y) reaches
its geometric value of 2r R2. This happens when

Y =~ In (—) . (38)

One can get a better estimate of the energies where the BFKL picture breaks
down by using a formula for the S-matrix in impact parameter space [6]

; #ln® (b?/R?
L—spy =9 _ wm( b’ ) (@ p1yy XPL TEA T )
d2b b? R? [%GATCC(3)Y]3/2
a formula which is valid when R/b << 1. Requiring | 1 — S(b) |< 2 gives a

rigorous argument for the breakdown of the BFKL result when Y exceeds
the limit given in (38), a limit which is somewhat modified by the b/R
dependence in (39).

One might worry that the neglect of running coupling effects in the whole
leading order BFKL approach might be a serious defect of this program.
However, the next problem shows that this is not the case.

Problem 7 : Using the fact that b* < R? exp\/ 40NCC HoN((3)Y from (39), show

that the requirement

a(b) — a(R) o . T
o(R) << 1 leads to the condition ¥ << ANC(3) o(ﬁ(R)
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with by = %ﬁ This condition is much weaker than that given in (38),
at least for sufficiently small a(R), showing that, in principle, unitarity con-
straints become important at energies well below those where running cou-
pling effects need to be considered.

4.1. A picture of how unitarity is reached [6, 22, 23]

In order to better appreciate the approach to and the setting in of uni-
tarity limits it may be useful to consider a “nuclear” analogy [22]. Imagine
that we are able to control the density of neutrons and protons in a nucleus.
The parameter )

3/2
p= .._-_34‘14"03 (40)
TR
is just that density made dimensionless by multiplication by the nucleon-
nucleon cross section, gg. p, as given in (4), is often referred to as the
packing fraction of nucleons in the nucleus, A. The total cross section for
scattering of two identical nuclei having atomic number A is

. 4r R*
TA4 = AZO'O = ‘17FR2<—97T— ?> 2 (41)
0

in the single scattering approximation. When p is sufficiently small, for
a fixed nuclear radius R, (41) is a reasonable approximation. However,
geometrically 044 < 47w R? so that as we increase p the unitarity limit will
be reached and the single scattering approximation will no longer be valid.
If R?/oy >> 1 the unitarity limit will be reached for quite small p. That is,
the nuclei become black even when they have a very small packing fraction.
Of course, in this nuclear example the procedure is clear. When p grows
so that one approaches the unitarity limit two and more scatterings must
be added coherently to the single scattering amplitude in order to get the
correct (unitary) answer.

The situation for heavy onium-heavy onium scattering is similar. From
(25) it is clear that the unitarity limit is reached when the number of dipoles
in an onium becomes large. However, the unitarity limit is reached, and
exceeded when using (25), not because an error has been made in the cal-
culation of N(z,Y/2) but because multiple scattering must be taken into
account. There are, however, two main differences with respect to our nu-
clear analogy. () In the nuclear analogy the nucleon-nucleon cross section,
0g, was taken as a fixed value. In the onium-onium case dipoles, which are
the counterpart of the nucleons, have a variable size. (i) The number of
dipoles in an onium state fluctuates, and these fluctuations are very large
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having a tail which approximately obeys a KNO scaling with an exponential
KNO function.

We can illustrate how the multiple scattering must be done in a schematic
way [6,23]. The S-matrix for scattering of two onia, say in the center of mass,
at relative rapidity Y and at impact parameter b is

by =" Ps(Y)e /), (42)
¢

where ¢ labels the state of the colliding onia in terms of the numbers, posi-
tions and orientations of the dipoles in each onium. P;(Y) is the probability
density for the configuration ¢ while f(¢) is the sum over all two-body dipole
scatterings. So long as f is not too large a given dipole will participate in
only one scattering and (42) should be an accurate representation of the
S-matrix. Detailed numerical calculations have been done by Salam [23],
and I limit the discussion here to the highlights of the results. From (42)
the single scattering approximation is

S=1=Y PyY)f(¢), (43)
3

which leads to the BFKL answer (25) since f only involves a single dipole
from each onium. When f(¢) becomes large, for those configurations not
having too small probability P, one must use (42). At large Y, and at fixed
b, f(#) becomes large except for rare configurations so that S(Y, b) becomes
small and unitarity is reached at that b. Numerical calculations show that
although there are strong violations of the BFKL result for small 5 and at
moderate Y, the total cross section given by

o= 2/d2b(1 _ S(Y.b)) (44)

follows the BFKL formula up to quite large values of Y [23].
If one expands the exponential in (42) one obtains the Glauber series

o0

S(Y,0) = (=1)"Su(Y.b), (45)

n=0
where

== Z A" Py(Y (46)
In the BFKL context these formulae do not make a lot of sense because

there are rare configurations, ¢, which have very large f(¢) giving [6, 23]

Sp(Y,b) ~ n! (47)
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so that the Glauber series does not converge. Thus we feel that it is essen-
tial to sum the multiple scattering series for each configuration, ¢, before
summing over configurations ¢. This is what is indicated in (42).

5. Phenomenology

We can hope that in time, with precision data and a completely resumed
second order DGLAP formalism, evidence for BFKL dynamics will emerge
from the Q? and z-dependences of v1¥,. However, there are more direct ways
to measure BFKL evolution and there is already some evidence available
from Fermilab and HERA.

p]
X1 K,
X2 k2
p2
Fig. 8
p
—y—
X1
kl
il
Fig. 9

Inclusive two jet cross sections at Fermilab and forward single jet in-
clusive cross sections at HERA can be used to measure the BFKL inter-
cept [24-28]. These processes are illustrated in Figs. 8 and 9 respectively



Small-r Physics and BFKL Dynamics 2573

where k; and k; represent measured jets. In proton-antiproton collisions
one chooses ky1,k21 > M, a fixed hard scale while in deep inelastic scat-
tering ky, is chosen to be on the order of (), the photon virtuality. For the
hadron-hadron case

elap=1)AY
O2_jet = f(@1, 22, MZ)—-\/—W“— (48)
while for deep inelastic scattering
elap—1)In(z1/z)
(49)

Ties = f(1,0Q%)
J f(lQ)\/ln—(m

with z, and z, bein 15 the longitudinal momentum fractions of the measured
jets. ap — 1 = *2=<In2 and the f’s in (48) and (49) are known in terms
of the quark and gluon distributions of the proton and antiproton. In (5.1)
AY is the rapidity difference between the two measured jets. One can get
a measurement of ap — 1 in (48) by varying AY with 1,z and M? fixed,
and this can be done at Fermilab by comparing the inclusive two-jet cross
section at different incident energies. In (49) one can measure ap — 1 by
varying « for fixed z; and Q2.

Sometime ago H1 [29,30] presented an analysis showing oje; increasing
by about a factor of four as = goes from about 3 x 1073 to about 7 x 10~* for
k11 > 3.5 GeV. This is a growth quite a bit faster than given in conventional
Monte Carlos and much faster than the growth from single gluon exchange
between the measured jet and the quark-antiquark pair coming from the
virtual photon. The growth is comparable to that given in (49) forap —1 =
1/2, however, the comparison is not very convincing because a comparison
of partonic energy dependences, from (49), with hadron final states is not
very reliable when &y, is as small as in the H1 analyses.

Recently, ZEUS [31] has completed an analysis of the process. Since
the ARIANDE Monte Carlo gives a good fit to the ZEUS data this Monte
Carlo is used to unfold the hadronization and thus get a better comparison
with BFKL evolution. The data agree much better with BFKL evolution
than with the Born term or with next-to-leading order QCD calculations. A
definitive comparison with BFKL dynamics is hindered by the lack of ability
to include hadronization corrections along with the BFKL evolution. One
can hope that the situation will soon improve in this regard.

A new D@ analysis [32] comparing 1800 GeV and 630 GeV data for
kit ko > 20 GeV gives ap = 1.35 4 0.04 (stat) £0.22 (syst) when (48) is
used to fit the data. The strength of the D@ analysis is that k; > 20 GeV
which makes uncertainties due to jet definition minimal. Weaknesses of the
analysis are the large systematic error and the smallness of AY, equal to 2
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at the lower energy. We can hope that the systematic error will come down
in the near future.

Overall, I think the BFKL searches are encouraging but not yet defini-
tive. The fact that all three analyses suggest a strong increase with energy
of reliable quantities for isolating BFKL effects is certainly positive. An
attempt will also be made to measure ap — 1 at LEP [33] in the next year
by measuring the v* — v* total cross section. This is a very clean process,
although the cross section is rather small.
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