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We discuss the partonic description of the HERA data for F», paying
particular attention to a recent kt factorization approach which unifies
DGLAP and BFKL effects.
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1. Introduction

One of the most striking features of the measurements of deep inelastic
scattering at HERA is the strong rise of the proton structure function F; as
z decreases from 1072 to below 10~%. At first sight it appeared that the rise
was due to the (BFKL) resummation of leading In(1/z) contributions. In
the small  domain the basic dynamical quantity is the gluon distribution
f(z,k%) unintegrated over its transverse momentum k1. Observables are
computed in terms of f via the kT factorization theorem. For example
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where F}? is the off-shell gluon structure function which at lowest order
is given by the “quark box and crossed-box" contributions, vg — ¢, see
Fig. 1(a). In principle the In(1/z) resummation predicts the small z be-
haviour of f and hence, via (1), the behaviour of F,. At leading order, for
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fixed as, the BFKL equation gives f ~ 27" as 1/z — oo with A = @sdIn2
(with @s = 3as/#). However, even allowing for the running of ag, the lead-
ing order prediction is found to be too steep to describe the recent, much
more precise, measurements of Fy. Of course, at subasymptotic values of
1/z the prediction is subject to considerable correction. We return to this
in a moment. ‘
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Fig. 1. (a) The diagrammatic representation of the k1 factorization formula F» =
FJ9 @ [ of equation (1). At lowest order F,¢ is given by the quark box shown
(together with the crossed box) summed over all types of quark, 39 = Ze2 B, . (b)
The different regions of integration used to evaluate the sea quark distribution. In
regions 1l and 1II the sea is driven by the gluon, S; = B, ® f.

On the other hand the conventional DGLAP approach is able to de-
scribe the F, data at the smallest z values observed (even for Q% ~ 1GeV?)
with an appropriate choice of parton distributions at some starting scale
Q32 for the evolution. DGLAP evolution effectively resumes the leading
In Q? contributions, which arise from strongly ordered transverse momenta
Q* > k% > k2 > ... along the gluon chain in Fig. 1(a). In this ap-
proximation (1) can be expressed in terms of the familiar integrated gluon
distribution,

QF .
2 ki 2 .
rg(x, Q%) = —’,'éa“f(%kq‘)a (2)
T

and F; is given by the DGLAP collinear factorization formula. The free
choice of non-perturbative input shapes in z for the parton distributions
9(z,Q3%), g(z,Q3) ... at the starting scale for DGLAP evolution means that
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there is more freedom than in the BFKL approach. In practice this distinc-
tion is not so clear cut since non-perturbative and subleading In(1/z) effects
modify the BFKL prediction. Of course, the issue is not whether DGLAP
or BFKL give a better description of F, at small z, since both In Q? and
In(1/z) resummations are necessary. Rather we seek a unified description of
F, which embodies both of these perturbative QCD effects.

2. Unification of BFKL and DGLAP with collinear factorization

A unified BFKL/DGLAP description can be obtained from a DGLAP
analysis, but with the In{1/z) summations included in the anomalous di-
mensions v;; and coefficient functions [1]. Then the splitting functions F;
take the form

[ n—l
Py = Z An Sh; l_/f))l] ! (3)

agln 1/z)]" !
— .

2P, = = x 2 4
X qg 27{‘$P Sg n n~ 1)‘ ( )

We see that P,, is formally non-leading at small z in contrast to F;,. How-
ever, for moderately small values of z, which are relevant for the HERA
data, it is found [2] that the resummation effects in F,, have a stronger
impact on F, than those in P,. This is due to the fact that the coefficients
As = A3 = As = 0 while all the B,, coefficients are non-zero. Moreover,
the BFKL resummation effects in Py, can significantly affect the extrac-
tion of the gluon distribution from the observed scaling violations of Fj,
since 8F;/d1n Q* ~ P,,®g, where & denotes a convolution in longitudinal
momentum only,

We are interested in the case when the input parton distributions are
flat in z at small z, so that the rise of F, is due to perturbative QCD.
Unfortunately, for flat input distributions the small z behaviour of F} is
found to be sensitive to the renormalization scheme that is adopted.

An interesting development is the possibility of writing evolution equa-
tions for observables, for example

0F;

an 02 = I0@F + [LLQ1]L, (5)

where I; are independent of the scheme [3]. It is encouraging that an
analysis [4] based on such an approach finds that the In(1/z) resummations
are not excluded by the data, but rather that their presence improves the
description of Fj.
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3. Unification of BFKL and DGLAP in the kT factorization
approach

As we mentioned above, the unintegrated gluon and the kr factorization
theorem provide the natural framework for describing small z physics (see.
for example, (1)). The In(1/z) resummations, which have to be performed
explicitly in the collinear approach, are automatically implicitly included in
the integration over the entire k% phase space of the gluon ladder and in the
kT factorization integrals.

The early attempts [5] to obtain the unintegrated gluon distribution
f(z,k%) by numerically solving the BFKL equation were plagued by the
dependence on the treatment of the infrared region, k2 < k2. Here we
describe an improved treatment [6] in which the BFKL equation is arranged
so that we only need to solve it in the perturbative domain k% > k2 and in
which the residual DGLAP contributions are now included. To be precise
we solve the unified BFKL/DGLAP equation

1 1
S S
1' kT 5—/ [)gg 7/ ngq ( ,k%)

kl2 f(fa k ( ]"12
T
=) K2 k72 — k2]
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Symbolically this equation for the gluon has the structure
f = non-pert.input + f + f(BFKL) + f « f(DGLAP — 1) + f « gsinglet

where -1 is taken from DGLAP because it is already included in BFKL. The
input term comes from the k4 < k3 parts of BFKL and of (DGLAP - 1).
We specify the input in terms of a simple two parameter form

zg(z, k) = N(1 - 2z)”. (7)

In addition to restricting the solution of the BFKL equation to the pertur-
bative region k3 > k2 and to including the DGLAP terms, we have also
introduced a 6 function which imposes the constraint 2 < k%/z on the real
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gluon emissions. The origin of this constraint! is the requirement that the
virtuality of the exchanged gluon is dominated by its transverse momentum
|k'|? ~ k2. We take a running coupling as(k%), which is consistent with the
results of the next-to-leading order In(1/z) analyses of Fadin and Lipatov,
and Camici and Ciafaloni [9].

The final term in (6) depends on the quark singlet momentum distribu-
tion ¥. At small z the sea quark components S, of ¥ dominate. They are
driven by the gluon via the ¢ — ¢¢ transitions, that is

Sg=B,®f (8)

where at lowest order B, is the box (and crossed box) contribution indicated
in Fig. 1(a). Besides the z and k% integrations symbolically denoted by ®
the box contribution implicitly includes an integration over the transverse
momentum st of the exchanged quark. The evolution equation for ¥ may
be written in the form

S =850+ By (k% =0)T29(2,kd) + > B, @ f+ Py @S, +V  (9)
q q

where ® is simply a convolution over longitudinal momentum. The first
three terms on the right hand side are the “B, ® f” contributions of (8)
coming from the regions I, II, III of the k2 and x% integrations that are
shown in Fig. 1(b). First, in the non-perturbative domain, region I, the
u, d, s sea quark contribution is parametrized in the form

SO = Cpa~%(1 - 2)® (10)

consistent with soft pomeron and counting rule expectations, where Cp is
independent of Q?. The constant Cp is fixed in terms of the two parameters,
N and 8, of (7) by the momentum sum rule. In region II we apply the strong
kt ordering approximation with B, & B, (k% = 0) so that the k% integration
can be carried out to give a contribution proportional to g(z/z,k2) [10].
Finally in region III we evaluate the full box contribution; this gives the
main contribution and is responsible for the rise of F, with decreasing z.
The last two terms in (9) give the sea — sea evolution contribution, and the
valence contribution V(z,Q?) which is taken directly from a recent parton
set. The charm quark component of the sea is given totally by perturbative

' A more general treatment of the gluon ladder which incorporates both the BFKL
equation and DGLAP evolution is given by the CCFM equation [7], which is based
on angular ordering of the gluon emissions. The angular ordered and kinematic
constraints lead to similar subleading In{1/z) effects, but the kinematic constraint
overrides the angular ordered constraint, except when Q* < k% in the large r do-
main [8].
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QCD, since for k% < k% the box B(k% = 0) is finite as k% — 0 due to
me # 0.

The coupled integral equations (6) and (9) for the gluon f and the quark
singlet ¥ are solved in the perturbative domain, k% > k3. The only input
is the gluon g(x,k3) of (7), where k2 = 1GeV?. The values of the two
input parameters are determined by fitting to the available data for F, with
r < 0.05 and Q? > 1.5GeV?. The continuous curves in Fig. 2(a) show the
description of a sample of the data. Overall the fit is excellent; at least as
good as that achieved in the recent global analyses. When we repeat the
analysis with the kinematic constraint omitted we see that the description
(given by the dashed curves in Fig. 2(a)) is not so good and, moreover, the
extrapolation of the gluon to & a2 0.4 no longer describes the WA7T0 prompt
photon data.

How important are the In(1/z) effects? First we replace the BFKL kernel
in (6) by the standard DGLAP splitting function, F,,. We find that the
gluon is not changed much in the HERA domain, compare the dashed and
dotted curves in Fig. 2(b), as anticipated from the earlier observation that
the coefficients A3 = 43 = A5 = 0 in (3). On the other hand, when
we use pure DGLAP evolution for the quark singlet, as well as the gluon,
the difference is pronounced; compare the dashed and dot-dashed curves in
Fig. 2(b). indicating the importance of In(1/x) effects in Fp,.

4. Discussion

We argue that it is more advantageous to describe small z observables
in terms of a universal unintegrated gluon together with the kt factoriza-
tion theorem, rather than to reduce the BFKL effects to collinear form. We
list some points to consider. In the unintegrated approach it is straightfor-
ward to identify the perturbative contributions which contribute at all Q?.
We can therefore avoid subsuming them in the input distributions. Sec-
ond, there is a natural way to introduce running «g, which for sufficiently
small z goes beyond the Renormalization Group behaviour. Thirdly the
kinematic constraint along the BFKL ladder is easy to implement in the
k1 factorization approach — the constraint is a subleading In(1/z) effect
which appears to embody a major part of the next-to-leading contribution
(compare the o% term in the exponents of [8] and [9]). Another point is
that BFKL contains all twists, whereas only the leading twist is retained in
the reduction to collinear form. Finally the BFKL kernel and the off-shell
gluon structure function F,? are calculable perturbatively. We simply use
expressions to leading order in as. The agIn(1/z) summations are implicit
in the integration over the entire k3 phase space of the gluon ladder and in
the k1 factorization integrals.
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Fig. 2. (a) The two-parameter description of some of the F data at small ¢ us-
ing f(z, k%) evaluated with (continuous curves) and without (dashed curves) the
kinematic constraint k%% < k3/z.

In conclusion, the fact that we achieve an excellent two-parameter fit
of the F; data at small z is not, in itself, remarkable. Other equally good
phenomenological fits have been obtained. What is encouraging is that we
have a theoretically well-grounded and consistent formalism which, with
the minimum of non-perturbative input, is able to give a good perturbative
description of the observed structure of F;. Moreover the BFKL/DGLAP
components of F, are decided by dynamics. In this way we have made
a determination of the universal gluon distribution f(z, k%) which can be
used, via the kt factorization theorem, to predict the behaviour of other
observables at small z. The predictions for F, (charm) and FJ, can be found
in [6].
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Fig. 2. (b) The continuous and dashed curves come from solving (6) and (9) with
and without the kinematic constraint. The dotted and dot-dashed curves are ob-
tained using DGLAP in the gluon sector and in both the gluon and quark sectors
respectively. The same input is used for all curves.
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