Vol. 28 (1997) ACTA PHYSICA POLONICA B No 12

VIRTUAL PHOTON COLLISIONS AT VERY HIGH
ENERGIES* **
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In the framework of the dipole picture of the BFKL pomeron we calcu-
late the total v*+* cross section of the virtual photons. We show that the
dipole model reproduces the results obtained earlier from kp-factorization
up to the selection of the scale determining the length of the QCD cascade.
The choice of scale turns out to be important for the numerical outcome of
the calculations.

PACS numbers: 13.10. +q, 12.38. Cy

1. Introduction

Testing the BFKL pomeron through collisions of tagged ete™ pairs with
very large momentum transfers is an attractive possibility which has already
been discussed in Refs. [1,2]. Clearly, the crucial ingredient in the expression
for the eTe™ total cross section at fixed Q%, @4 momentum transfers of the
tagged leptons is the total cross section of two virtual photons of “masses”
Q% and Q%. Calculation of this cross section, .., is basic for the content
of Refs. [1,2].

Here, the results of calculating 0., obtained together with A. Bialas and
W. Czyz, are presented. Qur approach is alternative to the one presented in
[1,2] and its details have been already presented in Ref. [3]. Our study, being
an implementation of the dipole picture of the BFKL pomeron proposed in
Refs. [4-7], goes somewhat beyond the applications of Refs. [8-13] — it is
based on a discussion of the scale relevant in collisions of highly asymmetric
g — g configurations of light quarks within the framework of Mueller’s QCD
dipole picture [14].

* Presented at the XXXVII Cracow School of Theoretical Physics, Zakopane, Poland,
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We start with the forward onium-onium amplitude for a single pomeron
exchange F(1), Its detailed derivation is given in Appendix A of Ref. [3] and
the final result is

d - v-1
F) = 7.*&27"47'3/51,64(“’)y (T—A) h(vy) . (1)

T rp

Here a is the strong coupling constant, NV is the number of colors, r4 and rg
are the transverse sizes of the two colliding onia, A(y) = aNx(v)/# where

dlog I
= -e-d-eth) (v=SE) @
and A
h(v) = m . (3)
The quantity
v = tog ) (4)

is the total length of the dipole cascade, i.e., the sum of the cascade lengths
of the two colliding onia. s is the total c.m. energy of the collision and s¢ is
the relevant scale of the problem. sy cannot be calculated within the leading
logarithmic approximation and therefore it remains an unknown element in
this approach. Its determination must rely on one’s physical intuition and
on results of a phenomenological analysis of data. In the present paper we
explore the consequences of the choice suggested by the dipole picture [14].

While (1) reproduces the saddle point approximation of F(1) derived
in [4-6] (and employed in [10-13]), it also contains contributions which are
neglected in the contour integral representations of F(1) used in [10-13].
In other words, in Refs. [10-13], those components of the integrand which
become unity at the saddle point, are kept equal one throughout the whole
contour integration. This approximation has been corrected in our present
expression for F(1),

The way to employ the dipole picture to calculate the total v*v* cross
section is, in principle, straightforward. From F(1) and the well known
(compare, e.g., [7,11, 13,15]) wave functions of the two photons, A and B,
of the virtual masses ) 4 B, longitudinally (L) or transversely (T) polarized,
Q/I"T(rA,B, z4,8;Qa,B), we obtain the forward v*y* amplitude

Flyy ='-/WL’T(TA,2,4;QA)12WL’T(7'B,ZB;QB)IQF(”dzdeAdZTBdZB, (5)

and the total cross section which, with our conventions, reads

Oy =2Re F,, . (6)
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Then, in order to evaluate the integral in (5), we have to decide what
to take for Y, the length of the cascade. According to (4) this amounts to
a selection of the scale sy. Two choices were discussed in the literature. In
Ref. [1] so was taken as

So = cQalB , (M)

with ¢ = 100. This apparently natural choice has an attractive feature to
be a simple analytic function of Q4 and Qp. Another possibility [8] was to

take
Sp = CQ2> ’ (8)
where ()5 is the larger of Q 4, @p. This gives
v =log(——) | (9
CTB;

a formula which provided an excellent fit to the proton structure function
at small zp; [8,9].

Following [14] we observe, however, that from the point of view of the
dipole picture neither (7) nor (8) is really satisfactory. The point is that
Eq. (1) refers to collisions of two dipoles and thus the relevant scale sy must
be expressed in term of the parameters characterizing these dipoles (i.e.,
longitudinal momenta z4, zp and transverse sizes 74 ,rpg) rather than Q4
and @p. This is clear if one observes that Q4 and Qg are not even defined
in (1). The possible choices of sy consistent with the dipole picture were
discussed in [14], where also a definite formula for Y was suggested. In the
present paper we explore consequences of this choice for o.. and compare it
with the results following from (7) and (8). We hope that our results shall
be useful in testing the validity of the dipole picture approach in the small
zg; physics.

In the next section we present our formulas for 0., following from ¥
worked out in Ref. [14]. In Section 3 we give our numerical results and their
discussion. Section 4 contains the conclusions.

2. The total v*-v* cross section

In this section we derive the formulas for the total cross section of two
virtual gammas employing the expression (1) for onium-onium forward am-
plitude and using Y in the form taken from Ref. [14]

2
CTint

25 z8r%r
Y =y4+yp =log (“A‘B—AB) , (10)
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where ¢ is the arbitrary constant of the leading log approximation,
s = 4FE4Ep is the square of the total c.m. energy of the colliding virtual

photons,
<_ | =z if 2<0.5
“ _{l—z if = > 0.5, (11)

and
Tint = coOnst rs (12)

where ry, is the larger of r4 and rg. 7 is interpreted (see [14]) as the
time needed for the exchanged gluons to travel the necessary distance in the
transverse space.

We will confront the results obtained with (12) with the ones one gets
replacing (12) by a symmetric expression

Toe = T2 =TATB (13)

which leads to formulas close to the ones advocated in Refs. [1,2].

To get ¥*—+* amplitude we employ now the wave functions of the virtual
photons, ¥(r4,24;Q4),¥(rp, 2B;@B), and calculate F., of (5), where for
the transverse (T) and longitudinal (L) photons we have (compare
[7,11,13,15])

2
Noaemey WL

[T 2 Q) = @M (1, 5Q) = — nzQ),  (14)
WT(r,zQ) = 3[z* + (1 - 2)Y|Q° KT (@Qr) (15)
Wh(r, Q) = 22(1 - 2)Q*K5(Qr) . (16)

where Q = Vz(1 - 2)Q, aem = 1/137 and e} = 2/3 (the sum of the squares
of the charges of three quarks).

Inserting (10) into (1) and employing (5) we obtain for the total y*y*
cross section

1

oo 2 oG
Oqy = 4(27&')3012/(#‘41"124/dzAd5T’L(zA,rA;QA)/drBr‘29
0 0 0

27t rp

1
2 1—v

< [ a0, rs) [ 4y “W(“) Ry, (1)
0

where Y = log € and € = (sz525r4r}/(cm,)). Note that since ¢! and &~
are invariant against the replacements: 24 5 — (1 — z4,5) and (1 — z4 B)—
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z4,B, we can drop the < superscripts and integrate over z’s as follows
1 1/2

fdz—2 [ dz.
0 0

The expression (17) is comparatively easy to evaluate when, as in (13),
2. — 72 = rurp (the case close to the one of Refs. [1,2]) because the
integrals factorize into integrals over the A and B variables, the integrations

over r4 and rg can be done analytically and we obtain

S aNaumed L [ (s YA (@)
Uw“‘ﬂ—(o‘Naemef) QAQB/Qﬂi<CQAQB) (QA) ot (‘(1)8')

The explicit form of the function H"T(v) appearing here is given in the
Appendix B of Ref. [3].

In the case of (12), however, there is no factorization and one has to face
a 5-dimensional integration with one of the integrals being a contour integral
in the complex plane v (along a straight line parallel to the imaginary axis).
This forces us to use a numerical method for the evaluation of Eq. (17). It
turns out (see the discussion of our results below) that in the very high energy
limit (s/c very large) one can safely use the saddle point approximation for
the contour integral

d 1=y 2 L
T 0 (22) ki) = 3y [ Ze o) e ek | (1g)

271 rg

with Y = logé, & = s/sp, with sp as the case might be (see above), a; =
[TaN((3) log(€)/x]™! and A, = %X(l). Yo = 1 — aglog(ra/rp) is the
saddle point which, in the limit s/¢ — oo, equals 1. Then the numerical
integration reduces to 4 dimensions. Note that (19) exhibits the source of
the substantial difference in dependences on QB /@ 4 following from (7) and
(8), see Fig. 2. This difference sits in the €47 factor:

() e ()" w

3. Numerical results and discussion

We considered 4 cases of Y = log(s/sg) and calculated the corresponding
cross sections: (a) The case of Eq. (7), sp = ()@ 4@ B, employed in Refs.
[1,2]; (b) the case of Eq. (8), so = ¢(»)Q%, employed in Ref. [8]; (c) the case
of Eq. (12), so = (e(yrl/(z52z57%r%)), discussed in Ref. [14]; and finally
(d) the case of Eq. (13), so = (c(4)/(2525747B)), discussed also in Ref. [14].
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The cases (a)—(d) were calculated in the saddle point approximation
given by the formula (19) and subsequent 4-dimensional integration. In
cases (a), (b) and (d), we checked the accuracy of this procedure calculating
0.~ analytically up to the final contour integration over ¥ which was done
with the help of MATHEMATICA. It turned out that the results of these two
procedures agree to within 15 percent.

In order to exhibit the asymmetries when Q4 # Qp we introduced the
asymmetry parameter, (, defined as

o
= —. 21)
¢ O (
Using the saddle point approximation one can check (for details see Ref. [3])
that the asymmetry in Q4,Qp in cases (a) and (d) is given approximately
by the factor

e~ 7aelog () (22)

In the (b) and (c) cases, especially in the case (b), this estimate is not good
enough.

Clearly, the choices of the values of the arbitrary constant ¢ involved
in all Y’s discussed in this paper are very important in determining the
size of the cross section. They can either be fitted to experimental results
(compare Ref. [8]) or set following some prejudices of the authors (compare,
e.g., Ref. [1]): in Ref. [1]

c=clay =100, €= = (23)

s
c(a)@aWB
and in Ref. [8]

c=cp) =057 £={up = (24)

s
cny@
The constants ¢ for cases (c) and (d) were set to fit the ¢’s of cases (b) and
(a), respectively, for Q4 = Qp = 4 GeV and /s = 200 GeV. They come out
to be: ¢(,y = 0.0053, and c(q) = 2.5.

To estimate the role of ¢’s it is enough to use the asymptotic saddle-point
formula for Q4 = @ p. In this case we get

01n(a) _ (§(__>) ¥ [tey (25)
o4~ (D) 0 aey |

where ¢ is given below (19). Since, in the limit s — oo, O(log&,)) =
O(log &3)), we have approximately

Oyy(a) ) A 2%
aan(b) (C(a)> ' (26)
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Fig. 1. Total cross section in the dominant TT channel for Q4 = @ = @. The
solid lines represent the results for cases (b) and (c), whereas the dashed lines show
cases (a) and (d). Using the values of the scale parameter ¢ given in the text, one
finds that cases (b) and (c) coincide in the wide range of Q2. The results for cases
(a) and (d) slightly differ for very large Q2.

In Fig. 1 we present the o.,,’s for cases (a)-(d), for Q4 = @B, setting
the strong coupling constant o = 0.11, hence A, = 0.3. The values of the
constants ¢ were taken as in Ref. [1] (c(,) = 100) and [8] (c() = 0.57). The
resulting cross sections differ appreciably, consistently with Eq. (26). The
dipole model results, (c) and (d), were fitted to the predictions of (b) and
(a), respectively, at the point Q% = 16 GeV? and /s = 200 GeV. One sees
that they follow closely the results of (a) and (b) for all considered values of
Q? and +/s.

In Fig. 2 the dependence on the asymmetry parameter ( = Qp/Qa4 is
plotted. Other parameters are chosen as in Fig. 1. One sees that the
¢-dependence is almost identical for two versions of the dipole model ({c) and
(d)) and the symmetric proposal of [1,2]. The case (b) differs significantly,
however, from the others, giving a much stronger dependence on (.
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Fig. 2. Total cross section in the dominant TT channel for 1 < { < 8.

4. Conclusions

The predictions of the dipole model for the photon-photon cross section
depend strongly on the scale determining the length of the dipole cascade
in the incident photons. The scale suggested previously [1,2] gives substan-
tially smaller cross section than the one suggested by a fit of the dipole model
results to the proton structure function [8]. On the other hand, the depen-
dence of the cross section on the ratio Qp/@Q 4 for the two colliding photons
turned out to be the same for the two extreme cases of the dipole model
((c), (d)) suggesting that it hardly depends on the details of the model.

We conclude that future measurements of y*y* cross section may be
useful in determining the length of the dipole (gluon) cascade but, probably,
not very helpful in understanding the details of the dipole-dipole interaction.
This makes rather urgent the need of determining the relevant scales from
the higher-order perturbative calculations.

We would like to thank S. Brodsky, F. Hautmann, R. Peschanski and
Ch. Royon for correspondence and sharing their independent results. We
also thank W. Broniowski for his helpful suggestions concerning the usage
of the Monte-Carlo method.
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