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The structure of the QCD gluonic cascade in configuration space is
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configuration space transverse coordinates is derived in the double loga-
rithmic approximation (DLA) of QCD. The possible simplification of the
multiparton density matrix formalism for DLA approach is found and dis-
cussed.
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1. Introduction

The aim of this talk is to present the recent results of the investiga-
tion [1] of the structure of the QCD gluonic cascade in configuration space.
The interest of the configuration space structure of a hadronic source has
appeared primarily in intensity interferometry [2]. The technique was devel-
oped originally to estimate the dimension of distant astronomical objects.
Since that time it has seen widespread application in subatomic physics,
in particular in analysis of elementary particle collisions [3]. The standard
HBT procedure involves introducing an ansatz describing the geometry of
the particle source, on the basis of a physical model. Then it investigates its
multiparticle characteristcs in momentum space. Many models of hadron
production based on some phenomenological or theoretical constraints [3]
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have been considered; however, the question as to what is the configura-
tion space structure of the QCD cascade when derived explicitly from the
fundamental theory has not been addressed so far.

Recently, several groups have analysed in great detail the multiparton
distributions in the QCD gluonic cascades [4]. The results of their inves-
tigations show that perturbative QCD [5] provides a powerful framework
not only for the description of hard quark and gluon jets but also of much
softer multiparticle phenomena. Although not understood theoretically, the
hypothesis of parton-hadron duality [6] provides an apparently successful
link between theoretical parton distributions and observed particle spectra.
This prescription was extensively tested in single particle spectra (and to-
tal multiplicities) and found to be in a good agreement with the available
data (see e.g. [7]). Recently, there have appeared indications that it may
also work for multiparticle correlations [8]. These unquestionable successes
invite one to study further consequences of the theory for processes of par-
ticle production. At this point we would like to notice that, if one wants to
exploit fully the quantum-mechanical aspects of the QCD cascade, it is nec-
essary to study at first the multiparton density matrix. The multiparticle
distributions calculated so far give only diagonal terms of the density matrix
and thus represent a rather restricted (although very important) part of the
information available from the theory.

It is perhaps important to stress that in contrast to what is usually
believed, the interest in studying the multiparticle density matrix is not
purely academic. As suggested in [9], the density matrix allows one to obtain
the multiparticle Wigner functions and consequently gives information about
the space-time structure of the system. This allows one to make predictions
about the shape and range of the HBT interference with clear experimental
consequences.

In my previous paper [10] I investigated the multiparticle density matrix
(DM) of the gluonic cascade produced in e*e™ collision in the framework
of double logarithmic (DLA) approximation [5], [11] of QCD. I proposed
a generating functional to obtain integral equations for the multiparticle
density matrix in the quasi-diagonal limit, ¢.e. if the energies and emission
angles of particles are close to each other.

Here I will be presenting the technique for extracting physical informa-
tion from the density matrix approach, deriving the explicit form of inclusive
single particle density in configuration space. For the sake of simplicity, I
will be restricting myself to a discussion of its dependence on the transverse
space coordinate . In solving the problem, first I will discuss the deriva-
tion of the inclusive single particle density matrix di8(k’,k). I will prove
that the terms in di8(k’, k) which do not vanish for k = k' are leading in
the double logaritmic perturbative expansion when ag — 0, momentum of
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quark (antiquark) P generating the gluonic cascade is large: P — oo and
the double logarithmic contributions of the form ags In? P = const domi-
nate. Taking into account these leading terms will allow me to obtain the
explicit analytic form of the density matrix, and consequently the explicit
form of the single particle density in configuration space. Finally, I will be
analysing the physical properties of inclusive single particle density, and |
hope to find them in agreement with intuitive physical expectations.

2. Density matrix formalism
2.1. Definition of the density matriz

In this paper 1 will concentrate on the single particle density in configu-
ration space. I will be discussing it in relation to the QCD-parton cascade
within the framework of double logarithmic approximation (DLA), using the
density matrix formalism presented in [10]. Hence in this Section I will recall
the definition of the density matrix for a particle production process, and
show the relation between the density matrix and particle density in config-
uration space. Qur assumption is that all the produced particles are real,
t.e. they are on a mass shell. If the production of m particles can be realized
in different ways represented by a sample of Feynman diagrams, then the
exclusive m-particle density matrix equals the product of total production
amplitude S(ky, .., k) and its complex conjugate S*(ki,.., k;,) as

d™(ky, . ki ke, k) = S™ (kY - k) S (K1, - - k) (1)
where the total amplitude S(ky, .., k) is the sum of all contributions S(p)
from Feynman diagrams (D) multiplied by phase space factors (2(;%)‘1/2 :
S(kyy .k ZSD) kr, - o km) [T (2wr) 72 (2)

=1

For inclusive analysis one constructs the m-particle density matrix as a series
of integrated n-particle exclusive densities in the form:

Aok, Kk, )
o 1
=2 M/{dk]m+i nd(kY, sk kg1, ks Ry, k), (3)

where [dk];. ; = d®k;..d%k;. This construction scheme implies, that the
diagonal elements of the density matrix are equal to particle densities in
momentum space. There is also an obvious relation between the density
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matrix and particle density in real space. Remembering, that the space-
time multiparticle amplitude is the on-mass-shell Fourier transform of the
momentum amplitude, i.e.

Sy, oy ) = /[dk]l_._m el i—ikizy | elwkmtm—tkm@m G kY (4)

where wy, denotes the energy of the i-th produced particle, for the multi-
particle density p®/in(z,, ..., z,,) we get the relation:

pex/in(l’l, vey ;L-m)
! ex /1
= W/[dk]l...m[dkf]l...md AT (Y ARy O
x o' T milk TR E iy, —g Jom =ik ki) (5)
where the factor (271)3,;; was introduced to get the proper normalization:
/[d”’hmm/’exﬁ“(% e ) = /[dk]l‘..mpex/i“(kl, k). (6)

2.2. Parton cascade in the double logarithmic approzimation

The double logarithmic approach in momentum space [5,11] gives a good
qualitative description of the structure of the gluonic cascade. It accounts
only for the leading DL contributions to the multiparticle cross-section. Al-
though emitted soft gluons violate the energy and momentum conservation
rules, however, at high energies the approximation reproduces quite well the
selfsimilar structure of the gluon radiation. Let us consider in the framework
of DLA the gluonic cascade generated in ete™ collision. Multiparticle ex-
clusive amplitude Se, ., (k1, ..., k), describing the production of m gluons:

m

- w wiky)
Ser e (k1 o) = (~1)7 ™55 T M, (ki) e~ 5, (7)
i=1
is a product of the m emission factors:
(ei- P)
Mp, (k;) = Op (k) Gp,, 3

where: g5 = /4ma,, n is the number of gluons emitted of quark (antiquark),
k; = (wi, k;) denotes the 4-momentum of the i-th soft gluon, ¢; = egj), j=
0,...,3 describes its polarization, P; is the 4-momentum of the parent of
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the i-th gluon, G'p, denotes the color factor for the given vertex of the tree
diagram D, and can be conveniently represented as a tree diagram (see
Fig. 1). Gluon emissions are not independent. Radiated particles have the
memory of their parton parent, and of the previous parton splitting off its
parent line. This dependence restricts the phase space of the produced gluon,
and it is included in the form of a generalized step function ©p, (k;):

Op(k) == {k*=w < P°, 6kp < 0, whkp > Qo}, (9)

where P is the momentum of the parent of a given parton k, § denotes the
emission angle of the previous parton splitting on the P—line, and (o is a
cut-off parameter. Virtual corrections appear as a radiation Sudakov factor
e~w(P)/2 where:

w(P) = /d3k (A3 (k) Ap(E)) () (10)

denotes the total probability of emission of a gluon from the parent P,
averaged over physical transverse polarizations €', ¢2. Ap(k) is given by:

Ap(k) = M{;ii). (1)

It should also be emphasized that produced gluons are real (on-mass-shell)
particles, so the energy wy of a gluon of momentum k can be approximated
as:

Wi ::] k l . (12)

P

Fig. 1. Feynman diagram for the production of m gluons in DLA, where P denotes
the 4-momentum of the initial ¢(¢) and k; denotes the 4-momentum of the i-th
produced gluon.
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Summing of the color factors G over the color indices gives the result:

« [ Cpfor B,=P
GP"GP"_{ Cy for P, # P,

where P denotes the 4-momentum of the quark (antiquark) which initializes
the gluonic cascade.

In DLA different tree diagrams come from different non-overlapping kine-
matic regions, and do not interfere. Therefore, to calculate exclusive and
inclusive multigluon densities it is enough to sum up incoherently the squares
of amplitudes (7). Hence one obtains the exclusive density p$(k1, .., kn) in
the form:

(13)

pE(ky,. ., k ZH (AP, (k) Ap, (k) ey e (14)

D i=1

parametrized by the momentum P of the quark (antiquark) which initializes
the cascade. Multigluon inclusive density p'8(ky, . ., k) follows from (3) as:

Bkiyn k) = 3 s [ pB e, k) (19)

PPk, ., B —n:m (n—m)! m+l..n PP (K1, - Rn).

Introducing the method of the generating functional (GF) (see [5] and ref-
erences therein) allows us to perform the summation over diagrams in (14)
and (15) in a very convenient way. While constructing the generating func-
tional Zp[u], one applies explicitly the selfsimilarity property of the gluonic
cascade. As a final result one obtains the recursive master equation in the
form:

Zelu) =) exp ( [ @k (Ap(0 AR (1) ulk)Zlad) . (16)

It can be proved [5] that equation (16) reproduces contributions of all tree
diagrams D, and allows us to express multigluon densities pi5(ky,.., kn)

and pP(kq, .., ky) as:

ex o™ .
PP (kis s km) = ~6u1...5umZP Hu0) ()
in om
ppkss s km) = o= Zp lu=1y s (18)

where u; denotes the probing function u(k;) and the functional derivative
0/6u; denotes &/8u(k;) respectively.

We would like to emphasize the simplicity of the GF approach. Espe-
cially for inclusive densities the method allows us to skip the complicated
summation procedure, and to express the required distribution in a simple,
compact form (for details see [12]).
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2.3. Density matriz in the DLA formalism

The DLA formalism in momentum space gives a good description of the
structure of the gluonic cascade. The GF scheme suggests clearly how to con-
struct multigluon densities, and allows us to investigate their properties in a
simple way. Since the method works so well for multiparticle distributions,
one can expect to apply it successfully for other multiparticle observables.
Below we briefly discuss the calculation of the multiparticle density matrix
in the framework of double logarithmic approximation, recalling our main
results from Ref. {10].

First we derive the general expression for the exclusive and inclusive
density matrices d(k},.., k., ;k1,..,ky) and dB(k}, .. Kk, k1, .., kn).
The task looks quite complicated because in this case the interference be-
tween different diagrams in (1), generally does not vanish. Let us define two
functionals, Zp[u] and Zp, {w], which generate the sum of all tree amplitudes
and the sum of their complex conjugates respectively:

Zplu] = e7(P)2 oxp (/ d3kAp(k)u(k)Zk[u]> )
Zp[s) = e7 (P12 exp (/ 3k A3 (k)s(k)ZE[s]) . (19)

The multigluon density matrices can be then expressed as (see Appendix A):
dE (kY. . K, k1, k)

o™ &m .
- 8811...08m Sy ...0U, Zp[u]Zpi[s] I{u=s=0},P=P’ ) (20)
dB(k,, . . Kk, k)

™ §m
- dsyr...88,, Suy.. dup,

ZP[’LL]Z;)/[S] |{u=66—5’s=0}1P=P/ - (21)

Eq. (21) is, in fact, a complicated integral equation. The difficulty of the
diagram summation does not disappear there. It is only hidden in the com-
pact form of (21). However, we remember that in the above formula we have
taken into account interference between all different graphs D and D’. And
detailed analysis gives the result that in DLA not all the diagrams mix up:
one can distinguish some interference classes. However, at the general level
we did not succeed in formulation of such a GF which would take this fact
into account.

Nevertheless, we do not need the most general form of the density ma-
trix. We are interested in its behaviour when the differences of momenta
| ky—k1 |, ..., | k,, — kI, | are small, since we expect that large momentum dif-
ferences will not contribute to Fourier transforms [13]. It can be shown that
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Zk[ul Zk.[u] Z z[u]

AW A kYA
-w(P)/2
Z [u]= e x[p +P +2P ro]

Fig. 2. Generating functional (19) as a diagram series.

within this limit interferences between different diagrams vanish, and one
sums up only “squared” contributions from identical graphs. In fact, from
the analysis of the diagrams contributing to single particle density matrix
d$(kj, k1), it has been possible to prove (see Appendix B) that interfer-
ence between different diagrams appears only if either energies or emission
angles of produced particles are strongly ordered: w; > wy (w1 < wy/)
or 81p > O1p (b1p < 6yp). This statement can be generalized for any
m-particle density matrix. If we have m particles, and ( — 1) ones among
them are “close” to each other, e.g. ky = ki, ...,kpn—1 = kJ,_,, then the in-
terference of the different diagrams will take place only if either the energies
or the angles of k,, and k], are strongly ordered.

Hence in our approximation we exclude mixing up different diagrams,
and sum up only the squared contributions from identical ones. The exclu-
sive and inclusive density matrices then take the simpler form:

d)?;( - k;n kl"'?k )
= Z H(ilwkfwki)_l/Z <Sel..6m (kll~ s ey k:n)Sel...em(klf reny km)>(el..em)* (22)
D =1

diB(k}, .. Ic;n,kl,..,km)
Z 'Z/dk m+l..n (4wk/wk) 1/2 H (4ijwkj)~1/2
n=m J=m+1

X<Sel..en( 1a---aklm7km+17-'-7kn)Sel...en(kla"-ak'n))(el.‘en)' (23)

The summation in (23), (23) over D can be easily performed using the
generating functional which reproduces only contributions of identical tree
diagrams. In [10] I proposed a master equation for such a generating func-
tional (GF) Zp/p[u(k', k)]. It accounts only for the contributions of “diago-
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1 2
f f 61 > 03, any wy, wy
M,: P
2 1
f f 8, > By, any wy, wy
M: P
2 1
; w1 > wy, Oip 2 Op > 01
M: P
1 2

c

M: P ; Wy K wa, hp = bp > b1y

d

Fig. 3. Redefined kinematical regions in DLA.

nal” diagrams (for proof see Appendix C), and generates the exclusive and
inclusive density matrix as:
5771
5um’,m- .5%1111
5m

Ou‘m’,m' -dul‘,l

d(]%\'(k,lﬂ'-vk:n:kls"vkﬂl) ZPIP i{u:O},P:P” (24)

(1";3]( ’1, .y k;n‘ kl; .y km) ZP/P ]{u=53(1’-l)}.P:P’ . (25)

The explicit form of its master equation, and the other formulae needed for
further calculations are presented below. The GF reads:

sy 1
Zpiplu] = e=W PP 3 ;ﬁ/[dk’]l_“n [dK] 1 (K], K)ot (K, K
n=0 "

X (Api (k) Ap (k1)) (eyy-- (AP (k1) AP (Fn)) (e
X Zyt i [0 Zigpe, (W] Pyt (26)



2692 B. Ziaia

@ i, K,

REAR:

Angular ordering: interference if 8 >>8,

Energy ordering: interference if o, >> o

Fig. 4. Interference between different diagrams for d$(k{, k1). Remark: pairs of
diagrams (a) and (b) are identical except of the position of k; (k) leg.

where the function Py ,r.1...n provides the requested parallel angular or-
dering ( see Fig. 5) for n particles in the form:

= z @(0k£1P' > > ek'{np/) Q(Qkilp > 2> ek‘.np)
(¢15-evin)Eperm(l,...,n)
(27)

the product of the single particle amplitudes { Ap/ (k') Ap(k))(.) averaged
over gluon polarizations (see Appendix D) reads:

(Ab (k) Ap(k)) 0= AP'P(k' k)

4
gs GP’GP

Pl’ ..... n’il,...,n

Op:(k")Op(k); (28)

V 4w’3w3 fpk oP'k'

and the radiation factor is given by:

w(P') +w(P) (29)

W(P', P) = ;

The other notations are the same as in Section 2. 2.
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! 1/ 2
StV
— a—w (PP / +-]— Y49 2/ v
Zpip =e v (PLP) | P + 2|p +P' +

parallel an, r
Brering 0B

|
43\

| App(1,1)

Fig. 5. Master equation for generating functional (26) represented as a diagram
series {for details see [10]). Function Py, .1, ., introduces the parallel angular
ordering (AO).

Generating functional (26) describes the sequence of “emissions™
(Api(k') Ap(k))(e) of two particles k, k' from two parents P, P'. If the profile
function u(l,!) is equal to 0 and 82({’ — [) respectively, then the functional
Zp:p takes the form:

Zpip[u = 0] = e~V FP),
Zpplu=8&('"-1] = 1. (30)

For the profile function of the form u(l’,1) = v(l) §3(' = 1) and P = P’ our
Zp p[u] reduces to functional (16), as expected:

Zpp[u(l',1) = v(1) (' = )] = Zp[o())]. (31)

2.4. Single particle density matriz. Leading terms

From relations (25), (26) one obtains a simple integral equation for the
inclusive single particle density matrix:
dB (ks k) = / BsApp (s, s)d™(k'; k)
+fp (k' k) App (K, k) Zy p[u = 8*(I' = 1)], (32)
where fp(k', k) equals

. 0. pP O1pP
(s B o S

fp(K' k) =
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Introducing the notation:
gp(k,, k)= fp(k’, k) App(k/, k) Zy g[u = 53(ll -] (34)

we may write the symbolical solution di8(k’, k) of (32) in the form:

dp(k kY= /d331”.d3sn App(51,51).-As_is,_y (Sns 5n)gsn (K, k).

(35)
We present Eq. (35) as a final result obtained in Ref. [10]. The exact solution
of diB(k’,k) and its detailed properties will be discussed below. We may
replace App(s, s) in (35) with its explicit form taken from Eq. (28):

dn(k, k) = 3 (2b)" / dsy o 031 Op(s1). / dsn 2:605" O.,_, (5n)
n-O Ps1

X gs, (K k) (36)

n—1n

where [ df2,, denotes the angular integration over the direction of vector s;,
6;; = O, and b = g2Cr. Factor gs(k', k) defined by expression (34),
reads:

/ _ 2_b 1 1 ’
g5k, k) = 27 k3K OsiBsy Os(k)Os(k)
OrsS 0irsS
xexp [ =b | 1n? =25 — In? )
P ( | Qo Qo |
ks k'0us
xexp | —b'/2 <In2 + In? ))
P ( / Qo Qo
. 1 111
X ; 2b) / dk 1 " 27?0k19k11 ."27r0kn6k’n k"ffi‘g
X@(akl > > 0kn)9(0k’1 > > Okln)
XO(1). .Op(n)Bk(1). .Ok(n), (37)

where b’ = g4Cy. Rewriting its phdse space restrictions in terms of Bessel
functions (see Appendix E) one arrives at:

2 1 1

' e - ’
9s(k.k) = o WﬂskastS(k Os(k)
OrsS OrisS
x exp [ —b | In® — In? )
© p( | Q Qo |

i
X exp (——b'/2 (ln2 kg—k; + In? kgl;ls))
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in(k,k")
mind dk;

ZQb;nH(/d;choiL'Oklk) / .
n=0 =1 ¢

max( _99_,_.@9_)
Ok, i—1 "0k i,

ek,l 1 ok 41
X / dok,'Jg(.’Cgok,') / d()k,,»Jg (a:,~49kr,-)). (38)
Q
ki ky
The term which dominates in (37) in the double logarithmic perturbative
expansion: b — 0, P — oo, bln? Qf— = const, has the explicit form {for
details see Appendix F ):
26 1 1

9§ (K k) = Os(k') Os(k). (39)

27 k3K OspOsk
One may check (see Appendix F ) that this term iterated in (36) produces
the DLA leading contribution to the density matrix dg(k’, k). Namely, if we
introduce the notation:

2.71, (1)(k/ )
dsy d.Qsl ds, d-Qs,.
S (20)" / MTHQ”(S"'“/ gt O (50
gw, k) (40)
then there is a relation:
dp(k', k) < dp V(' k) (41)
and for k = £’ in quasi-diagonal limit:
a8k, k) = d (k' k). (42)

Both (41) and (42) hold in the perturbative limit, as well. Hence we may
write finally that:

. > dsy [ dS2 ds
do(k DéA n/ 1 s1 / n/ .
K, k) > (20) o | 3o Op(s1). T Ospy (5n)

n=0
x gDk, k). (43)

The above result simplifies significantly the single particle density matrix
approach [10]. We apply it in Section 4. 2. so as to improve calculation of
the single particle density in mixed coordinates.
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3. DLA in configuration space
3.1. Fourier transform in transverse coordinates

The DLA soft parton cascade starts from the initial parton of momentum
P. Momenta of all particles produced from parton P refer to the P direction:
they depend on the transverse and longitudinal momenta k1 and ki, (see
e.g. [5,14]) taken with respect to the P axis.

This dependence influences the structure of the cascade in configuration
space. For the single particle amplitude Eq. (4) takes the form:

Sp(e) = [ @ke=*2sp(k) = [ dhudhr ek Sp(k),  (44)

where Sp(k) (Sp(z)) denotes the amplitude to produce a single particle
with the momentum k ( at the space-time coordinate z ) from the initial
particle of momentum P, and the 3-dimensional product kx reads:

kx = kyzy + k1 2T, (45)

where indices L and T denote longitudinal and transverse components of
momenta and coordinates with respect to the P axis.

Since DLA amplitude Sp = Sp(w,fp;) (7) depends explicitly on
w =| k {= k (12) and 0pg, one should express it as a function of ki, and
k1. To proceed, let us recall that the simple form of Sp = Sp(k, 8pi) has
been obtained from the original QCD expression using the approximation of
small emission angles p; < 1 [5]. In this approximation one retains only
the leading term in p;. Hence, restricting ourselves to the leading terms in
0pk, we interprete product kfp; as the transverse momentum kt and k as
the longitudinal momentum kp,. The correctness of the substitution k & k,
for e'** in (44) is not so evident, since it should be done in the argument
of Fourier transform. However, if we restrict ourselves to finite, small time
intervals, i.e. t < (P§?)71, it also works with a high level of accuracy. To
see this, let us analyse the dependence of k on ki, and kt. Following (12),

it can be expressed as:
(w=)k =k + k2. (46)

For intrajet cascades there is a relation kt < ki,. Restricting ourselves to
the leading term k & ki, we ignore the contributions of the order of k%/kr..
In DLA the ratio k%/k} has a limiting maximum value #* denoting the
emission angle of the previous parton splitting off the P-line (compare (9)).
Maximal energy carried by the gluon equals P. Since that the approximation
k = ki, implies, that one neglects terms of the order of P#2.
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Using the leading term approximation, Eq. (44) can be rewritten as the
product of 2 separate Fourier transforms: 1-dimensional FT of (kp,t — z1),
and 2-dimensional FT of (kt, —@T) in the form:

Sp(zL, @1,t) = / dky, etFr(t-71) / Pk e RT2T Sp (k& kp, kT).  (47)

Eq. (47) gives us a good tool to investigate the space-time structure of DLA.
We may now concentrate on particle distribution in transverse coordinates,
which is physically the most interesting case. For the sake of simplicity,
let us consider for t = 0 the single particle amplitude Sp(k, 1) in mixed
transverse space and longitudinal momentum coordinates [14] defined as:

Sp(ky & k,21,0) = / ky e~ *T Sp (ke & k, k). (48)

For the single particle exclusive distribution p$‘(k,®T,0), defined as the
amplitude square:

Sp(k,z1,0) |2 (49)

pp (k,zT,0) =
one obtains simple expression in the form:

1
(2m)?
= (2711_)2 /de'Tdefr e~ilkp=kp)®r A (k, ki k. k). (50)

p(k, 21, 0) = / Lhydky ek —RDTr §o(k kr) Sh (k. K,)

Relation (50) holds also for inclusive single particle density (for proof see
Appendix G):

pP(k,@7,0) = (—21—)7 / dkrd? kY e~ Fr =R gin (g kirik, kr) (51)
T

and can be easily generalized for any multiparticle distributions. In this
paper we study the inclusive single particle density in mixed coordinates
pp(k,z1.0) for the QCD gluonic cascade in DLA approximation.

4. Inclusive single particle density in configuration space
4.1. Physics

Momentum and configuration space description of a particle source are
related to each other by the Fourier transform. Therefore one expects to ex-
tract from the observables in momentum space some qualitative information
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about their behaviour in configuration space. This observation applies, of
course, to single particle density. In the DLA approach the inclusive single
particle density p'8(k) [12] reads:

2_1)10o kT

(Q ) ©p(k)

PE(k) =

where b = g%Cp. For constant k the pi3(k) is concentrated around P direc-
tion (see Fig. 6)( skipping for now the Qp(k) limitations ). We expect, that
the single particle distribution pi8(t, =) in configuration space:

p}a'(k,m,m:(zl bpd?kyp e=ibrR=T g3k ks ko kr)  (53)

will be concentrated around the P direction, as well. However, it has to
obey the uncertainty principle. Since there are cut-offs of form (9) in den-
sity matrix, its Fourier transform will contain some oscillations, due to the

T T
104 £ 3 o°
LIS [ ] —~
> :
g | &
.:Q&
105 e
[1 N 1 N 1 N 1 N ] 106 - PO Y |
0 5 10 15 20 1 10
-1 kQ -1
tho th

Fig. 6. Function pi8 (k) from Eq. (52) vs kr =| kt | in Qo units for parameters
b=0.25, P/Qo = 243,60 = 1, k/Qo = 128, chosen following [12]. The power fit
reads pi8 (k) = (k1/Qo)~174 % 0.00065 Q3. Plot (a) with the logarithmic scale for
the vertical axis, plot (b) with the logarithmic scale for both vertical and horizontal
axes.
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restricted integration region. Moreover, relation (6) implies, that both den-
sities pi8 (k) and pi8(k, 2T, 0) have the same normalization, if integrated over
d®k and dk d?z respectively.

Remembering the above remarks, we propose now a technique for de-
riving the explicit form of inclusive single particle density in configuration
space.

4.2. Single particle density

We may calculate the single particle density p}é‘(k, @T,0) as a Fourier
transform of DLA density matrix (43). Let us make the transverse Fourier
transform of both sides of Eq. (43). We obtain:

pE(k, zT(P), 0)
_ (21)2 /d2k’T(P)d2kT(P) e~ kx(r) ~R2(p))2T(P) gin(k ks k, ko)

DgA —i(kp(p)=k7(p)) T (P)

ds, s ds ds?
b)" 51 e | — | 20, "
X Z 2 / 2m0%, Or(s1) / sp J 2762 Osncs(n)

n—1.n

(1)(k k7(sy: ks kr(s)); (54)

where indices T(P),T(S) correspond to the reference frame with the z—axis
placed along the P (S) direction. The term of the lowest order (n = 0) takes
then the form:

pp ) (k mT(P)» 0)

2kp(p)d* K (py o™ ®rin =R T1) g0k, k) &, kr(s))

g

2b

= Q—F‘f@(— <k < P)( f dOpyJo(zThOpk))?. (55)
Qo

k

The numerical plot of (55) is presented in Fig. 7. There is a limiting max-
imum value for a1 = 0, as expected, and for large z7 the function has a
power decrease with the best fit exponent .7:{3'07. The result confirms our

intuitive analysis from Section 4. 1. The term pi;;(l)(k z7(p),0) is concen-

trated around the P direction, however stronger than pm(l) (k, kT) from
q- (52).
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Fig. 7. Function p}',’ (1) (k zT1,0) from Eq. (55) vs 21 =| &7 | for parameters as in
Fig. 6. The power fit reads pi3(k,x1,0) = (QozT) 3% x 4.0E — 05Q,. Plot (a)
with the logarithmic scale for the vertical axis, plot (b) with the logarithmic scale
for both vertical and horizontal axes.

Derivation of terms of an arbitrary order in expansion (43) is more com-
plicated. To proceed, let us analyse the last part of (43). It reads:

ds,,
/ 271‘02 On-1(5n) gV (K, Kir(s); K Rr(s))

n-1mn

ds 1
- n-1(82) 7—7— On (K)On(k), (56
231'193/ 2?r0§ M@ (s ){)nk,ﬁnkg (k)On () (56)
where the index (¢) refers to the vector s;. Taking into account phase space
restriction and dominating contribution of 1/(8,/6,x) (see Appendix E)

expression (56) can be approximated as:

ds,, 1 ’
27rk3 / 27r02 On-1(5n) g5, On(F)O(R)

n—1,n

Sp—1 1
271']{731( k )gn_lklen_lk
611 1,k en—lyk,
/ dnznJo(@nbhi) / 40,1 To(2nbnk) / 46,0 Jo(220mi) - (57)
Q0

X0
k k

One1(K)Ony (k)

O
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Scheme (57) can be repeated iteratively in (43). After some transformations
one obtains finally (for details see Appendix E, H ):

pB(k, z1(p), 0)
2

9 P
1
—k y —_— d"l k01
5 9( <k<P)/ /Hpk 27r0/ ek Jo(kbOrke)
Qo Yo
k k

x Iy (J 8b In(~— {/ dezJo(z0kk) /;:k daJo(za) /;:k, da’Jo(a:a’)})

k k
:2—k@(QO k<P)

g 6 o

d0k,k0k,k

x [ dopy | df kO
/ P’“/ Pk’ 27r A 0pk,0pk,,ok,k)‘]°( kK1)
2 &

k

wlo | A8l (P) " /9”"(1' 1 58
0 n k' 9;9— a % a QﬁA(a,a’, gk/k) I} ('3 )

10! T T T 101 g
(@)
100 3 -3 100 3
i . i
o
- 10F 3 o 10t E E
‘o E 3 el 3 3
= £
;; 'Qn. 3
o 102 E w02 E
F 3 E 3
103 E 103 F 3
[
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Fig. 8. Function pi8(k,®r,0) from Eq. (58) vs 21 =| @t | for parameters as in
Fig. 6. Plot (a) with the logarithmic scale for the vertical axis, plot (b) with
the logarithmic scale for both vertical and horizontal axes. The power fit reads

pB(k, 27,0) = (Qor) ™23 x 0.00018 Q.
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where 0y, denotes the angle between momenta k', k, which in the reference
frame with the z-axis placed along P direction takes the simple form:

Oriy, = \/012%, + 0}2% — 20prOpk cos(@rk) (59)

@ik denotes the azimuthal angle between k1 and k7, and A(a, b, ¢) denotes
the area of the triangle with sides a, b, ¢. The numerical plot of (58) is
presented in Fig. 8. There is a limiting maximum value for zT = 0, as
expected, and for large zT the function has a power decrease with the best
fit exponent x}“?’. The result confirms our intuitive analysis from Sec. 4. 1.

The term pif;(l) (k, zT(p),0) is concentrated around the P direction, stronger

than pi;(l)(k, kt) from Eq. (52). The function oscillates around its power-
law profile. As already mentioned in Section 4. 1., this effect is due to the
sharp cut-offs of form (9) which restrict the integration space.

4.3. Properties

Let us analyse the properties of (58) in detail. Comparing (58) with the
single particle density in momentum space (52), we get the same dependence
on the energy k, as expected. The complicated emission term (see Fig. 9):

p oo 8pk Oppr
26 In <E> { / deaJo(e8) / daJo(za) / da’Jo(za’)}
0 Q

Yo Yo
k k

3
_ / dss%Ass(k,k'T;k,kT) (60)

corresponds to the logarithm In kt/Qo of (52). In fact, after integration of
pp(k, TT(P), 0) over dzT one obtains the same result as for (52) integrated

k ${ Kk
jd3s = jdsssﬁ,Ass(k,k";k,l?T)

P

Fig. 9. Diagramatic representation of the term {60). The integration region lies in
the overlap of conus ©,(k) and conus &, (k).
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0 0 2
(k xT,O) k9(9ﬁ<k< P)Jdepkjdepk';?J ‘Pkk'Jo(kekk X, )x
LR, 0

x |1+ e, + 1 [asa,

Fig. 10. Diagramatic representation of pig (k,®t,0) from Eq. (58) as the chain of
independent emission factors (60) transformed onto the transverse zt plane by the
Bessel factor of primary emission from the parent P, namely Jo(] kT — k7T | 7).

over d?kr (see Appendix I). The density pi8(k, zT(P),0) is positively de-
fined, as well. Using the Bessel function identities from Appendix H, Eq.
(58) can be rewritten in the form:

Pin(k9mT(P)70)
=2 9(%’ <k<P) Y ((if;: In" —:;(/dxlxl.../dxnmn)

n=0

Y {/df’PkJm,(Izt?Pk) I (Zn0Pk) Iy +...4mn (2TKkOPE)
Qo

n 9ek 2
x[1 / daiJo(xiai)} (61)
Yo

which implies positive definitness. For 21 = 0 p’}%‘(k,mT(P),O) reaches its
maximal value, as expected. Diagramatically, formula (58) represents the
chain of independent emission factors (60) transformed onto the transverse
2T plane by the Bessel factor of primary emission from the parent P, namely
Jo(} kr — k't | 21) (see Fig. 10). For k = P expression (58) reduces to (55)
with the dominance of the primary emission, as expected.
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5. Summary

We considered the QCD parton cascade created in ete™ collision in the
double logarithmic approximation. Using the density matrix (DM) formal-
ism [10], and restricting ourselves to the terms leading in the double log-
arithmic (DL) perturbative expansion for the quasi-diagonal limit &’ & k,
we derived the explicit form of the inclusive single particle density matrix
dp(k', k) and single particle density pi(k, zT1(p), 0) (see Fig. 8) in mixed co-
ordinates (k ~ k, z1). The gluon density pi8(k, z1(p), 0) fulfills important
physical requirements such as positive definitness and proper normalization.
It is concentrated around the P direction, and shows the power law profile
for large 1. Due to the cut-offs of the type (9) which restrict kinematic
regions, the density oscillates around its power law profile.

The above results give a positive outlook for the future. The simplified
technique for calculating multiparticle observables in DLA for the constant
as is ready. It may allow one to investigate the structure of the QCD cascade
in a very comprehensive way: the exact form of a Wigner function already
would give us clear experimental predictions.

In order to improve the approach one needs to include the momentum
dependence of as. The exact analysis of applicability of the quasi-diagonal
approximation k' = k would be required, as well. There is also a problem as
to what extent the kinematical constraints characteristic for a given QCD
approach (in DLA they are of the form (9) ) influence the results obtained
in the approach. In other words, there is a problem how to separate the
effects of the kinematical restriction from the dynamical content of QCD
space. The explanation would require performing an analysis similar to
the presented above for LLA and MLLA schemes, as well. The MLLA
approximation would be of special interest since it would incorporate the
energy conservation into the cascade.

I would like to express my deep gratitude to Professor Andrzej Bialas for the
encouragement to study the subject of this work, for many heipful discus-
sions and suggestions, and a continuous interest and support throughout this
work. I would like to thank Professor Jacek Wosiek for many supportive and
enlightening discussions and comments, for careful reading the manuscripts,
and for his continued interest of this work. I am greatly indebted to Profes-
sor Alberto Giovannini for interesting comments and suggestions concerning
this work and the positive outlook for the future. I would like to thank the
organizers of the XXXVII Cracow School of Theoretical Physics for their
invitation and warm hospitality.
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Appendix A

The functionals Zp[u] and Zp/[s] defined in (19) generate the sum of
amplitudes {7) and their complex conjugates over all possible tree diagrams
respectively. It can be seen when one rewrites the master equation for Zp in
the form of the diagram series (see Fig. 2). From that construction follows
exclusive density matrix (20):

ex 6771 N 57’71
dp (ki, . ki ke, k) = mZP[S] l{s=0} mzf’[u] | {u=0} -
(62)
Then the inclusive density matrix calculated from (3) looks like this:
- =1 5§ 6\* &"
dp(ky, .. k., ki, .., =) — /3————> ————75[s] |fs=
P( 1: m»klv km) nz:;)??" ( d késéu 5311...(5Sm1ZP[5] 1{5—0}
6771
XmZP[U] l{u=0}

(63)

and from the identity for the product of any two functionals F, F":

FIIP (] e o= 3 ([ 550 ) Pl lumo) P10 lpumo)
(64

nz=0

follows (21).

Appendix B

In DLA there are four different tree graphs M,, My, M., My, describing
the production of two gluons. They are defined on non-overlapping kine-
matic regions (see Fig. 3). Emitted gluons are either angular (AO) or energy
ordered (EO).

Let us consider all the diagrams contributing to the single particle density
matrix d(k}, k1). From the (AO) and (EO) it follows that the interference
between any two different graphs will appear only if either energies w;,w} or
emission angles 6,p, 6,/p of produced gluons are strongly ordered (Fig. 4).

This statement can be generalized for any m-particle density matrix by
induction. If we have m particles, and (m-1) ones among them are “close”
to each other, w.e. k1 2 ki,...,km_1 = kJ,_, then the interference of the
different diagrams will take place only if either energies or angles of k., and
k,, are strongly ordered.
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Appendix C

Zpp[u(k’, k)] defined in (26) generates correct exclusive density matri-
ces (24). The proof of this statement follows from the representation of the
master equation for Zp/p as a diagram series (see Fig. 5). The series re-
produces all squared contributions of identical tree diagrams, and excludes
interference of the different ones (function Pyr_,ry ).

The explicit form of inclusive density (25) follows from formula (3). Sub-
stituting (24) into (3) one obtains:

dB(K), .. Kk, k)

_ % 1 3. 131053 ( 1 _ 5§ \" gm '
- nZ::;) n! </ FhAE S (K k)5uk',k 6um/,m...5u1,YIZPP["] |{u=0);

(65)

which represents the functional Zp:p[u] expanded around “null” {u = 0} in
the “point” u = §3(I" — I).

Appendix D

We want to average relation (28) over physical polarizations. The exact
expression to be summed over polarizations looks like this:

(c- P)(¢' - P

(k-P)(K - P’ (66)

where e, e/ are polarizations of the same gluon identical in the limit &’ = k.
The gauge fixing we apply in the approach allows us to neglect contributions
to (66) coming from the “nonphysical” polarizations €® and e3. Furthermore,
it requests the time components of the physical polarizations el,e? to be
equal to 0. Space components of e!, 2 can be then constructed in the form:

o2 — P xk
T Pxk|’
|
2
1 e* x k
€ | 62 % k l? ( )
and for €’ respectively:
” P’ x K
e = o —
| P’ x k' |’
no_ ﬂ. (68)

| e? x k'
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Summing over these 2 polarizations and expanding scalar products in (66),
one obtains finally:

Z (e P)(e”-P) _ 4 1 (69)
L B PR -P) T o el ‘

The result can be easily confirmed for any two physical polarizations

!, e? placed on the plane ele?:
el = cospe! +sinpe?,
e? = —singpe! +cospe?; (70)

and for e, €2 placed on the plane e’'e’? with the phases ' = y respectively.

Appendix E

To transform (56) into (57) we will apply the pole approximation
method (see [12] and references therein). The phase space restrictions
On-1(n) O, (k)O,, (k) in (56), in particular the angular ordering (AO)
On_1n > Onk,0n_1,n > 0,1 make the the term 1/6,:6,,; be dominating in
(56). Applying the Bessel function identity [14]:

d$2, 1 [ dfn dbng Oy Orpr
2r 21 J  A(Bnky Onir, Oirr)

- / dzeJo(20u) / By B Jo(@0nt) / 0, Bt Jo(26n),  (71)
4]

where 6 denotes the relative angle between k, k', and A(8.k, Onrr, Orrr)
equals the area of triangle with sides 8y, 8y, Oxrn, We may rewrite expres-
sion (56) in the form:

ds, 1 p .
27rk3/ Qxag lne”‘l(")enk,ankon(k On(#)
2b ds, .
o / dznnJo(anbie) [ dBuTo(abue) [ dBuioTolnbue)
" 0
1 .
X 61 (MO (K)n (k). (72
n—1,n

Because of angular ordering the angle 6, , practically does not change
while integrating over angles 6,4, 6,1/, and can be successfully approximated
by the angle 8,_yx (8,-14). Applying all the integration restrictions ex-
plicitly, we arrive finally at the expression:
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ds, 1 ,
27rk3 / 27:'031 1, n@n_l(n) me"(k )On(k)
Sn—1
2b 1 ' ds,
- 271']6:3 0,1‘1’,6:9”_1,;6 671'“1 (k )971—1 (k) / T
k
br—1,k gn—l k!
[ denanJo(niar) [ duido(znbne) / 48,50 Jo(2abte) (73)
2 S

which after trivial integration over s,, gives identity (57).

Appendix F

We shall find such terms in expa,ng,ion (36) which dominate in the double
logarithmic perturbative limit of dB(k’, k), i.e. when b — 0 (b xx as) and
P — oo, so that bIn? Qo remains constant, and generate double logarithmic
corrections to the cross-section. First let us introduce the following notation:

dp (k' k Z an; (74)
n=0

where coefficients a,, describe the n-th order iteration of gg(k’, k) (36) in the
form:

d.51 dgs
(26)" !
/ 271'0};51 Op(s1)

dsy, , .
/ g O 50) 8 K1) (75)

The term ag of the series (75) is equal to gp(k’, k). Expanding it in the
powers of coupling constant b, one obtains the term of the first (lowest)
order of b in the form:

26 1 1

/
9 T epklopkO p(k) Op(k). (76)

aél) = gg)(k', k)=

Denoting the other terms by the symbol a(()>l) = g§,>l)(k" , k), the term ag
from the series (75) can be rewritten as:

ap = agl) + a(>1) (77)
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We have checked that aél) dominates in (77). To see this, one should rewrite
ap as:

a = gp(k' k) = oV + o>V (78)

o k), (79)

where the exact form of f(k', k; P) follows from (37). For b > 0 and P finite

the f(k',k; P)vs | k — k' | is a gauss-like function with the maximum equal
tolfork = Ic and a non-zero minimal value. In the DL perturbative limit:

f(k' kPSS 1. Consequently, for any k, k', P:

a0 < afl), (80)
Go BT, (81)
1
gy

Since ag ) dominates in ag, we expect that the iterations of a(() ) will generate

the leading contributions to the di8(k’, k). Let us introduce the notation:

dp MV k) = 3 o, (82)
n=0
dp P k) = 3T oY (83)
n=0
(>1) (1) ; o (TF (>1)
where a;” " and an’ represent the result of n-th iteration (75) of ay” "’ and
(() ) respectively. From (80) immediately follows the relation:
a, = aV) + a>V < oV, (84)

Since a,, > 0, for the density matrix one obtains:
0 < dB(k',k) = dp Ok k) + dp OV k) < dp D k). (85)

In the limit | k— k' | — 0 the density matrix di8(k', k) — dm (1)( , k), and
therefore: .
dPY (k’7 k}

For other (larger) values of | k — k' | the contribution of dlpn’(l)(k’, k) gen-
erally need not to dominate. However, taking into account the fact that
the density matrix approach works only for the quasi-diagonal limit, we
may identify the quasi-diagonal region with the region of the dominance of
dl;,l’(l)(k’,k). Furthermore, since d',rj”(>1)(k,k) = 0, the d';,"(l)(k’,k) gener-
ates all DL corrections to the cross-section. Hence we finally arrive at the
relation (43).

(86)
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Appendix G

The particle density piI‘;‘(k, xT,0) can be represented as:

[o o]

in 1 ex
Pl X, 0)=) gy fdkgd:’:cﬁ...dknd%nf P (k, 21, ka, Tor. ks 7).

n=1
(87)
Representing the exclusive particle density as the square of multiparticle
amplitudes, expressing the configuration space amplitudes as Fourier trans-
forms of amplitudes in momentum space, and performing integration over
d*zqy7...d%z,7 finally one arrives at Eq. (51).

Appendix H

For our purposes let us quote the following identities for Bessel functions
( [15] and references therein):

Jo(@Oui) = 3 ™) (20kp) S (20pp),  (88)
eik;rcos¢ = Z imeim/me(km)’ (89>
mM=—00
[oe] .
[tz 50fe it ) - §_(_aa_“_) (90)

where 6,1, denotes the relative angle between momenta k' k, which in the
reference frame with the z-axis placed along P direction takes form (59), and
ere = ¢ — ', where the angles ¢, ¢’ denote the azimuthal angles of vectors
kt and kT on the transversal plane respectively.

Now let us repeat the scheme Eq.(56)— Eq.(57) iteratively in (43). Then,
after introducing the explicit form of Fourier transform we arrive at the
expression:

Pifvl(k, z7(p), 0)

2 2
/d(’vﬁp) ww/d k6rp) MAP/ d@/d@'
0 0

(2m)?
x exp (— zkﬂkprT cos ¢ + kB pat cos ¢')

> (2b <P> 2% 1 1 y
Z n' % 27rk39pkepk,gp(")@”(“




Single Particle Density and Density Matriz from the QCD Cascade... 2711

oG 00
X /dwlleg(J,‘lf)k/k)... /d:z:n:cn.]o(;rnﬁk/k))
0

Opk Bprr On_1.% O 1,k

X /dang (z1ay) [ da}Jo(z1ayr). /danJo ZTpy, /da, Jo(anal).(91)
D Qo Qo
k k k k

It looks still quite complicated, however one can notice that the term in
brackets:

= On— 1,k 0n~1,k’

/d(llJO a,lal /daljo 1‘1(11/) /(l(LnJo(.Z‘nan) /da;JO(xna;l) (92)
Qo Qo

k k k k

which contains integration of 2n Bessel functions, simplifies significantly if
one adds to (91) some extra off-diagonal terms, which are equal to 0 in the
quasi-diagonal limit. Namely:

1 Y 6 pk pyi
{ }DLA /da;]o(xlal /daIJO (z1ay7). /danJO "cnan)/da Jo(znal)) .
(=1} o =l
k k k k
(93)
Then expression (91) takes the simpler form:
in QO 1
PPk, z1(P),0) = "“1*9( g <k< P)( 52
] 6 o2r  2r
X /d()k /dek,p/ / " exp (—ikBpxT cos ¢ + tkOp prT cos @)
Qo Qo 0 0
k %
< (95 p o0 8pi Gpys n
X 2 ((n!;z In™ (E) {/dwao 26414 / daJo(za) / da'Jo(za )} .
n= 0 Q0 Qo
k k
(94)

Let us perform the integration over the angles ¢, ¢’. Replacing all the terms
of the type Jo(26y1) by their expansions (88), expanding then Fourier trans-
forms in terms of (89), and performing the integration over ¢, ¢’ explicitly,
we arrive at (61).
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However, the part of expression (61) containing Bessel functions can be
rewritten as:

(fi 5

=3 /ds%'k (H Jo(z 9m)) Jo(zrkOpri). (95)

1=1

'l‘ M8

m ‘Tgpk)] ,(l'ioPk’)) Jm;—{»..+’n‘ln(ka9Pk)Jm;+..+mn('TTk0Pk’)

where 4 denotes the relative angle between the vectors kr, k7 and

Orp = \/G%k, + 6%, — 20p;s0p; cos(pgri), as usual. Substituting (95) into
(61) finally we obtain (58).

Appendix I

Let us investigate normalization of single particle density (58) in real space,
i.e. the integral [ d®x1pi(k, z7,0). It reads:

/dZ:erP (k,zT,0)

8

= Qbk@(Qoo <k« P) /dOpk / dﬁ'pk/——- / dpp /(1’1? rleg(kek/kl]
x %
P o 8pk B pr
xIo (\’ 86 In (Z) { /0 dzaJo(z0) /%0_ daJo(za) /%Q d(z’JO(:ca’)}).

(96)
The term Jo(kBp21) is the only part of expression (96) depending on zt.
Integral ?d$szrfI‘.]0(k9k:kxT) can be performed, using identities {88),(90).
It equals:0

(0kp — Oiip)

97

[e.e]
/dszTJo(kak'kivT) = 2m 6(prrk)

Substituting (97) into (96), and integrating over #x/p and ¢/, one arrives

at:
;de
[ @i er.0= 2 @( <k<l’>/ Pk
Qo
k
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(JSI) m( ){/ doa /9” daJo(za) /_:_Pk cla’]o(La)}) (98)

k

Performing the integration over z in the argument of function Iy with the
help of identity (90), finally one obtains:

0
_2b Qo dfpy <P> (k‘é’pk> ;
== @< 7 <k< P) / B Iy <\/8b In In 04 . (99)
&

which equals the normalization of particle density in momentum space de-

fined in (52):

/' Py pB(k, @1, 0 /dqu P2k, k). (100)
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