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We review the description of nucleon structure functions in the instan-
ton vacuum. This includes the calculation of the twist-2 parton distribu-
tions at a low normalization point as well as higher-twist matrix elements.
The instanton vacuum with its inherent small parameter, the packing frac-
tion of the instanton medium, p/ R, provides a consistent picture of the non-
perturbative gluon degrees of freedom at the scale p~! ~ 600 MeV. The
twist-2 quark and antiquark distribution are of order unity, while the twist-2
gluon distribution is of order (5/R)*. Twist-4 matrix elements determining
power corrections to the Bjorken, Ellis-Jaffe and Gross-Llewellyn-Smith
sum rules are found to be of order (p/R)?. We present numerical estimates
for the parametrically large quantities.

PACS numbers: 12.38. Lg, 13.60. Hb, 11.15. K¢, 12.39. Ki

In these talks we give a brief summary of recent progress in understanding
the deep-inelastic structure of the nucleon, both at leading and non-leading
twist level, in the instanton vacuum [1-4]. Our aim is to show that the
instanton vacuum, with its inherent small parameter — the packing frac-
tion of the instanton medium, p/R — provides a basis for a consistent and
quantitative description of nucleon structure functions.

* Presented at the XXXVII Cracow School of Theoretical Physics, Zakopane, Poland,
May 30 — June 10, 1997.
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1. Leading and non-leading twist

The non-perturbative information which enters in the QCD description
of deep-inelastic scattering and other related experiments is contained in
nucleon matrix elements of operators of twist-2 and higher. The moments
of the non-power suppressed part of the structure functions are given by
matrix elements of operators of leading twist; in the unpolarized case these
are the twist-2 quark and gluon operators
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and similarly for the polarized case, see [5]. Here, 75 = 1,7V% = 72 are flavor
matrices. Alternatively, one may work with non-local (hght -cone) operators,
which serve as generating functions of the series of local twist-2 operators. In
the partonic language, the matrix elements of these operators can directly be
interpreted as parton distribution functions!, the scale dependence of which
is described by the DGLAP evolution equation:
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where n denotes a light-like four-vector, n? = 0. Operators of higher twist
arise in the description of power corrections [5]. For example, in the unpo-
larized case the 1/Q2-power corrections to the Gross—Llewellyn-Smith sum

' Here, g¢{z) corresponds to the quark distribution at positive z, and to minus the
antiquark distribution at negative z.
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rule are governed by the matrix element of the twist-4, spin-1 operator (My
is the nucleon mass)

LY (Pleyays Pl Py = 2M% € PP (5)

spin

In polarized scattering the 1/Q?-power corrections to the isovector and isos-
inglet combinations of the first moment of the polarized structure function
g1 — the Bjorken and Ellis—Jaffe sum rules — involve the matrix elements
of the twist-3, spin-2 operators [6]:
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(the same matrix elements contribute also at leading twist level to the third
moment of the structure function g3), and the matrix elements of the twist-4,
spin-1 operators,

(PS|prNS Sy, FPoyp|PS) = 2M3 f05 o 57 (7)

Here, S is the nucleon polarization vector, S2 = —1. The operators here
are assumed to be normalized at scale p; the scale dependence of the matrix
elements is described by the renormalization group equation. The twist-2
quark-, antiquark- and gluon-distributions at a low normalization point have
been determined by fits to data from a variety of experiments [7,8]. The
twist-3 matrix element d?) has recently been extracted from measurements
of the structure function gy [9]. Experimental knowledge of the higher-
twist matrix elements entering only in power corrections, such as the twist-4
matrix element f(2), is still rather poor [10].

Any attempt to calculate the matrix elements mentioned here from first
principles requires an understanding of the non-perturbative effects giving
rise to the structure of the nucleon. While the gross features of the leading-
twist quark distributions can be understood in phenomenological models
like the quark model or the bag model, to describe the gluon distribution or
higher-twist matrix elements explicitly involving the gluon field one needs a
theory of the non-perturbative fluctuations of the gluon field. Lattice calcu-
lations of structure functions have been making steady progress during the
last years; however, they are still far from giving a satisfactory quantitative
description [11].
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2. Instanton vacuum

A microscopic picture of the non-perturbative fluctuations of the gluon
field is provided by the instanton vacuum. For an introduction to the instan-
ton vacuum and its applications to hadronic physics we refer to the extensive
literature on this subject, e.g. the recent reviews [12,13]; we can here touch
upon only those aspects directly relevant to structure functions. Instantons
and antiinstantons (I and I for short) are particular field configurations
which are solutions of the Euclidean Yang—Mills equations, characterized by

a size, p, center, z and color orientation given by an SU{N,) matrix, i,

A2 2, Uy = fula = 2) 0% (%),
2/)2 ab 1 a bs st 3
fl,(ﬂf) = ml‘u, O = §tI' [/\ UNU ] (2})

Here, (zy;)fw = 772,,,77521, are the 't Hooft symbols. Instantons have many

special properties; not all of them are of interest to us here. Let us note that
a single I(I) is an O(4)-symmetric field configuration — this fact makes
important for differences between instanton contributions to operators of
different spin, see below.

In the instanton vacuum one considers non-perturbative effects due to
field configurations with a finite density of I'’s and I's. The medium of I’s
and ['s stabilizes itself due to instanton interactions [15], meaning that the

average size of the instantons in medium is finite,
p ~ (600 MeV)™ . (9)

The coupling constant is fixed at a scale of order p~!, so when we evaluate
matrix elements of QCD operators below it is implied that the operators
are normalized at pr ~ p~!. Tt should be stressed that no external scale
is introduced here; all parameters of the instanton medium are obtained in
terms of the QCD scale parameter, Aqcp. Hence this approach preserves
the essential renormalization properties of QCD.

The most important property of the instanton vacuum is the small pack-
ing fraction of the medium, i.e., the small ratio of the average size of the
instantons in the medium to the average separation between nearest neigh-
bors, p/R ~ 1/3 [14,15]. This small parameter is the starting point for a
systematic analysis of non-perturbative phenomena in this picture.

In particular, the instanton vacuum explains the dynamical breaking of

chiral symmetry. The Dirac operator in the background of one I(/) has a
localized zero mode,

{zq} + -241(}}(‘1’: z,Z/{)} {2z, U)=0. (10)
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In the mediwm the zero modes associated with the individual instantons
delocalize [16], resulting in a finite fermion spectral density at zero eigen-
value, which by the Banks-Casher theorem is equivalent to the chiral con-
densate [17]. Alternatively, one can derive the effective action of fermions
in the instanton medium in the 1/N_.-expansion, integrating over the instan-
ton coordinates in the ensemble [18]. An individual (/) interacts with the
fermion field through the zero mode, i.e., through a “potential”

Vit i) = [l [dly () §oulenz ety 2 dus(y). (1)
In leading order in p/R the effective action exhibits a many-fermionic inter-

action, which is given by the one-instanton average of Eq. (11) and has the
form of the 't Hooft determinant in flavor indices [19],

N
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In addition, there is a form factor (not written here for brevity) related to
the finite size of the zero-mode wave function. which makes the interaction
vanish for quark momenta larger than p~!. Chiral symmetry is sponta-
neously broken due to this many-fermionic interaction: the quarks acquire a
dynamical (momentum-dependent) mass, a quark condensate develops, and
a massless pion appears as a collective excitation. In the 1/N.-expansion
one can easily construct the effective action in the chirally broken phase. It
can be formulated as a theory of massive quarks, interacting with the pion
field in a chirally invariant way.

7 = /'Dﬁ/mm exl)/d4wi1£?(.z') (i + idt 577 (] (e, (13)

The effective theory applies for quark momenta up to the inverse instanton
size. p~1 ~ 600 MeV, which acts as a cutoff. For the applicability of this
effective theory it is crucial that the ratio of the dynamically generated quark
mass to the cutoff is proportional to the .packing fraction of the instanton

medium,
N
_ P
M =] . 14
P (1{> )

Hence the diluteness of the instanton medium gnarantees that the picture of
massive “constituent” quarks applies in a parametrically wide range of mo-
menta. Finally, we note that the nucleon is obtained in the 1/N_-expansion
as a chiral soliton of the effective theory, Eq. (13) [20]. This picture of the
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nucleon gives a very reasonable description of a variety of hadronic proper-
ties such as the N-A splitting, electromagnetic formfactors, axial coupling
constants etc. [21].

The instanton vacuum, with the resulting effective chiral theory, allows
to evaluate hadronic matrix elements of QCD operators involving the gluon
field. In Ref. [1] a method was developed by which “gluonic” operators can
systematically be represented as effective operators in the effective chiral
theory. Let F[A] be a gluonic operator, i.e., some function of the gauge
field. To leading order in the packing fraction, g/R, the interaction of the
gluon operator with the fermion field is mediated by single instantons. The
effective operator, denoted by “F”, is obtained by substituting in F[A] the
gauge field of one I(I) and integrating over the collective coordinates,

- Ny ~
“Fh, ) o Z/d“zdL{f[AI(f)(:,U)] T Viples v (15)
I+7 !

In higher orders of 5/ R one needs to take into account many-instanton contri-
butions to the effective operator. Below we shall need the effective operator
corresponding to the gauge field itself, which is given by (cf. Eq. (8)) [4]:

WAL a 4 N Tl A T£7s +ir?(z)7¢ .
A(z)8 xS /d 2 oz = 2) §() o2 e b(z).  (16)
+
Again we have suppressed the form factors coming from the zero mode wave
function. Note the presence of the pion field, as a result of which the effective
operator Eq. (16) is chirally invariant — as it should be, since the gluon field
is flavor neutral.

It is important to note that the representation of QCD operators as
effective operators relies entirely on the approximations already inherent in
the effective theory — the diluteness of the instanton medium and the 1/N.-
expansion; no additional assumptions are required. It was shown in [1] that
this approach preserves the essential renormalization properties of QCD; for
example, the QCD trace and U(1) anomalies are realized at the level of
hadronic matrix elements. This method is thus well suited for computing
matrix elements of the QCD operators of twist-2 and higher-twist of interest
here.

3. Twist-2 matrix elements in the instanton vacuum

Let us first consider the twist-2 gluon operators, Eq. (2). Since we are
interested only in forward matrix elements we may average the operator po-
sition over the 4-volume. The definition of the effective operator, Eq. (15),
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implies the integral over the instanton coordinate, z. Since the instanton
field is O(4) symmetric the only tensor one has at hand to construct the
effective operator is the Kronecker delta, but it is impossible to construct
a traceless symmetric tensor from it! (When working with light-like com-
ponents this follows from é14 = 0.) Thus, the effective operators for the
twist-2 gluon operators, Eq. (2), or, more generally, the nonlocal operator,
Eq. (4), vanish at one-instanton level. We conclude that the twist-2 gluon
distribution is parametrically suppressed in p/R.

To determine the twist-2 gluon distribution quantitatively one has to in-
clude (at least) the two-instanton contribution to the effective operator. Pre-
liminary results indicate that the gluon distribution is, in fact, proportional
to (Mp)?, which is parametrically of order (p/R)*. It is interesting to note
that, numerically, a suppression of the gluon relative to the singlet quark
momentum fraction by a factor (Mp)? ~ 0.3 is consistent with the GRV
parametrization of the data at a normalization point of u ~ 600 MeV [8].

In the twist-2 quark operators, Eq. (1), the gauge field enters through the
covariant derivative, or, equivalently, through the path-ordered exponential
in the non-local operator, Eq. (3). It is interesting to ask how much the
gauge field contributes to the moments of the quark distribution functions
in the instanton vacuum, which is formulated in the so-called singular gauge
in which the instanton field has the form of Eq. (8). For simplicity, let us
consider the second moment of the singlet unpolarized quark distribution,

Ag), which is given by the matrix element of the operator

a

— A , :
(P, (8‘&2} —ig ‘22}) Y| P) — traces = 2‘4(52)13;“ P,, — traces. (17)

It is instructive to compute the matrix element not immediately in the nu-
cleon, but first in a “constituent” quark, i.e., the massive quark of the effec-
tive chiral theory. It is easy to see that the short derivative in Eq. {17) makes

an order unity contribution to Ag). Computing the gauge field contribution
to the matrix element using the effective operator, Eq. (16), one finds that
it is of order (Mp)? o (p/R)?, i.e., parametrically suppressed relative to the
short derivative. Thus we have

4
o =1+ 0| (5)]. s

This is consistent with the fact that the gluon distribution is of higher order
in the packing fraction: To order {(5/R)" the quarks carry the entire mo-
mentum, and the gluon distribution is zero. (To compute the full (p/R)*
contribution would, again, requires to take into account two-instanton con-
tributions to the effective operators, as well as to the effective quark action.)
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The above statements are easily generalized to higher moments. In fact,
speaking of parton distribution functions “inside the constituent quark™ one
may say that

Ny

! N 4

1
9()quark = O [(%)11} : (20)

To leading order in p/R the constituent quark has no structure. Conse-
quently, in leading order in p/R it is justified to identify the distribution
of “constituent” quarks and antiquarks in the nucleon with the actual par-
ton distribution at the scale g ~ 571, In another way of saying, when
computing the twist-2 quark distribution function in the effective theory in
leading order in p/R one can identify the QCD quark fields normalized at
i~ p~! with the quark fields of the effective chiral theory and put the
path-ordered exponential in Eq. (3) to unity. This is the “quarks-antiquarks
only” approximation which was employed to compute the quark and anti-
quark distributions of the nucleon in the chiral quark soliton model [2]. We
have thus seen that this approximation has a parametric justification in the
instanton vacuuin.

The twist-2 quark and antiquark distributions of the nucleon computed
in the chiral quark soliton model satisfy all general requirements, such as pos-
itivity, proper normalization etc. This is a fully field-theoretic description of
the nucleon, which. in particular, makes possible a consistent calculation of
the antiquark distributions. All partonic sum rules (baryon number. isospin.
momentum, Bjorken sum rule) are satisfied within the model. Computed so
far were the leading distribution functions in the large- N, limit, the isosinglet
unpolarized and isovector polarized [2], as well as the isovector transverse
polarized distribution [3]. The isosinglet unpolarized quark and antiquark
distributions are shown in Fig. 1, together with the GRV parametrization [8]:
for the polarized distributions see the original papers.

To order (p/R)° the constituent quarks have no structure, and the con-
stituent quarks and antiquarks carry the entire nucleon momentum. As
a result the singlet quark distribution calculated in this approximation is
generally larger than the GRV parametrization, which includes gluons at
the low normalization point, see Fig.1. In higher orders of p/R one starts
to systematically resolve the structure of the constituent quark in terms of
the original QCD degrees of freedom, and the nucleon momentum gets dis-
tributed among quarks and gluons at the low scale. It is interesting that the
30% gluon momentum fraction at the low scale obtained by GRV [8] is con-
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Fig. 1. Solid lines: The isosinglet unpolarized valence quark and antiquark dis-
tributions computed in the chiral soliton model of the nucleon [2]. Dashed lines:
NLO-parametrization of GRV (u” = 0.34 GeV?) [8].

sistent with the gluon distribution in the instanton vacuum being suppressed
by a factor (Mp)? ~ 0.3.

To summarize the discussion of twist-2 operators, one may say that at
twist-2 level the effects of the instanton medium are essentially contained
in the dynamical quark mass generated in.the dynamical breaking of chiral
symmetry. Instanton contributions to the twist-2 operators, in the sense
of effective operators, Eq. (15), are parametrically suppressed. This is what
one could call a “constituent” quark picture. We note that, contrary to other
approaches where the “constituent” quark is a largely philosophical object,
in the instanton vacuum this term has a well-defined meaning, thanks to the
parameter g/ R [22].
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4. Higher-twist matrix elements in the instanton vacuum

From the above discussion one may have the impression that in the
instanton vacuum “gluonic” contributions to operators are always paramet-
rically suppressed relative to quark operators. This is not so — instantons
can make order (p/R)° in operators of higher twist. The most immediate
way to convince oneself of this is to consider a particular higher-twist oper-
ator whose matrix elements vanishes by the QCD equations of motion. In
addition, this exercise provides a beautiful check for the consistency of the
effective operator method. Consider the twist-4 matrix element obtained by
projecting the operator in Eq. (17) not on spin two but on spin zero:

(Pl ¢|P) = (P|v (if + A) ¢|P) =0. (21)

In QCD the matrix element is zero by virtue of the QCD equations of motion.
In the instanton vacuum we find, computing the contribution of the gauge
field in Eq. (21) using the effective operator, Eq. (16), one may show that

(PG +4A) 91P) = (P19 (i9 +iM e ™ @) gip) = 0. (22)

(The calculation is actually rather involved; see [4] for details.) Here the
gauge field contribution to the operator is of order unity, €., of the same
order as that of the short derivative. As a result the QCD operator of
Eq. (21) reduces to an effective operator which vanishes identically due to
the equations of motion of the effective chiral theory. From this we learn
two things: First, instantons can make order unity contributions in twist-4
operators. Second, the method of effective operators preserves a principal
feature of QCD: matrix elements of operators which are zero in QCD due to
the QCD equations of motion are automatically zero in the effective theory.
We note that also other operators whose forward matrix elements vanish in
QCD,

(Ply7aF9(P).  (PS|Uya7sF 79| PS), (23)

give zero matrix elements when translated to the effective chiral theory.
We can now turn to the calculation of the matrix elements of twist-3
and 4 operators appearing in power corrections, Eqs (5). (6), (7). Again,
the qualitative features can be seen by studying the matrix elements in
“constituent” quark states. Computing the matrix elements of the effective
operators corresponding to Eqs (5), (6), (7) one finds that twist-3 and 4

matrix elements are of different order in the packing fraction:

R
- 4 e
twist-3: A~ (Mp)tlog Mp ~ (%) log (%)

~\ 0
twist-d:  f(2) . C) ~ (Mp)° ~ (ﬁ)}
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Again, the reason for this can be seen in the O(4) symmetry of the in-
dividual I(/). Note that the parametric order of the matrix elements is
determined by two factors: i) the number of instantons participating in
the effective operator (here we have included only the one-instanton contri-
bution), and i) the dependence of the quark loop integrals in the matrix
element (obtained by closing the quark lines on the many-fermionic effective
operator) on the cutoff, 5=1, keeping in mind that (Mp)? ~ (p/R)%. An
order unity contribution can come only from integrals which are “quadrat-
ically divergent”, meaning they are proportional to p~2. Incidentally. this
last fact implies that, in the framework of our effective theory, the dominant
contributions to higher-twist mmatrix elements come from “divergent” loop
diagrams where the effective many-fermionic operator couples to a single
constituent quark, not from diagrams describing interactions of more than
one constituent quark mediated by the many-fermionic effective operator. In
the latter all momenta are cut by the bound-state wave function of the nu-
cleon, not by the cutoff, p~!. Losely speaking, one may thus say that in our
picture higher-twist matrix elements measure properties of the individual
constituent quarks, not correlations between them.

We have computed the leading higher-twist nucleon matrix elements in
the large- V. limit; see [4] for details. These are the flavor nonsinglet spin-
dependent ones ((15\2,;, f(\23§) and flavor singlet spin-independent ones (C’gz)).
Results are shown in Table 1.

TABLE |

Numerical results for the flavor-nonsinglet spin-dependent twist-4 and 3 matrix
elements fj(vzg and dgg, Egs (6, 7), and the flavor-singlet spin-independent twist-4
matrix element qu?), Eq. (5). Shown are the results obtained from the instanton
vacuum [4], from QCD sum rule calculations [23, 24, 26], from the bag model [25],

and from lattice calculations [11]. Also shown are estimates of d(\zé based on

. . 2 . .
measurements of the structure function g+ [9], and estimates of f 1(\“2 from an analysis
of power corrections to g; [10].

fl(\(?‘% d(,\r}’f9 C_(SE) scale/GeV?®
Instanton vacuum [4] —0.10 ~ 1073 0.36 ~0.4
Sum rules [23] -0.20 0.072 1
Sum rules [24] —-0.072 0.072 — 1
Bag model [25] 0.11 0.063 — 5
Lattice [11] — —-0.13 — 4
Sum rules {26] — — 0.37 1
E142, E143, E154 [9] — 0.043+0.046 — 3
Power corr. {10] 0.10x£0.28 — — 1
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The result for d%)g should be taken as an order of magnitude estimate; to
compute it accurately at level (5/R)* one needs to include the two-instanton
contribution to the effective operator. Note that the results for f(3) and C?
agree well with estimates from QCD sum rules [23,26]; our value for d® is

consistent with estimates based on measurements of the structure function
g [9]

5. Summary

The predictions of the instanton vacuum for nucleon matrix elements
relevant to structure functions can be summarized as follows:

e At twist-2 level, the quark and antiquark distributions are of order
unity in the packing fraction. In this order they can be computed in
the effective chiral theory without including instanton contributions
to the twist-2 operators, i.¢., replacing covariant by short derivatives
in Eq. (1), or dropping the path-ordered exponential in the light-cone
operator, Eq. (3). The twist-2 gluon distribution is of order (p/R)*;
to compute it one needs to take into account at least two-instanton
contributions to the effective operators.

e The instanton vacuum implies a hierarchy of twists: Large — that is,
(p/R)® — contributions are found in operators of lowest spin (twist-
4, in our case), while the contributions to operators of higher spin
(twist-3 and 2) are suppressed. The reason for this pattern is the O(4)-
symmetry of the single instanton.

The instanton vacuum provides a consistent framework for describing the
non-perturbative input necessary for a complete understanding of DIS ex-
periments. The key element, which makes possible a systematic approach
to non-perturbative phenomena, is the small parameter p/R inherent in this
picture. The “quarks—antiquarks only™ approximation for twist-2 operators,
in connection with the chiral quark soliton model of the nucleon, gives a
very successful description of the twist-2 quark and antiquark distributions
of the nucleon, both polarized and unpolarized [2]. As to higher twists, one
may hope that increasing accuracy of the measurements of polarized and un-
polarized structure functions (power corrections) or, possibly, semi-inclusive
measurements, will allow to test the specific predictions of the instanton
vacuum more accurately.

Much remains to be done on the theoretical side. In particular, one
should refine the effective operator approach to be able to compute also
parametrically small matrix elements, first of all the twist-2 gluon distribu-
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tion 2. In addition to taking into account the two-instanton contributions to
the effective operator this requires to compute also the effective quark action
to higher orders in M p, since many properties — for example, the correct
realization of the QCD equations of motion — depend on the consistency of
the definitions of effective operators and the effective action. Work in this
direction is in progress.
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