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A brief introduction to the Skyrme model is given. An approximate
method is proposed for constructing stationary soliton solutions of the
Skyrme model with nonzero spin and isospin values. The vicinity of the
skyrmion center is represented as a rigidly rotating field configuration and
is quantized in terms of collective coordinates. Nonzero modes are taken
into account at the periphery by means of perturbation theory. In this ap-
proach, the asymptotic behavior of the soliton field is consistent with the
Yukawa law, and the transition to the chiral limit is smooth.

PACS numbers: 12.39. Dc

Quantum chromodynamics, the fundamental theory of strong interac-
tions, runs into serious difficulties in describing the low-energy physics of
hadrons. The effective theories of mesons and baryons are more suitable
for this energy region [1,2]. One of the simplest models of this type is
the Skyrme model [3,4] (see also [5] and references therein) in which pion
fields are fundamental, while baryons arise as topologically nontrivial soliton
solutions (skyrmions).

The Lagrangian of the Skyrme model has the form

7 T ([Las Lg) [1°, 17])

2
L= -ETr(L,L%) +

32
+,lf3m§ Tr(U +U* - 2), (1)

where L, = U de U e SU(2 ( ) is a chiral-field matrix, parametrized by the
isovector of the pion fields 7 = (mwy, 72, 73)

7720, 7
U(z°, x):e\p(—L—-z); (2)
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7 = (71, T2, T3) is the isovector of the Pauli matrices; f, and m, are the pion
decay constant and mass, respectively; and eg is the dimensionless Skyrme
constant.

Going over to the dimensionless variable z* = (2%, ) = fr2°, . = -

and £ = "ﬁ- and introducing the following notation

@1 (3035) 1 7"-1(20’ 57
(%5 = | D(%9) | = 7 w2 (2%, 2) (3)
453(30’5) T 71'3(30! 5,)

one can rewrite the Skyvrme Lagrangian in the form
1. : :
L= §¢TG(¢>, V@) — M(S. VD), (4)

where G(®, V) is a symmetrical 3 X 3 matrix, which specifies the metric in
the isotopic space.

The Lagrangian is symmetrical under the Poincare group as well as under
rotations in the isotopic space. The latter symmetry yields an integral of
motion that is known as the isotopic spin

()]
Nt

T_/d*qsc,\qﬁ (:

Here X,, a = 1,2, 3 are the generators of the SO(3) group, which posses the
followi mg properties:

{‘Xas /Yb} = gabC‘X'C s (A’Ya)bc = —Eqbc - (6)

[t should be emphasized that the Skyrime Lagrangian contains only the pion
fields as the dynamic variables and at first sight this is a purely mesonic the-
ory, nevertheless it does describe baryons as well. The distinctive property
of this model is that it has, in parallel with Noether integrals of motion, the
integral of motion of another type, which is not associated with the sym-
metries of the Lagrangian but rather with topological properties of the field
manifold. This exactly conserved number

l —

- 1272 /(lsIslmnVl(bavmgpbvn,(pc (4\)
sin® Feos® ' sin? F sin F cos® F
(Eabc_ 3 + 3P, Dyc gve R 1 - —

is called *topological index’ or “topological charge” and can be interpre-
ted as baryon charge. In other words, the field configuration with nonzero
topological index can be considered as baryons, nuclei etc.
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The simplest solution of the Skyrme model with nonzero topological in-
dex is known as the hedgehog skyrmion. It satisfies the variational equation
applied to the static energy

[

5 [ 5 s o )
ﬁ)—/d “M(, V) = 0 (8)

and has the form

|ty

Dy(2) = —Fs(r), r =21 (9)

The chiral angle F(r) can be found by integrating numerically the ordinary
differential equation

~

(r* + é—zgsin2 Fy) d;:;s +2r aillrs
— (1 + —12- (@jﬁ - (dii‘s>2>) sin 2F, — pf,rz sin Fs =0, (10)
e ! dr
supplemented by the boundary conditions
F(r)l,co =7 Fs(r) 00 =0, (11)

which correspond to the topological charge B = 1. In topological sectors
B = +£1 the hedgehog solution is stable and represents the absolute static
energy minimum [5].

It should be note that the asymptotic behavior of the field of the static
skyrmion corresponds to the Yukawa law

r

F(r) ~ (ﬁi + ;13) emHT (12)

Unfortunately, the static solution possesses zero spin and zero isospin;
hence, it cannot describe the properties of physical baryons.

To solve this problem Adkins, Nappi and Witten [6] proposed a semi-
classical approach, in which a baryonlike soliton is constructed as a rigidly
rotating field configuration;

@(20’5) = R(30)¢s(5’)7 (13)

( R(z") € SO(3) is the matrix of isotopic rotations). That is, only rotational
modes were quantized, while other degrees of freedom were assumed to be
frozen. Moreover it was assumed that the shape of the rotating soliton
coincides with the static solution. This approach allows to reproduce the
static properties of lightest baryons (nucleon and A-isobar) to within 30%.
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Nonetheless, there is no reason to expect that a rotating field configura-
tion is not substantially affected by centrifugal forces and is close to the
static solution. The attempts of many authors [7-9] to take centrifugal
effects into account without going beyond the semiclassical approach led to
considerable difficulties. The chiral angle minimizing the total energy of the
rotating skyrmion

6Etot
=0 14
7 (14)
decreases at infinity more slowly than what is required by the Yukawa law:
i, LN -
Fj(r) ~ <7%-+ ;5> emHT, (15)
| 2j(j + 1) y

2 _ 2

M= Mz = g (16)

(7 and A are the skyrmion spin and moment of inertia, respectively). More-
over there is no solution in the chiral limit (m, — 0).

In my opinion the reason behind the above difficulties is that the semi-
classical approach is inapplicable in the case of small pion mass and is there-
fore incompatible with the chiral limit.

Indeed, the semiclassical approach can be applied when the probability
of exciting the frozen degrees of freedom is small. In the case under study,
the minimum energy required for exciting the vibrational degrees of freedom
is determined by the pion mass p,, it is to be compared with the kinetic
energy of rotation 3—(%1—) Hence the condition that ensures the applicability
of the adiabatic approximation has the form

iG+1) -

My > 51 (17)
It is clear that this inequality cannot be satisfied in the chiral limit. Calcu-
lations show that, even for the pion mass equal to its experimental value,
the two sides of inequality are on the same order of magnitude.

Another shortcoming of the semiclassical approach consists in its contra-
diction to the special theory of relativity. In the case of the rigidly rotating
skyrmion the speed of segments that are remote from the rotation center
exceeds the speed of light.

The obvious way of solving this problem would be the treatment of all
(both zero and nonzero) modes from the point of view of the relativistic
quantum theory. However an implementing this way in practice is quite
difficult. Therefore, in the present talk I propose to take into account only
those nonzero modes that are characterized by their excitation energy below
(or on the order of) the kinetic energy of rotation. The essential feature of
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the approach is that the field degrees of freedom are unfrozen only at the
asymptotic region of the skyrmion,

B(:%,2) = R(z°)@0(2) + 0(=°, 2), at |£] > ro, (18)

while its core — that is the region near its center within a sphere of radius
ro —— is treated as a rigidly rotating field configuration:

®(=°, ) = R(=")®(2), at [7] < ro (19)

(rg is a parameter of the model). The accuracy of this approximation de-
pends on the degree to which the production of quanta with wavelength less
or equal rg (A < rg) is small. To be more specific, it is applicable provided
that the energy of a pion with wavelength equal to r¢ is much greater than
the rotating energy:

2 . .
m2 + (?) 5 U (20)
- ;

It is obvious that this condition is less stringent than previous one; for
sufficiently small rg, the former can be satisfied even in the chiral limit.

Since we assume that the soliton core rotates as a rigid body, the pro-
posed approach is nonrelativistic; however, the impact of the contradiction
to the special theory of relativity is less profound than in previous approach:
if rp is sufficiently small, the speed of segments on the surface of the rigidly
rotating core can be much smaller then the speed of light.

In the framework of the proposed approach the baryon-like state vector
and its energy can be found by perturbative methods. For a small parameter
one can choose the value of the chiral angle F'in the point ry.

The stationary baryon-like state vector with spin and isospin jp. third
spin projection sg and isospin projection tg was found in the first order of
the perturbation theory

|B) = |jBsBtB)

+J§% ngtZng g]lk

x Cl g listibh) (k)]0).

jstlmg

Here blm)q(k) is the creation operator for the pion with angular momentum

[, third angular momentum projection m, isospin projection ¢ and energy



2770 A. KosTyuk

w(k) = VE?+p2; |jst) is the state of the hedgehog core with spin and
isospin j, third spin projection s and isospin projection ¢,

- 27+ 1
kY = (Z1)imiBtlm
jsflmq( ) ( 1) 2.7B 1

(o1 1, aljsts) (G, 1, 5, mljmss)y o=
y 1.1, 4 J, L, 8, m s o
J q|7BtB)\J JBSB 3 % (k)

7'8F0(7'0) dRy (r,k)

dr

X

- r=ro —w(k)/drrzFo(r)Rl(r,k) L (21)
[ 13)2(j1:]s+1) + w(k)

C(l)

jstlmg

(k) = O0forl#1,

where Rj(r,k) is a special function which can be expressed in terms of
spherical Bessel functions:

[, mlkro)kr) (o) m(kr) ‘
e )_\/;k V0Uilkro))2 + (ni(kro))? (22)

The expectation value of the nucleon field has the proper dipole structure

(B|®12|B) = 0, (23)
~LcosOF(r) at r <rg,
E = 3 - ! 4
(B|&s|B) { —% cosff(r) at »r>rg, (24)
and its asymptotic behavior corresponds to the Yukawa law:

e_llﬂr" (“Tﬂ' + 7-_12—)
£(r) = Flro) ——— "L (25)

e~ HrTo (.r_O’L + ,_2>

0

The nucleon energy was found in the second order of perturbation theory

Bl = / PM(B, VD) + —
81
2f2 5 2
(roF'(ro))
Aé 0

o.¢]

X/ dkk* |
5 (L k2w (k) (wik) + £ ) (wik) + )
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The behavior of the chiral angle in the region r < ro can be determined
from the variational principle applied to the total skyrinion energy
SEY, _
(SFO(")

(27)

So in contrast to the adiabatic approximation, the proposed method for
constructing approximate soliton solutions with nonzero spin and isospin
values enables us to take into account centrifugal effects without running
into problems peculiar to the semiclassical approach.

At infinity, the asymptotic behavior of the resulting soliton solutions is
consistent with the Yukawa law. The asymptotic behavior and the energy
of the soliton both have a well-defined limit for m, — 0; that is, restoration
of chiral symmetry does not lead to abrupt changes in the properties of
solutions of the Skyrme model. This conclusion fits well into the generally
accepted view on the chiral SU(2) symmetry of hadronic matter.

[ am very grateful to the Organizing Committee of the XXXVII Cracow
School of Theoretical Physics for the financial support which made possible
my participation in the School and presentation of this talk. I would also like
to thank Jan Czyzewski, Jacek Wosiek and all other Organizing Committee
members for warm hospitality during my stay in Zakopane.
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