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These lectures are divided into two parts. First, an elementary intro-
duction to elelctron scattering is presented, starting with the scattering of
a non-relativistic lepton from a charge distribution, the extending to a rel-
ativistic Dirac electron, and finally including the quantum dynamics of the
target. The relation to gaimma decay is discussed. The analysis is repeated
in a covariant manner and target structure functions defined. The parity
violating asymmetry in the scattering of longitudinally polarized electrons
arising from the exchange of a Z is calculated. The structure functions are
evaluated for deep-inelastic scattering in the quark-parton model where
they exhibit Bjorken scaling. The asymmetry arising from scattering po-
larized nucleons on polarized nucleons is calculated in this model, as is the
parity-violating asymmetry. The second part of the lecture series presents
an overview of the current status of electron scattering, including a de-
scription of CEBAF. This latter material already appears in the published
literature.

PACS numbers: 25.30. —«

1. Introduction

This School is on the “Dynamics of Strong Interactions.” The nucleus is
the principal laboratory for investigating the consequences of these dynam-
ics. Electron scattering provides a microscope for examining the behavior
of the nucleus. This set of three lectures will be concerned with “Electron
Scattering and Nuclear Structure” [1,2].

* Presented at the XXXVII Cracow School of Theoretical Physics, May 30-June 10,
1997, Zakopane, Poland.
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These lectures are divided into two parts. First, I will give an elementary
introduction to electron scattering. This material is based on lectures I gave
at the 6th Annual Summer School in Nuclear Physics Research held at North
Carolina State University in Raleigh, North Carolina and at a summer school
in La Rébida, Spain [6]. I have written up the first part for the proceedings
of this school. Then I will give an overview of the present status of electron
scattering, including a description of CEBAF.! The second part is based
on two talks I have given at conferences and on an article [ just wrote for
Physics News in 1996. Since the material in the second part appears in
the published literature in Refs. [3-5], I will simply refer students to that
published material.

2. Basic nuclear physics
Non-Relativistic Scattering of a Charged Lepton — Born Ap-
proximation. Suppose one scatters a non-relativistic lepton of charge ze¢,

with z = %1 from the nucleus. The interaction takes place through the
Coulomb potential

2
v =2 [ m—_l—ﬂpw(m'm%'. (2.1)

The scattering amplitude is given in first Born Approximation by [14]

foa (K k) =~ [emieey (@)% (2.2
4mh

Here u is the reduced mass, hk is the initial momentum, ik’ is the final mo-

mentum, and hq with ¢ = k’—k is the three-momentum transfer whose mag-

nitude is given for elastic scattering by g2 = 2k%(1 — cos8) = 4k*sin?6/2.

For a spherically symmetric nuclear charge density py(z), the Fourier trans-

form of the potential in Eq. (2.1) yields?

_ 1 4 —ig-
/ o ]?c_—mqu(m’)d%d%’ =¢/° ™Y o (y)dy
4n
= SF(a?). (2:3)

Here F(q?) is the nuclear “form factor”. Now use €?/fic = 4ra where a ~
1/137.0 is the fine-structure constant. The differential cross section then

! Now known as the Thomas Jeflerson National Accelerator Facility (TJNAF).
? Use [e~'a= (e7** Jo)d®x = 47 /{g® + A?); now let X — 0.
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follows from the square of the modulus of the scattering amplitude as

do 4p? 2 1 2y|2
(hcoz)2 2412
= Y g
T6Ezsnig2 L )]
= ORutherford| F(g%)]* . (2.4)

Here Ey = h%k? /2p is the incident energy and ORutherford is the familiar
cross section for scattering from a point charge. Experimental measurement
of this cross section evidently determines the Fourier transform of the nuclear
charge density>

F(q*) = /e_iq'y pn(y)d®y
sin
2 pn(y)d®y (2:5)
qy
Note that F'(0) = Z, the total nuclear charge.
Nuclear Physics. Suppose now that one extends the analysis to deal

with the internal quantum dynamics of the nuclear target. The nuclear
charge density then becomes an operator in the nuclear Hilbert space

pn(z) = pn(z) ; Nuclear Density Operator. (2.6)
In first quantization, for example, with a collection of structureless nucleons,
the nuclear density operator takes the form

Z

pv@) =380 (@ - ;). (2.7)

i=1

The analysis of the scattering amplitude in Eq. (2.3) indicates that one now
requires the nuclear transition matrix elements of the operator

Flg) = [ 1Y in(u)d’y. (2.8)

Take the momentum transfer ¢ to define the z-axis and expand the plane
wave appearing in this expression according to

s = 3 i@l + (- s Yn(2) . (29)
J=0

3 One actually measures the square of the modulus of the form factor, but since it is
real here and F(0) = Z, one can track through the zeros and determine both the sign
and magnitude.
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This gives

F(g) = > \/an(2J + 1) (=) Mo(q)
J=0
Myn(q) = /jJ(q:z:)YJM(QI)ﬁN(:c)dSI. (2.10)

The quantities Myas(g) are now irreducible tensor operators (ITO) in the
nuclear Hilbert space. The general proof depends on the fact that the nuclear
density is a scalar under rotations; in the case where Eq. (2.7) holds, these
multipoles consist of a sum of single particle radial functions multiplied
by spherical harmonics and the result is evident. The great advantage of
identifying an ITO is that one can now use the general theory of angular
momentum (Ref. [13]), in particular the Wigner—Eckart theorem states that
the matrix element of an ITO taken between nuclear eigenstates of angular
momentum results in*
(J e M| Myag| M) = (=1)71~Ms < _{{If ,\‘]4 1']4 ) (T IM|J3) -
(2.11)
This result has two invaluable features: it gives the explicit dependence on
the nuclear orientation (all M’s), and it contains the angular momentum
selection rules (the J’s must satisfy the triangle inequality). The average
over initial states and sum over final states 3 ;5" s for a nuclear transition
to a discrete state (this can include elastic scattering) is then immediately
performed using the orthogonality property of the 3-j symbols

J Ji ]f J’ Jz'
A[ ;g M M, -M; M M;

6JJI5A{MI. (212)

‘ M; M;
1 1
TS+ 12]+1

Hence the nuclear physics is now contained in the following expression

S MM [ e o )Pyl M = S A @1
¢ Ji+1 J=0

(2.13)
This sum is actually finite since the nuclear matrix elements vanish unless
the selection rules are satisfied.

4 We assume here that the nuclear target is heavy and localized and that the nuclear
eigenstates can be characterized by their angular momentum.
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Relativistic (Massless) Electrons. The cross section for the scatter-
ing of relativistic (massless) electrons through the Coulomb interaction can
now be obtained from the previous results through the following modifica-
tions:

1) Replace the transition matrix element for the projectile e=*4'® by e~14'®
ul(k")u(k) which includes the overlap of the Dirac spinors for the elec-
P
tron.
A simple calculation with the Dirac wave functions then gives (Ref. [14])°

322 lul(K)uk)? = (1 + cosb) = cos® g. (2.14)

51 82

2) Replace uc? in the numerator of the scattering amplitude by the full fi-
nal electron energy hk’c; this factor arises from the appropriate incident
flux and density of final states in Fermi’s Golden Rule.

3) Make use of the four-momentum transfer qZ = q%—q2 where go = k' —k
to write the point cross section. This quantity satisfies

. 50
qi = 4kk’ sin’ 3 (2.15)

for both elastic and inelastic transitions.

The resulting differential cross section then takes the form

do VY - . A2
a0 UMottE;m;)|<Jf||MJ(Q)“Jz>[ )
a?cos? /2 .
IMott = 5 Tp7o 82" (2.16)

Here oMoyt is the cross section for scattering a Dirac electron from a fixed,
point charge. Note that this quantity can also be written

40%k'? cos? 0/2

(2.17)
g,

OMott =

5 Use

11 . . f
3 Ak Tr ya(—tyukn)va(—ivo k)

S S e yreutel?

81 &2
1

1 ’ I} _l
W(kk + kk') = 2(1-+—cost9).
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Long-Wavelength Limit. In the limit that the momentum transfer
goes to zero, an expansion of the spherical Bessel functions reduces the
multipole operators in Eq. (2.10) to the form

J
Mar(g) = (—z}%W / Y (Do) pn (@) d . (2.18)
If R characterizes the size of the nuclear target, then the multipole operators
go as (¢R)” and the lowest allowed multipole dominates in the limit ¢R — 0.
In electron scattering, the product ¢ R can be made arbitrarily large by going
first to larger scattering angles at fixed incident energy, and then by going
to higher and higher energy electrons.

Recall it is a property of Fourier transforms that the equivalent wave-
length at which the system is examined bears an inverse relation to the
momentum transfer
27
-
At CEBAF, we will be interested in wavelengths which probe the nucleus at
distance scales of tens of Fermis down to tenths of Fermis.®

Gamma Decay. Consider a nuclear transition |J;M;) — |J;M;) with
the emission of a photon. The hamiltonian governing this electromagnetic
process is

lg| = (2.19)

H = —%’/]N(m)-A(a:)dBm,

hez \'? oo
Alz) = Zk: \Z (ka()) (aprer etk “+h.c.). {(2.20)
A=1,2

Here A is the vector potential for the quantized radiation field and the hamil-
tonian is written in the Schrodinger picture. In this expression eg are a
set of unit vectors orthogonal to k, w; = kc, at (a) are the creation (destruc-
tion) operators for the photons, and we use periodic boundary conditions in
a big box of volume 2.

It is convenient to first make a ¢anonical transformation to photon states
with circular polarization. This leads to an expression for the vector po-
tential where one now replaces 3_y_; 9 — >.\—4; With ep 41 = Flew £
i€k2)/ﬂ-

The nuclear matrix element for photoemission then takes the form

ey [ het \'* :
Hf'i:“f(zwkn) (1 [ elyem® = In@)dali).  (221)

%1 Fermi = 107" cm.
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Now introduce the following expansion for the plane wave times the unit
vector (Ref. [8,13])

T —ik-x __

—-Z\/Qw 2J + 1)(—i) { V x [ (k) V5] + Ma (k) V5 } (2.22)

J>1

Here the vector spherical harmonics are defined by (exo = k/|k|) .

Y= S (Imilm 1T M) Yim, (£2:)em, (2.23)

myms

Equation (2.22) is simply an algebraic identity. Its great utility lies in the
fact that it allows one to again make an expansion of the required nuclear
transition operator in [TO

/ el e“‘k‘x-JN(w)d3x -

= > \/2m (2T + 1)(—9) A(B) + ATT (k)] (2.24)

J>1

The electric and magnetic multipole operators are defined by

Thi(k) = ¢ [1V x Lia(b2)V}5(2:)]) - I (@),
) = [Ua(ka)¥3(20) - In(e)d’s (225)

The decay rate now follows from Fermi’s Golden Rule

Q2d3k

oL (2.26)

dugi = ‘%”w;ﬂ?a(yf + o — )

Since the electromagnetic multipoles have opposite parity, it follows that the
good parity of the nuclear states implies

IAITS + X8| T = KIS + (ATl (2.27)

We leave it as an exercise to show that a combination of the above results
leads to the following expression for the decay rate for photon emission [§]

wf = 8/.akc

Z (CTAITS (R P + 1T AT TSR 1)) -(2-28)
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In fact, this is a general expression for the decay rate for photon emission
for any heavy, localized quantum mechanical system; it is exact to order a.
The multipole operators appearing in this expression now contain a factor
¢! and are dimensionless.

The amplitude for the scattering of a relativistic electron from a nuclear
target [9-12] can be calculated to order & in time-independent perturba-
tion theory by combining the first-order Coulomb amplitude arising from
Eq. (2.1) with the second-order amplitude for the exchange of a transverse
photon of momentum fgq coming from Eq. (2.20) (and its analog for the elec-
tron). Since the Coulomb and transverse multipoles carry different amounts
of angular momentum along the g axis, they do not interfere after the sum
and average over nuclear orientations. It should therefore not be too surpris-
ing that the differential cross section can be written in the following form
(see e.g. Ref. [2])

4 oc
99 rortor s { S TV () 1)
- dSf? 2J;+1 | q* =0

2 o]
+ (;q% + tan” 9) > (AT @I + I(JfllT?ag(Q)llJi>|2)} - (2:29)

2 J=1
Several features of this result are of interest:

e The nuclear matrix elements obey all the selection rules discussed
above; in particular they vanish unless Jf + J; > J > |Jy — Ji|.

e Because of the unit helicity of the photon, the sum over the transverse
multipoles starts with J = 1; in contrast, there is a J = 0 Coulomb
monopole.

e The momentum transfer f|g| can take any value in electron scattering.

e There are 3 lepton variables in electron scattering (k, k', ) or equiva-
lently (q2,w,8) where the energy transfer hw is given by w/c =k — k'
The Coulomb contribution and that arising from transverse photon ex-
change can be separated by keeping the first two variables (q%,w) fixed
and varying the electron scattering angle 8, or by working at = 180°
where only the transverse term contributes.

e It has been assumed here that the nucleus is heavy and this is the
laboratory cross section. If nuclear recoil is included in the density
of final states, the result is to multiply this expression for the cross
section by a factor r where r~1 = 1 + (2hk/Mrc)sin?6/2. We leave
the demonstration of this result to the reader.

Construction of the nuclear current at various levels of the description
of the nucleus and calculation of nuclear matrix elements is described in

Refs [1,2].
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3. Covariant analysis

Covariant Analysis. Let us revisit our analysis of electron scattering
and start from the beginning in an explicitly covariant manner. The S-matrix
with one-photon exchange can be written in the form [1,2,25,26]

Sti = ‘%u(k'mu(k)qiz/ e (Y| (w) | p)d e (3.1)

The momenta appearing in this expression are now all four-vectors and the
four-momentum transfer satisfies the relation ¢ = &’ — k. ® One can use
translational invariance on the nuclear matrix element to write in the con-
tinuum limit

/e_iq‘r(z)'lJa(x)IMd‘*w = 2r)*%W 0 + ¢ - p)P'1.O0)p) . (3.2)

The T-matrix is then identified from the expression

(2m)*
7

The cross section follows in the standard manner

— . Q483K 1 [(@2r)3.
B 2 o A (3)
do = E iE jQﬂ'le:l oWy — Wi (27)3 Iine [ 0 0

The last factor takes into account the fact that up to the final step, one is
really working in a big box with periodic boundary conditions so that

Sii = — O + g - )Ty (3.3)

. (3.4

(Ap)

(27’(’)35(3)(1&?) — / eiAP.:B = Q(Spf,pi . (35)

box

where the last term is a Kronecker deita satisfying

2 _
[6pf)pi] =p,p, - (3.6)
We leave it as an exercise for the reader to show that the incident flux in
any frame where k||p can be written for a massless electron as

1V (3.7)
ek

2

Iinc =
P

" We now revert to units where & = ¢ = 1. We use a metric with z, = (&,it). Our
gamma matrices are Hermitian and satisfy v.7v. + vo v = 26,0, Also v5 = 71727371.

8 The quantity q° now denotes the four-momentum transfer; the three-momentum
transfer will henceforth be explicitly denoted by ¢°.
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This relation is immediately verified in the laboratory frame where £, = Mt
and k-p = —cMr.
The square of the T-matrix then leads to the cross section in the form
1 40* d3k’'

do = ——=—1 UI 17PN
’ (k‘p) q‘* e # 2¢’

(3.8)

As an element of transverse area, this cross section must take the same value
in any frame where k||p, and indeed, it has now been written in an explicitly
Lorentz invariant form.

The lepton tensor appearing in this expression is defined by

M = —52ee’ Y3 ulk)vu(k)a(k) v u(k)

S1 89

= kykl 4+ koK, — kK6, . (3.9)

The hadronic target contribution is similarly summarized in a tensor of the
form

W = (27)°F, 3 8D (g + 2 = p) (L)) (14 (0)1p) (2E) . (3.10)

This Lorentz tensor can be analyzed through the following observations:

e Conservation of the electromagnetic current implies ¢, W,, =
I"V;w q, = 0.

e The only remaining four-vectors with which to construct this tensor
are p, and q,.

e The only remaining Lorentz invariant variables are ¢ and p- ¢.

As a result, the target response tensor must take the form

Wp,u = Wl(QQ,CI‘P) <5,u.u - %%)

1 P q P-q
+W2(g?, q - P)m (Pu - 7%) (pu - ?—qy> . (3.11)

Note that in the laboratory frame the Lorentz invariants take the form

_ et a2 ?
g° = 4deg’sin” —,

2
P a9 _ ., (3.12)
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We again leave it to the reader to show that a combination of these
results in a laboratory cross section of the form
d*c 1 0
———— = oMo |Wald? q- 2Wi (% q- tan2—]. 3.13
T = Meng [Wald'a-p) + 2 (g p) tan 5| L (3.13)
An Example. As an example, consider elastic scattering from a spin
zero nucleus. In this case, Lorentz invariance and current conservation imply
that the nuclear matrix element must have the form [2]
1/2

. 2
(p— ¢,0%]J,.(0)|p,0%) = Ml? (pu - %q& Fo(q?) (%) .(3.14)

Hermiticity of the electromagnetic current implies the form factor Fy(g?) is
real. The response functions are immediately evaluated in this case to give

W, =0,
22 ME
VVQ = [Fo(q )l E—(S(‘/Vf - Wl) . (3.15)
pl
The cross section then takes the form
do 7
a0 = UMottlFo(q2)|27“- (3.16)

Here r is the previously discussed recoil factor.

Parity Violation. Consider now a longitudinally polarized electron
beam scattered from a target which is unpolarized and unobserved. If one
does nothing more than reverse the electron helicity, then the parity violating
asymmetry

. da’T —do 1

"~ doy+doy’
must vanish since the electromagnetic interaction conserves parity to all
orders. Parity violation is present in electron scattering to a small extent

due to interference with the weak amplitude arising from the exchange of
the Z° — the heavy, neutral, weak vector boson.® If Z° exchange is added

(3.17)

to 7 exchange, the above S-matrix is extended to [1,18] '°
, ee, _ 1 —ig
Sei = =Sk (k) ;[ @ @)

- syt bnulh) [ @ITO @' (3.19)

® We are here discussing electron scattering from nuclei up to several GeV.

10" Additional contributions to the parity-violating asymmetry can arise from parity
admixtures in the nuclear states coming from weak parity-violating nucleon-nucleon
interactions. These contributions are generally negligible, except perhaps at very
small ¢* (Refs. [27, 28]).
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Here (G is the Fermi constant and the weak neutral current is assumed to
have the familiar V-A form

T =70+ 7. (3.19)
In the standard model the electron weak neutral current is given by
a=—(1-4sin?fy), b= —1. (3.20)
The use of helicity projection operators for massless electrons

14

1-7
PT:TS, Py 5 (3.21)

allows one to calculate the asymmetry in a manner directly analogous to
that described above for the cross section. The result is (Refs [1,2])

é .90 Gq? 0 __ . Lo 0
2 Ty 2 Tyl 2 7 yx/int 2 Y yx/int
A [cos 21/V2 + 2sin 2W1] = ira3 {b [cos 2112 + 2sin .2W1
2W, 6 g\ 1/2
—a ( M;:) sin 2 (q2 cos? g + ¢*sin? Z) . (3.22)

Here the nuclear target response tensors are defined in a fashion similar to
that in Eq. (3.10). The response tensor arising from the interference of the
electromagnetic and vector part of the weak neutral current is written as

Wit = 2r)° 3" 8@+ - p) [(PlIO O )10 (0)]p)
+ (PlI (O (P1T(0)1p)] (2E3) - (3.23)

We assume the weak vector current is conserved, and thus this tensor must
again have the covariant form

Wit = Wit (e, q-p) (5W - ";3“)
i 1 P-q p-q .
2
+W3"(¢%, ¢ p) iz (p,t a qﬂ) ( v - ~qTq,,> . (3.24)

The tensor arising from the interference of the electromagnetic current and
axial vector part of the weak neutral current is defined by

Wit = r)' 3 89+ - p) [l 01 01T (0)lp)
+ (LI O)P) (P12 (0)1p)] (2E3) - (3.25)
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It must be a pseudotensor, and the only one we can make from p and ¢ is
1
V-
Wy,y A= W8(q2v q- p) Wguupappqa . (326)
T
An Example. Consider again the example of elastic scattering from a

spin zero nucleus. In this case the matrix element of the axial vector current
must vanish since one cannot make an axial vector from p and ¢

(p ~0,0%17,5 O)lp,0%) = 0. (3.27)
The response tensors are then evaluated as above to give
Wit = Ws =0,
int (1 2y 10 2y MF
wirt = 2F (@) FO (¢ Z26(Ws = Wo) (3.28)
2

As above, the form factors must be real. The asymmetry in this case thus
takes the form [1,2]

2 (0)/ 2
A= GOt F(e) (3.29)
2mav2 By (¢?)

Measurement of this asymmetry at all g2 thus completely determines the
distribution of weak neutral current in this nuclear system.

4. Deep-inelastic scattering

We next turn to the subject of deep-inelastic scattering of leptons from
the nucleon [1,2,7,15-17]. The process is illustrated in Fig. 1. Tt is char-

Fig. 1. Deep-inelastic lepton scattering from the nucleon.

acterized by two Lorentz scalars, which in the laboratory frame take the
following forms

0 .
g% = 4,69 sin’ 7 p=219_ €1 —E2. (4.1)
m
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The unpolarized differential cross section can be written in Lorentz invariant
form as

do — 4_01—2d3k2 1

q4 282 WHW,WMV . (42)

The lepton response tensor is give by!!
1
Ny — ZTr")’u(kZp'Yp)’)/u(kla’Ya)
- kZ;J,klu + kl;}.k2u - kl . k2 5,Lw . (43)

The hadronic response tensor for unpolarized and unobserved targets is given
by the Lorentz tensor

Wy = f > (27)%6 0 (g + p' = p)(p|1.(0) 1) (p'|J,.(0) [p) (2 )

i f
s
= Wl((]2a‘]'l’) <5uv - ;2 )
1 P-q P-q
2
+Wa(q®, q -p);;ﬁ (pu -z (I,u) (pu —Z %/) : (4.4)

A combination of these results expresses the laboratory cross section as

d*c 1 ) , , 0]
dfodey ™ML [W2(V’q )+ 2Wy (v, ¢°) tan 5
a’cos?6/2
T 4e?sini0/2” 45
M= 4eTsint0/2 (4.5)

In the quark-parton model in the |p| — oo frame (Fig. 2), one calculates the

B £
- Ia P | proton
> N\ S V Lorentz
N Z e e A cortracted
9
l 1 electron

Fig. 2. Quark-parton model for deep-inelastic scattering in the |p| — oo frame.
Here p = —k;.

' We assume the ERL where the lepton mass is negligible.
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ith parton

Fig. 3. Quark-parton model for deep-inelastic scattering in the impulse approxi-
mation in the |p] — oo frame.

Lorentz invariant structure functions by considering free, incoherent scat-
tering from the collection of charged, pointlike constituents of the hadronic
target; these are the various quarks with charges @, [19,20]. Each type z of
such constituent is assumed to carry a fraction #;p of the incident hadronic
target four-momentum p in this frame. The cross section is then calculated
in the impulse approximation (Fig. 3). If the number of such constituents
carrying momentum fraction between n;p and (n-+dn).p is given by f;(n;)dn;,
then the Lorentz invariant target response functions for scattering from the
nucleon take the form [1,19,20,22, 23] 12

2Wh = Fi(z) = ZQ?fz(w) )
‘%W2 = Fy(z) = ZQ?sz(l') )

2
q
= . 4.6
v 2mv (4.6)

The response functions, which in general depend on the two variables (v, ¢%),
now depend only on the single Bjorken scaling variable z, as is observed
experimentally in the scaling region of v — oc and ¢ — oo at fixed z =
q?/2mu.

It is convenient for the following discussion to explicitly distinguish the
number of quarks with helicity aligned and opposed to p; we shall do this
with a superscript; thus in the quark-parton model

Fi(z) = 2 QA (@) + fH@)],

'2 Reference [1] uses the convention 2W, = Fy(z) (which we employ here), while Ref. [21]
uses 2W; = 2F(x)
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Suppose now the initial lepton beam is longitudinally polarized. Then in
the ERL one can simply insert the appropriate helicity projection operators
for massless fermions in the lepton traces

Pr=3(1-17), P =3(1+7). (4.8)
The result is that the lepton traces now take the form

(M — €pvpok1pk2s)

n;Tw = %
%(n;w +€/Ll/p0k1pk20') . (4.9)

Mo =
Suppose, in addition, that the target is longitudinally polarized and has
helicity aligned or antialigned along p. Then a calculation exactly analogous
to the above in the quark-parton model, with the neglect of all masses, yields

an additional Lorentz covariant contribution to the response tensor for the
nucleon!®

1

6W;Iu = Wh (Vv q2) Ws;u/papp(Ia . (410)
One finds, in addition, that the following combination satisfies Bjorken scal-
ing

2v

—Wh = 2g1(2)

m

= 2 QIS (@) - fH@)]. (4.11)

These results can be used to compute the asymmetry for scattering of the
lepton by the target in the case the helicities are aligned or antialigned

_ dot — doyy

= : (4.12)
doty + doyy

Here the subscripts refer to the particle helicities. A combination of the
above results then leads to

2¢91(2)
A= D,
Fi(z)
g2 —¢2
D=2 ERL. (4.13)
1t+¢&3

These results hold in the deep inelastic region where ¢ — oo and v — o0
at fixed ¢ = ¢2/2mv; we have assumed that this scaling limit is achieved in

'3 Overall factors of m set the energy scale.
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the ERL where €; — oo so that all masses are indeed negligible, and corre-
spondingly 8 — 0. In this regime, such an experiment evidently measures
the spin structure function of the target nucleon defined by

201(2) _ LiQIf(2) - fi@)] (4.14)
Fi(z) 20N 2) + )]

If one retains correction terms of O(m/<;), and correspondingly considers
other directions of the polarization of the target, then the expression for the
polarization asymmetry becomes more complicated, and one can, in fact,
measure an additional spin structure function g,(2), whose interpretation in
the quark-parton model is more ambiguous. The full response for arbitrary
target polarization is given in Ref. [21], where experimental results from
the scattering of very high energy polarized muons from polarized nucleon
targets are also discussed.

Parity Violation. Suppose the incident lepton beam is longitudinally
polarized, but the target nucleon is now unpolarized (and again unobserved).
Any difference in cross section for the different helicities must now arise
from parity violation. It is straightforward to combine the above results
and the S-matrix in Eq. (3.18) to compute the parity-violating asymmetry
arising from the interference of one-photon and Z° exchange. To simplify
the presentation, we again go to the ERL for the lepton as defined above
(with £ — o0 and § — 0) we also take sin? fw = 1/4 which implies @ = 0
in Eq. (3.20).  There is now an additional hadronic response tensor for
the target

Wi =323 2n)% g+~ p)

x[(p1J2(0) ") (P[] (0)|p) + (plJ7 (0)|p) (P T\ (0)|p)](L2E,)

Qg
Wi (¢® q - p) ( - ”)
p-

in 1 q pP-q
+VV2 t(q q- P) <pu - 2 q;;) (p,, - 72—({,,) . (4.15)

In this approximation, the contributing parity-violating target response ten-
sor arises entirely from the vector part of the hadronic weak neutral current;
the full expression is given in Ref. [1].

A combination of these results now yields the parity-violating asymmetry

A _dop—doy  G¢ ZiQngo)[ﬁ(z)“‘"fil(f”)]. (4.16)
U doy+doy 2me/2 X QA (e) + (=)

4 1t is assumed that in the nuclear domain ¢*> <€ m?,.
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Here Q; and Ql(-o) are the electromagnetic charges of the quarks, and the
quark charges in the vector part of the weak neutral current, respectively.

Quark Currents. To the extent that the (u,d) masses are equal (they
are both very small in the QCD lagrangian), strong isospin is a symmetry
of QCD, and the (u, d) quarks form a strong isodoublet

( y ) _— (4.17)

The charge-changing weak current can then be rewritten as

J,E_) = ipya(1 4+ v5)7-% cosfc . (4.18)

The electromagnetic current in the extended domain of (u, d, s, ¢) quarks is
similarly written as

Ty = ity (rs+ 4) v + Zieyae — Sisms. (4.19)

It is evident that in terms of isospin (denoted with superscripts), this current
has the structure

N =J0+J35. (4.20)

It is convenient to remove the Cabibbo angle from the hadronic charge-
changing current in nuclear physics and include it in the coupling constant,
for then the various components of the weak and electromagnetic currents
bear a simpler relation to each other. We shall henceforth do so, and we use
as the coupling constant for the charge-changing hadronic processes

G:h = G cosfc
= 0.974G. (4.21)
Since 7_ = (11 —im3)/2, the charge-changing weak hadronic current now has
the isospin structure
JH=gh —igl. (4.22)

In this standard model, the weak current is evidently a sum of a Lorentz
vector and Lorentz axial vector current

In= I+ s (4.23)

The Lorentz vector part of the weak charge-changing current is simply a
different spherical component of the isovector part of the electromagnetic



Electron Scattering and Nuclear Structure 2015

Fig. 4. One photon exchange in (e, e’) on the nucleon, together with the exchange
of the heavy, weak neutral vector meson Z° Here p; = p and ps = p'.

current — this is one of the foundations of the conserved vector current
theory of the weak interactions (CVC).

Consider again, in addition to one photon exchange in (e,€e’) on the
nucleon, the effects of the exchange of the heavy, weak neutral vector meson
Z9 in the standard model as illustrated in Fig. 4. The amplitude for Z°
exchange in the nuclear domain is proportional to the weak coupling G, and
this amplitude is negligible unless one looks for effects which are only there
due to the presence of the weak interaction; parity violation is one such
effect. The S-matrix for the process in Fig. 4 is given by [1]

27) 4
Sgi = —(—73—15(4)(’61 +p— ko —p)Tti,
; dra | .
It = ‘qz—{271(}02)%“(}»‘1)(17/”1(0)|P>
G 2

—4m\/§ia(kzm(a+bvs)u(kx)@’lj‘ﬁo)(o){p)} . (4.24)

In the standard model the lepton couplings are given by
a=—(1—4sin®fy), b=-1. (4.25)

The hadronic weak neutral current in the standard model in the extended
domain of (u,d, s, c) quarks is given in terms of the quark field in Eq. (4.17)

= 1 .
jf) = 1y, (1 + 7‘5)5731; - 2sin® Gy J) + 5350) ,
{

8T = Sleva(l+y5)e = 57u(1+75)s]. (4.26)

The last term is an isoscalar.
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An Application. Consider the nuclear domain of (u,d) quarks, for

which 6j,£0) is absent, and an isoscalar T = 0 — T = 0 nuclear transition.
In this case, the entire isoscalar part of the weak neutral current arises from
the electromagnetic current, and nuclear strong isospin symmetry yields the
proportionality, for these transitions

JO = —2sin?bwJ) . (4.27)

Note that this relation holds to all orders in QCD.
In this case, Eq. (3.29) takes the simple form (recall b = —1)

Gq2 . 2
= B . 4,28
A= o (4.28)

This result is originally due to Feinberg [24]. In the extended domain of

(u,d, s, c) quarks, the additional isoscalar contribution &7‘20) in Eq. (4.26),
involving the strangeness and charm currents in the nucleus, modifies this
relation [1].

Also, in this case, the entire parity violation arises from the axial vec-
tor part of the lepton current (proportional to b), and for parity-violation
purposes, the T-matrix takes the form

. dma
Thi = -;]3—1“(’62)Fu“(k1)(17/|c72(0)|P>,
Gg¢?sin? Ow
r, = 14 —++b . 4.29
! 7#( + 271_&\/5 75) ( )

This expression readily yields the equivalent, effective parity-violating lepton
potential in an atom.

5. CEBAF (TINAF)

The second and third talks in this lecture series present an overview of
the current status of electron scattering, including a description of CEBAF.
This material appears in the published literature in Ref. [3-5].
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