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1. Introduction: the application of skyrmions in nuclear physics

Efforts have been made to apply the concept of the skyrmion [1] to the
derivation of the nucleon—nucleon force for something like a dozen years now,
since the early work of Jackson and his collaborators [2] and of Vinh Mau
and his coworkers [3]. At least in part, this has been done with an eye
to eventual broader applications of the skyrmion in nuclear physics. The
topics involved have been reviewed in sufficient length and detail [4-15] so
that further general summary seems out of order. Instead, we shall try here
to give a brief sketch of the general background of this work, and then to
provide an assessment of its success. This seems quite appropriate in lectures
in a summer school celebrating the seventieth birthday of Wieslaw Czyz.
His contributions in physics have covered a broad spectrum from his early
interests in nuclear structure as described by nucleon degrees of freedom to
recent work in which quantum chromodynamics is applied to nuclei. With
his general guidance, nuclear theory activities in Krakéw have encompassed
a similar range, including specific interest in skyrmions.

The philosophy of the approach is well known, and stems from the re-
alization that in the limit of a large number of colors N, quantum chro-
modynamics becomes a theory whose degrees of freedom can be taken to
be those of meson fields [16], and baryons can be viewed as arising from
topological solutions for those fields [17]. In this last context, the lagrangian
put forward many years ago by Skyrme [1] represents the simplest way to
achieve stable topological solutions. The application to nuclear physics is
particularly tempting because the nucleus requires for its minimal descrip-
tion degrees of freedom pertaining to nucleons, pions, and A isobars, all of
them well handled by the skyrmion. In this regard the skyrmion represents
a distinct advantage here over approaches based on bag models, since the
essential pion aspects are included as an integral part of the theory.

2. Skyrmions for the single-nucleon system

The lagrangian density originally proposed by Skyrme [1] for the depic-
tion of the nucleon through a solution in terms of meson fields with nontrivial
topological properties is

2

£:£2+£4:—f—gtr(LuL”)+m%tr[LwL,,]2, (1)
where F is the pion decay constant, with experimental value 186 MeV, and
e is the Skyrme parameter which accompanies his stabilizing term with four
derivatives. Here L, = UT9,U, where U(r,t) is the chiral field, at this stage
taken in SU(2). For the B = 1 static problem we take a time-independent
hedgehog solution, U(r,t) = exp[iT -7 F(r)], where F'(r) is referred to as the
profile function.
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As is well known, and is discussed in detail in the reviews referred to
above, Skyrme’s lagrangian guarantees stability of the single-nucleon solu-
tion. The requirement that the energy obtained from the Skyrme lagrangian
remain finite leads to the boundary conditions F(r — oo) — nm, n =
integer, and F(0) = mm, m = integer for the profile function. Without
regard to the particular form of the lagrangian, it is possible to construct a
conserved current — not of the Noether variety — which Skyrme interpreted
as the baryon current. It then emerges that m — n is the baryon number of
the corresponding solution.

Adkins, Nappi, and Witten [18] supplied a method of generating baryons
of good internal quantum numbers for spin and isospin by carrying out a
unitary rotation on the static hedgehog solution, U(r, t) = A(t) Uo(r) At(t),
where A(t) is an SU(2) matrix, and then converting A into a quantized
variable and using it to project out the quantum numbers needed. This
then provides all the machinery necessary to construct single-nucleon ob-
servables: masses, electromagnetic radii and moments, the axial coupling
constant, pion coupling constants, and A — N transition moments. The
usual procedure is to fit the two constants of Eq. (1) to the nucleon and A
masses and then to calculate the remaining observables in terms of them.
These prove to be in reasonable agreement with experiment, given that the
theory strives for only 33 percent accuracy since it takes N. — oo from the
start.

Subsequently, extensions of these methods to include the strangeness
sector (see, e.g., [19,20] and the many references in the reviews quoted above)
were made quite successfully. This work assumed special meaning when
experimental studies of the spin content of the nucleon were undertaken [21]
and found to yield a very small value for that quantity. The skyrmion has the
property of suggesting zero strangeness content for the nucleon {22], at least
at the level of the lagrangian of Eq. (1). The subsequent finding [23] that
the nucleon spin content — while not very large — was distinctly different
from zero, required modifications to that lagrangian [24,25]. These take the
form of additional terms involving six derivatives of the field variables,

L= Lo+ La+Ls1+ Ls2+ Lsn
- _F, (L L“)+—1—tr[L L)
= 16 T \Loy 3282' wy v
92 92
—€15 tr (B*B,) —eg tr (B*) tr (B,)

w w

2
+ [%(mi + mg) tr (U + U —2)

V3E?

ST (m2 —mi) e (a(U + U1 (2)

+




2922 J.M. EI1SENBERG, G. KALBERMANN

where we have suppressed the Wess—Zumino term which also enters here. In
this expression,
eha By

m
B 2472

[(UtaaU) (UtapU) (Uto,U)] (3)

The inclusion of terms with six field derivatives may seem excessive, but it
has been pointed out [26] that a chiral expansion is inadequate if truncated
at the level of four derivatives since one must expect the fourth-order con-
tribution to be much less than the second-order one for that expansion to
be valid, and this is violated by the energy contibutions themselves from the
two terms of Eq. (1), as can easily be shown using a length-scaling arugment
as in Derrick’s theorem.

In order to give some impression of the success of the skyrmion in SU(3),
we show several results based on the lagrangian of Eq. (2). Table I shows a
sampling of possible parameters for the constants in the lagrangian, along
with the masses for the baryon octet and decuplet and the root mean-square
deviation of these from experiment.

TABLE 1

Octet and decuplet masses in MeV. Members of octet in first line of entry;
decuplet in second. Cases 1-5: g4 ~ 1.24 £ 0.05; Case 6: g4 = 1.72.

# Params M dev
€ Fy €1 N/A A/E E/E E/Q

1 60 82 -1.00 938 1111 1240 1366 98
1226 1336 1485 1649

2 6.0 74 -150 936 1114 1246 1375 120
1234 1338 1469 1624

3 6.0 89 -0.35 928 1124 1271 1402 131
1233 1342 1488 1659

4 6.6 82 -0.71 933 1108 1238 1364 99
1249 1351 1480 1633

5 54 82 -1.26 919 1119 1272 1410 159
1203 1317 1469 1643

6 80 18 -1.45 939 1120 1253 1387 120
1236 1344 1476 1634

exp 939 1116 1193 1318
1232 1385 1530 1672
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The agreement over this large set of masses is excellent, although, of
course, much of this may be accounted for by the correct incorporation of
SU(3) symmetry. The same is true for the octet magnetic moments, shown
in Table 11,

TABLE 11

Octet magnetic moments in units of ux and proton spin content.

# I dev AX
P n A >+ B =0 ="

1 265 -1.73 -0.83 280 -1.10 -1.75 -0.89 0.73 0.17

2 2.80 -1.77 -0.90 298 -1.12 -1.86 -0.99 0.93 0.34

3 254 -1.72 -0.75 264 -1.13 -1.65 -0.79 0.58 0.04

4 2.49 -1.57 -0.77 265 -1.02 -1.62 -0.88 0.69 0.14

) 2.87 -1.98 -0.88 3.01 -1.24 -1.90 -0.89 0.93 0.17

6 233 -1.76 -0.78 242 -097 -165 -0.65 0.68 0.58
exp 279 -191 -0.61 246 -1.16 -1.25 -0.65 0.27+0.13

and, indeed, the spin content is also within the range of the acceptable (last
column in Table IT). In the following, we shall make use of the lagrangian of

Eq. (2) — note that in the SU(2) case the two terms Lg; and Lg 2 become
equivalent — along with the further attractive term

Lis = é-}; [ir (U auUf)r, (4)

where v is a new phenomenological parameter. This expression introduces
terms with four time derivatives into the lagrangian, thus confusing the
usual quantization procedures. It also tends to destabilize the skyrmion if
7 is taken large enough so as to overwhelm the other, repulsive terms Ly,
Le,1, or Lg . We thus entertain the expression of Eq. (4) here reluctantly as
perhaps having some limited phenomenological purpose. For the discussion
of NN forces they are of some interest as possible sources of additional
central attraction. In the context of single-nucleon uses of the skyrmion,
they serve to stress the peculiar property of the skyrmion that it has a leg
in each of two camps as it were: on the one hand, the Skyrme lagrangian
is originally defined in terms of meson fields, and on the other it applies to
baryons through the topological aspect of the skyrmion solution. Thus one
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can extract [27] from 77 scattering data definite values for the parameters
in the lagrangian Lo + L4 + L4s. Taking F. = 186 MeV, one arrives at
v = 0.16 £ 0.04 and e = 5 + 2, from which one can “predict” a nucleon
mass My = 880+ 300 MeV, where the error noted is that arising only from
uncertainties in the 77 data.

Before proceeding to a discussion of two-nucleon systems, is worthwhile
to make explicit certain ambiguities that are bound to accompany almost any
discussion of applications of skyrmions to baryons: At the level of SU(3), it
proves necessary to make a large subtraction (~ 500 to 1000 MeV) of a state
with the quantum numbers of the vacuum [19], so that in effect one is looking
at mass splittings rather than at absolute positions. In a somewhat different
approach [28], the need for an even larger subtraction is justified in terms
of ambiguities in operator ordering within the lagrangian that can express
themselves as a large constant term in the energy. And of course there is
the question of the skyrmion Casimir energy, which is estimated [26,29] to
be quite large (~ 1000 MeV, again with large uncertainties). Thus there
seems to be no possible hard and fast rule for fixing skyrmion parameters.
In practice one is more or less limited to using a mixture of criteria based
on masses and observables. The extreme cases that are weighted strongly in
one direction or the other can then be seen as a measure of the inaccuracy
of the overall approach.

3. Skyrmions for the NN system with the product ansatz

In order to set sensible goals for the skyrmion as applied to two-nucleon
systems, it is important to keep in mind the advantages and the intrinsic
limitations of the skyrmion approach as well as the overall expectations for
our understanding of the nature of the nucleon—nucleon force. As we have
noted, the skyrmion is not expected to be reliable at a level much better than
30 percent, which certainly rules it out as a method for precision calculation
of NN potentials for confrontation with experimental data. This restriction
is made more acute by two further concerns: The skyrmion is basically
directed at the energy scale of baryons, say 1000 MeV, whereas the NN
force involves features that are typically one to two orders of magnitude
smaller in energy and thus may well arise from differences between much
larger energy quantities, resulting in a loss of precision in the calculation.
In addition, the skyrmion is a low-energy theory; it involves an expansion in
derivatives, or momenta, along the lines of that used in chiral perturbation
theory; short-range features of the nucleon—-nucleon interaction will surely
not be well represented by it.



Skyrmions in Nuclei 2925

Thus in turning to applications of the skyrmion to the NN system we
expect from it insights into the qualitative features of the NN force, and
we therefore wish first to sketch the kinds of NN issues that should be
addressed with it. For many years studies of the N N force have been based
on a picture of meson exchanges [30,31], which in more modern versions [32]
also incorporates notions of chiral dynamics. The most solidly based aspect
of meson exchange in the nucleon-nucleon force is of course that of one-
pion exchange (OPE). As the lightest of the mesons, the pion dominates
the long-range aspect of the NN potential and its role is easily verified in
high-energy peripheral NN collisions. This is the feature that the skyrmion
handles easily. Since the description of the pion as a Goldstone boson in
QCD is complicated, it is advantageous to be able to isolate it before going
on to other meson exchanges.

One-pion exchange is the major effect in deuteron binding but plays
only a small role in heavier nuclei because its effects involve both spin and
isospin variables which are quenched in nuclear systems with B > 4. There
the crucial ingredients are the interplay between central attraction at inter-
mediate NN separation distances and short-range repulsion. In early times,
the former was thought to be provided by the exchange of a scalar o meson,
but when such a particle failed to turn up in experiment in the mass region
(about 500 to 600 MeV) required to deal with intermediate ranges (~ 2
fm), a largely successful interpretation was developed in terms of two-pion
exchange with intermediate states involving As. Short-range repulsion in
the NN system was attributed to w-meson exchange. This approach to the
NN force based on two-pion exchange for attraction and omega-exchange
for repulsion may well survive as supplying major ingredients for our un-
derstanding of that force, but it also seems likely that both pieces of the
picture will be supplemented in an important degree by quark dynamics.
Indeed it would be hard to understand how quark degrees of freedom could
fail to enter in some measture at nuclear separation distances of 2 fm or less,
where the individual nucleons are beginning to have sizable spatial overlap.
In fact in the nonrelativistic quark model a significant source of NN central
attraction at intermediate ranges has been found [33] in the form of mutual
excitation of the two three-quark clusters that represent the baryons in the
model. Such mechanisms must thus be entertained as possible supplements
to two-pion exchange in producing central attraction. Similarly nonrela-
tivistic quark models suggest [34] auxiliary sources of short-range repulsion
stemming from the action of the color-magnetic force in QCD. This favors
the occupation by quarks of the 2s states whose higher energy produces a
repulsive effect at short ranges.
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Against this background it is important to see what the skyrmion has to
offer by way of descriptions of central attraction and short-range repulsion.
The energies involved in the two-nucleon system at very short distances
exceed by 1000 MeV or more the combined rest-mass energies of the baryons
in these systems, and so are to be interpreted as large repulsion for small
internucleon separations. Thus at the most fundamental level the main
challenge for the skyrmion as applied to two-baryon systems is to offer a
source of central attraction; this is the question that we shall address in
the next sections. Eventually one would hope to study the skyrmion also
for whatever insights it may offer into nucleon behavior in larger nuclear
systems and in nuclear matter, topics to which we turn in Section 6.

3.1. The product ansatz

From the very first stage of the introduction of his topological soliton,
Skyrme was interested [1] in possible applications to the two-nucleon system.
Towards this end he suggested the use of the product ansatz, in which the
two-baryon system is represented by a topological field which is the product
of two single-baryon fields,

Up=2(r,R) = Ug=y(r + %R) Ug=1(r — %R), (5)

where 7 is the general skyrmion variable and R is the separation between
the two baryon centers. This ansatz has the virtues that it automatically
fulfills the correct baryon number condition B = 2 and has well-defined
baryon centers by its very construction, in contrast to other approaches we
shall encounter below. It also allows for simple physical interpretation when
applied in the sense of a London-Heitler calculation in B = 2 systems.

[t is crucial for the study of the NN system that we project the product
ansatz onto nucleon states, if for no other reason than that the dynamic
admixture of As is, as noted above, often adduced as an important ingredient
in providing central NN attraction, and thus we must be able to separate
the nucleon from the A in addressing the NN force. This projection is
accomplished by rotating each member of the product ansatz separately
according to

Up=a(r, R) = [AUp=i(r + S R) AT [BUs=1(r - 3R) BY],  (6)

where A and B are the rotation matrices of Section 2.

The product ansatz may now be used [2,3] in a London-Heitler tech-
nique by choosing a separation distance R and calculating the resulting
two-nucleon energy from the lagrangian, taking care to subtract the masses
of the two nucleons (i.e., the energy at separation R — o0). This requires
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the evaluation of integrals over the variable » and averaging over the rota-
tion variables in expectation values formed with the nucleon wave functions
of the rotationally averaged skyrmions. Details are provided in the review
of Ref. [7]. At this level, and using the basic lagrangian of Eq. (1), the
skyrmion yields three components of the NN potential, namely,

V(R) =Vo(R)+ 71 72|01 - 02 Vss(R) + S12 Vi (R)], (7)

where o and T are the Pauli spin and isospin operators and S;5 is the usual
tensor operator Si2 = 3 (01 - 7) (02 - ) — o1 - 3. The three components of
the force of Eq. (7) are the central part Vi (R), the spin—spin part Vsg(R),
and the tensor piece V7 (R). These last two are dominated by OPE, and so
should be well described by the skyrmion, as indeed they prove to be [7]
when compared with phenomenological spin-spin and tensor components
of the NN force. The central potential is highly repulsive in its behavior
for R < 1 fm, and no trace of attraction is found in that component for
1 fm < R < 2 fm, where one knows it must occur from phenomenological
potentials. In some sense it appears that the repulsion introduced through
Ly in Eq. (1) to stabilize the skyrmion spreads beyond the 1 fm range and
overcomes any possible attraction. This occurs because the lagrangian is
governed by two parameters which must account for baryon masses on the
scale of 1000 MeV and baryon sizes on the scale of 1 fm. The smooth tail of
the baryon profile then carries sizable repulsion out to the 2 fm range.

3.2. Baryon resonance admixtures

It has long been accepted wisdom [30] that the attraction in the central
NN potential represented by so-called o-exchange in fact arises because of
two-pion exchanges which can simulate the ¢ effects. In the application of
box graphs of two-pion exchange to the construction of the NN potential, at
least one of the intermediate baryon lines refer to excited states and not to
the nucleon itself, because, in the use of the Schrédinger equation to solve the
two-nucleon problem, one includes all iterations of graphs with two-nucleon
lines, so that the construction of the potential itself must omit these in order
to avoid double counting. The physical picture is then that at intermediate
ranges the two-nucleon system is partly an NA or AA system or indeed
some other B = 2 system containing higher excitations of the nucleon. This
suggests that in using the skyrmion for the derivation of the NN potential
one should consider the admixture of NA and AA states [35] into the wave
function,

[¥(R)) = a(R)|NN(R)) + B(R)INA(R)) + v(R)|AA(R)).  (8)
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Here we once again have in mind the use of the London-Heitler technique.
That is to say, the calculation [35] proceeds by fixing the internucleon sep-
aration distance R and then minimizing the system energy with respect to
changes in the admixture coefficients a(R), 8(R), and v(R) at the value of
R in question. For this mechanism to yield appreciable intermediate-range
attraction, it is necessary [36] to treat carefully the action of the tensor
force in admixing spin states. Even then only very weak attraction (~ 2 to
3 MeV) — and that only for extreme skyrmion parameters which tend to
overaccentuate the role of the A — is achieved [36, 37].

The picture in this regard is improved considerably if one entertains
the admixture of the Roper N (1440) resonance by extending Eq. (8) to in-
clude these. The initial motivation to consider this mechanism for central
attraction in the NN force arose [38] from the realization that a similar
device appears importantly in deriving central attraction in the nonrela-
tivistic quark model, where it was found [33] that the internal excitation
of the individual three-quark clusters making up each nucleon had to be
allowed in order to obtain a reasonable result for Vo (R). The description of
the Roper excitation as a vibrational state used here is based on the specific
approach of Ref. [39]. The hedgehog ansatz for the individual baryon is writ-
ten as U\(r) = Up(re )}, where the time-dependent scaling parameter e*(*)
allows for a breathing-mode vibration of the hedgehog. This new ansatz is
then substituted into the skyrmion lagrangian and the time-dependent terms
are analyzed in a harmonic approximation for A together with the rotational
prescription of Section 2.

With reasonable parameters, the extension of Eq. (8) to include the
admixture of these two states then yields about 5 MeV of attraction in
Ve (R), which is a not unreasonable well depth given the fits of modern NV
potentials such as that of Paris [40] or of Argonne [41] with well depths of 5 to
20 MeV. Furthermore, it has been noted by several authors that one should
make at least a minimal, algebraic correction for working with V. — oo in
the skyrmion approach [2,42-45]. The correction in question acts to increase
somewhat the central NN attraction found with the skyrmion, increasing it
by a factor of ((N, +2)/N.)* = 25/9.

There is also a certain satisfaction in the fact that the skyrmion and
the nonrelativistic quark model find that the same basic feature yields at-
traction, namely, the internal excitation of cach baryon participating in the
interaction between the two. This qualitative feature drives home the in-
trinsic subtlety of the origins of central attraction in two-baryon systems. It
also hints at a finding of the exact skyrmion calculations (Section 5): there
too the departure of the skyrmion at short internucleon separations from its
structure at B — oc is what yields attraction, so that at least at a qualitative
level many of the different approaches may in fact be convergent.
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4. The dilaton

It is well known (see, e.g., [46,47]) that QCD with massless quarks is
scale invariant when treated as a classical theory and loses this property upon
quantization. Accompanying this is the trace anomaly, whereby the trace of
the energy-momentum tensor T#, which vanishes classically, is given after
quantization by

gasGa Gesy = w‘l’ (9)

TL‘; = af»& D;l = fev
where D#(= T*"z,) is the dilatation current, a; is the QCD coupling con-
stant, G, is the gluon field, and ¥ is an order-parameter field -~ the dilaton
— Whl(‘h represents the scalar glueball formed from the contraction of the
two gluon fields. It was early pointed out that an effective lagrangian based
on this scalar field can be used to incorporate the trace anomaly [48], and
the consequences of such an approach for scalar glueballs were studied some
time thereafter [49], along with modifications to the Skyrme lagrangian in
order to incorporate there first the appropriate scale invariance and then the
trace anomaly [50,51]. The physical picture for the skyrmion plus dilaton is
that a kind of bag is formed by the dilaton field such that the skyrmion is
located within a region where the gluon condensate is suppressed. [t answers
for one of the obvious limitations of the skyrmion as it stands alone, namely,
that there is only one length parameter in the basic model, so that there is
no well-defined concept of a “surface thickness” or baryon edge. The sharp-
ening of the baryon surface will help to reduce the problem of a repulsive
force that straggles out too far.

Schechter [48] and later his coworkers [49-51] introduced a lagrangian
for the dilaton field through the consideration of the trace anomaly. If
terms with no more than two time derivatives appear. the most general
form allowed is

: 1 [

L‘-dilaton = £2 dilaton — Vdilaton(‘lfl/’) = %523;;1»”0”#5' - :I b 10{:’; {?] . (10)
where b is a dimensionless constant and A is a constant with dimensions of
energy.

Given the dilaton lagrangian, it is easy to modify [50,51] the basic
Skyrme lagrangian (1) in order to incorporate the trace anomaly. and, in-
deed, Ref. [52] finds some 35 MeV of attraction in the central NN potential
for r ~ 1.8 fm. This was confirmed in later calculations that included also
the spin-orbit force [53]. An example of these results is shown in Fig. 1:
these results are to be multiplied by the factor of 25/9, discussed at the end
of the last section, in order to include 1/N, corrections.



2930 J.M. EISENBERG, G. KALBERMANN

V {MeV]

107r i
1
|

St i
\
i

y T 3 R {fm]

\ R
\ P

5} \__-

10}

Fig. 1. Spin-orbit potential and central potential (dashed line for » > 2 fm) for
skyrmion parameters Fr = 143 MeV and e = 20.0, and dilaton parameters I'g =
61.2 MeV and Cg = (157.3 MeV)?, yielding a glueball mass of 809 MeV. This result
requires the presence of an L¢ 2 term and a dilaton.

5. The exact skyrmion solution for B = 2

Recently solutions of the full B = 2 skyrmion problem in three dimen-
sions (or, exploiting the cylindrical symmetry of the problem, in two di-
mensions) have become increasingly available. The review of Walhout and
Wambach [14] devotes itself in considerable degree to this topic, in which
these authors have themselves been very much involved. Early exact numer-
ical solutions [54-57] for the B = 2 system were obtained by relaxing the
full static equations of motion on a grid within a particular geometry. These
solutions have a toroidal shape, the hole in the middle being, presumably,
the reflection of short-range repulsion. They do not show any residual signs
of the presence of two separate nucleons, which raises the criticism noted by
Manton {58] that this solution does not allow sufficient degrees of freedom
to describe correctly the complete dissolution into two baryons.

Subsequent exact numerical studies were usually based on an assumption
of adiabaticity, whereby one introduces constraints to fix the collective coor-
dinates and solves the static equations of motion. The fixing of coordinates
pertains both to the relative orientation of the skyrmions and to the distance
between their centers. The latter may be determined, say, through Lagrange
multipliers, and various relative orientations between the two skyrmions are
chosen. The solutions {14, 59] then show two separated nucleons which coa-
lesce at about 1.2 fm for the maximally attractive relative orientation of the
skyrmions, and then meld into a toroid below that “separation” distance.
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Central attraction may be found [60-62] in this approach when N A, AN,
and AA states are admixed, along the lines discussed in Subsection 3.2 in the
context of the product ansatz. Attraction is also augmented by incorporat-
ing [63] the dilaton, in which case the “bags” provided by the dilaton merge
at about 1.4 fm, and an attractive central component on the scale of 20 MeV
is found. This is further enhanced by again considering the admixture of
states containing As.

The ability to carry out these difficult calculations is encouraging, and
the results provide our current best understanding regarding the mechanism
of central attraction in two-nucleon interactions in the skyrmion approach.
They also lead to a reliable assessment as to which ingredients are essential
to obtain central attraction: the admixture of excited states of the nucleon
and, possibly, the dilaton device (see, however, Ref. [64]). The connections
with others approaches should be pursued further in the hope of eventually
constructing a model simple enough for application in more complex nuclear
situations.

Quite recently Leese, Manton, and Schroers [65] have produced a skyrmion
solution for the deuteron carried out on a ten-dimensional manifold which
yields properties close to those of the physical deuteron. It should be empha-
sized that this is the first case of a realistic representation of the deuteron
within the skyrmion approach. The NN system should ideally be calcu-
lated on a twelve-dimensional manifold in order to include full freedom for
the locations of the two skyrmions and for their SU(2) orientations. This cal-
culation still proves prohibitively difficult, however, and so Ref. [65] uses the
lowest-dimensional manifold that still includes both a toroidal configuration
of minimal energy and configurations that approximate the infinite separa-
tion of two skyrmions oriented in the maximally attractive relative direction
in SU(2). To perform the calculation, an instanton assumption is again made
and the maximally attractive orientation — rotation by 7 about the axis per-
pendicular to the line joining the skyrmions — is taken. The geometry that
underlies the instanton is somewhat complicated in order to accommodate
the limiting toroidal and separated configurations. The technical aspect of
the calculation then involves evaluating the lagrangian after restricting to
that geometry, and generating the hamiltonian with first-quantized collec-
tive degrees of freedom. Numerical values for deuteron properties in this
approach and in that of Ref. [57] are shown in Table IlI, from which it is
seen that results from the ten-dimensional manifold Mg are far closer to
those of experiment than are the ones arising [57] from an eight-dimensional
one Mg, because the larger dimensionality is necessary in order to allow the
skyrmions to sample a space that allows also for genuine separation of the
two nucleon centers.
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TABLE Iii

Deuteron properties. Here M) refers to a ten-dimensional manifold and My to
an eight-dimensional one; €p is the deuteron binding energy, 7. is the charge radius,
@ is the quadrupole moment, and g the magnetic moment. (From Ref. [65].)

Property Mo (Ref. [65]) Mg (Ref. [57]) Experiment

ep [MeV] ~6.18 158 ~2.225

re [fm] 2.18 0.92 2.095
Q [fm?] 0.83 0.082 0.2859
i [n.m. 0.55 0.74 0.8574

6. The nucleon in the nucleus

In this section we wish briefly to hint at possible applications of skyrmions
to problems of a baryon in a medium which are beginning to become acces-
sible now that the two-baryon problem is more or less under control. The
cases noted all relate to problems of active interest in nuclear physics at
large. (We do not here address problems involving skyrmion at nonzero
temperatures which are of relevance to the study of hot hadronic matter
and of the quark-gluon plasma.)

6.1. Color transparency

There has been great interest in recent years (reviewed, e.g., in Ref. [66])
in studying the phenomenon of color transparency, in which a nucleon is
ejected from the nucleus with very high momentum transfer and experiences
little final-state interaction as it exits: The high momentum transfer catches
the nucleon in a small configuration, and, because the color charges of a
small QCD object partially neutralize each other, the nucleon emerges while
interacting weakly with the other nucleons. Thus color dynamics makes the
nucleus transparent to the “small” nucleon (referred to here as a minusculon
m). The crucial QCD ingredient in this process is precisely the mutual color
neutralization, and thus it is of interest to examine this in QCD-based mod-
els. The skyrmion allows one to study this [67] by artificially shrinking the
skyrmion and examining the consequent mN potential and total mN cross
section. The shrinking is accomplished by using the scaling of Eq. (1) and
taking values for the minusculon such that its inverse size parameter (L),
becomes large. The ratio of minusculon size to the size of a normal nucleon
is then @ = r,,,/ry = eFr/(eF;),. The result of the skyrmion calculation
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using the product ansatz is that the central potential tends to zero more or
less linearly with z for < 0.3. On the other hand, the range of the potential
tends to fall very gradually until z ~ 0.05 and then plunges rapidly to zero.
The total NN cross section, in a rough high-energy approximation, falls
linearly to zero as z drops from unity to zero, showing quadratic behavior
only when z is below 0.3.

6.2. Nucleon shrinking and swelling

There has been intense interest over the years [68-74] in a basic ques-
tion of nucleon behavior in nuclei: Does the nucleon shrink or swell when
placed in the nuclear medium? A related question is, Does the nucleon
shrink or swell when in interaction with a second nucleon? Of course, if
the skyrmion is used with the simple product ansatz the nucleon will surely

rh

R {tm]

0.98 1+

V [MeV]

400+

200+

i + R {tm]
20+ H 3

Fig. 2. The NN potential and ratio of the radius for the interacting nucleon to that
of the free nucleon r/ry for the usual skyrmion with product ansatz and baryon-
resonance admixtures. The parameters are taken to have the values F, = 130 MeV,
e =20, vy =050, ¢g2 = 2.58, and m, = 139 MeV, yielding the masses My = 998
MeV, M4 = 1211 MeV, and My. = 1270 MeV for the nucleon, A, and Roper.
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shrink in a two-nucleon system, since we have already seen that this simple
prescription leads to repulsion. However, when mechanisms for attraction
are present, such as the admixture of higher baryon resonances (Subsection
3.2) or the inclusion of a dilaton interaction (Subsection 4), this situation
changes, and one would expect a slight swelling for nucleons separated by 2
to 3 fm, followed by shrinking as they are brought closer together. This is
indeed what is found in detailed calculation [75], as can be seen in Fig. 2.
The swelling effect is on the scale of 3 or 4 percent, which may be sufficient
to explain present EMC results [76]; below about 1.5 fm the nucleons act to
reduce each other’s size. Such effects should show up as changes in the form
factor of the nucleon within the nucleus for different ranges of momentum
within the Fermi sea, and one may hope to see such effects in high-energy
electron scattering, for example at CEBAF.

7. Summary

The first decade of studies of the two-baryon system with skyrmions
has yielded an understanding of several different mechanisms that may con-
tribute to central attraction and to the attractive isoscalar spin-orbit force.
Those which appear to be of lasting relevance are the admixture of nucleon
resonance states, especially the A(1232) and the N(1440), and the pres-
ence of the dilaton. In all likelihood, several candidates for this mechanism
may enter together. This strengthens the one overarching conclusion to be
reached from QCD-related studies of the NN interaction so far, namely,
that central attraction — however crucial it may be for nuclei to exist as we
know them — is the result of an extremely subtle play of QCD effects.
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