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The evidence from lattice that colour is confined by dual superconduc-
tivity of QCD vacuum is reviewed. Open problems are discussed.
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1. Introduction

Most of the evidence that QCD is the correct theory of strong interactions
comes from short distances via perturbation theory [1]. It is commonly ac-
cepted that in such regime perturbative expansion works, due to asymptotic
freedom. It is known, however, that the renormalized perturbative series of
QCD is not convergent, and cannot even be regarded as an asymptotic series
because of bad infrared behaviour.

At large distances the elementary excitations of the theory, quarks and
gluons, never appear as particles: only colour singlets are visible in asymp-
totic states, a phenomenon known as “colour confinement”.

A non perturbative formulation of the theory is needed, i.e. an evalua-
tion of the Feynman path integral which defines it, which does not rely on
expansions around the free gaussian action.

The only known way to do that is the lattice formulation [2]. The Feyn-
man integral is UV regularized by a discretization of space-time, and IR
by periodic boundary conditions on a finite volume, and then computed by
numerical Monte Carlo techniques.

Of course numerical results never have the transparency of mathematical
arguments. They can, however, be used either as a direct test of the theory
or to explore the way in which the theory works.

* Presented at the XXXVII Cracow School of Theoretical Physics, Zakopane, Poland,
May 30-June 10, 1997.
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We shall investigate by use of lattice simulations the mechanism by which
colour is confined. More precisely we shall test the mechanism of colour
confinement known as “type Il dual superconductivity” of QCD vacuum.

The basic idea is simple and appealing [3-5]: the chromoelectric field
produced by a ¢ § pair is channeled by dual Meissner effect into an Abrikosov
flux tube, so that the energy F is proportional to the distance R

EF=0R,

o is the string tension.

“Dual” means that the role of electric and magnetic quantities is inter-
changed with respect to ordinary superconductors.

Ordinary superconductivity is produced by the condensation in the
ground state of charged particles (Cooper pairs). The ground state has
no definite charge: it is superposition of states with different charges. This
results in a non zero expectation value for the charged field @ describing
Cooper pairs in the Ginzburg-Landau equation

& = (0]2[0) # 0, 1)

@ is the order parameter which signals the change of symmetry of the sys-
tem in the transition to superconductivity. @ # 0 characterizes a Higgs
phenomenon. The photon acquires a mass,

m = v2¢d (2)

which results in a finite penetration depth of the magnetic field (Meissner
effect): A, = 1/m. The correlation function

D(z) = (&'(2)2(0)) = AeMF |97 (3)

|&]—o0

at large distances determines the correlation length Ag = 1/M and the order
parameter |®|.

If Ap > Ag, t.e. if M > m, the superconductor is type II, and the
formation of Abrikosov flux tubes is energetically favoured in the process of
penetrating the system by a magnetic field [6].

In a dual superconductor the electric field acquires a finite penetration
depth 1/mp) and magnetic U(1) is spontaneously broken by condensation
of magnetic charges (monopoles) in the vacuum.

The v.e.v. of a field @y carrying magnetic charge, u = |Ppr| will be the
“disorder parameter” of the system, and the correlation function

Dp(z) = (B}, (2)®ar(0)) = AemMalFl 4 )2 (4)
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at large distances will provide the mass of the Higgs field Mg and the disorder
parameter p. The ratio Mg /mpp determines the type of dual superconduc-
tor.

The name “disorder parameter” originates from the concept of duality [6]:
going to the dual the coupling constant goes to its inverse (magnetic charge
M = n/2re) or, in the language of statistical mechanics, the role of the low
temperature (ordered) phase, is interchanged with the higher temperature
(disordered) phase [7,8].

If the mechanism of colour confinement at work in QCD is dual supercon-
ductivity, monopoles should condense in the confined phase, and the v.e.v.
®)r of a magnetically charged field $5s should be the disorder parameter.
with @ # 0 in the confining phase and ®3; = 0 in the deconfined one.

Measuring Daq(z) at large distances (Eq. (4)) gives both the disorder
parameter p and the effective mass Mg. The photon mass mpy can be
determined from the penetration depth of the chromoelectric field, and the
type of dual superconductivity can be established.

The problem with QCD is to identify the monopoles which condense
in the vacuum, if any, and to verify that their condensation is related to
confinement of colour.

Monopole species in non abelian gauge theories are identified by lo-
cal fields @ transforming in the adjoint representation of gauge group, or
& =35, P* X%, where A* are the generators of the group in the fundamental
representation (see Sec. 3).

Such monopoles are located in field configurations at the sites where two
eigenvalues of @ coincide. For SU(2) this means the sites were ¢ = 0.

Infinitely many candidates exist, actually a functional infinity, for the
monopole species which can produce dual superconductivity by condensa-
tionn. What monopoles are really relevant to confinement, or, equivalently,
what field ¢ identifies them, is a dynamical problem. A sensible guess is
that pratically all choices for & are equivalent ('t Hooft) [12].

Monopoles defined by a given field @ are exposed by a gauge transfor-
mation, which diagonalizes ¢. Sometimes the statement is made that QCD
monopoles are gauge dependent objects, thus implying that phenomena re-
lated to them, like their condensation, could depend on the arbitrariness in
the choice of the gauge and be unphysical. This is not true. Monopoles
defined by some field &, could be more relevant to confinement than some
other ones. This is a dynamical fact. The resulting physics is anyhow gauge
independent.

The strategy that we shall adopt to investigate these issues will be to
construct a disorder parameter for condensation of the monopoles defined by
any field @, and to use it to detect (numerically) condensation in connection
with confinement [10, 13].
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We anticipate that there is an evidence of dual superconductivity for
monopoles defined by different fields &, namely the Polyakov line, any com-
ponent of the field strength tensor, or the so called maximal abelian projec-
tion.

In Sec. 2 we shall rapidly review the construction of the disorder param-
eter for dual superconductivity and the information that it can provide.

In Sec. 3 we shall revisit the so called abelian projection, i.e. the proce-
dure to expose the monopoles associated to any field @.

The conclusions and the outlook will be presented in Sec. 4.

2. The disorder parameter

The basic idea to construct an operator which creates a monopole, or,
more generally, a soliton with nontrivial topological charge, is translation.
In the same way as, for a particle,

e |z) = |2 +a)

—_
(2]
~

for a field @
ot [ ELME00AT=D |p(F 1)) = | (T, 1) + Par(F — ) (6)

Here |®(%,t)) is the state of the field in the Schrédinger representation, and
Il is the conjugate momentum to the field . @, (7 — ) is the classical
field of the soliton located at the site i in the point &

The effect of the operator

p3.0) = expli [ e lTa(7.00a(E - ) (7)

is to add a soliton to any field configuration.

For compact U(1) the field ¢ is the vector potential A’(f’, t), the conjugate
momentum is the electric field [T(Z,t) = E(&,t) and the & is the field
produced at ¥ by a monopole located in .

We shall compute the correlator
D(t) = (fi(0,1) 1(0,0)) (8)

which propagates from time 0 to time ¢ a monopole sitting at the origin 0
of space.
As t — oo, in the euclidean region by cluster property

D(t) ~ Aexp(—Mt) + (u)?, (9)
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where M is the lowest mass in the sector with quantum numbers of a
monopole.

Since the operator u carries monopole charge, (u) # 0 in Eq. (9) signals
spontaneous breaking of magnetic charge conservation, and hence dual su-
perconductivity. M provides instead a lower limit to the mass of the effective
dual Higgs field, and hence information on the type of superconductor, as
discussed in Sec. 1.

Instead of the continuum version of Eq. (7) for i, we use a compactified
lattice version of it [11] which coincides with (7) in the limit a — 0.

The corresponding definition of D(t) is

Z[S + AS]

D(t) = 75 (10)

Z[S] is the partition function [[]d8 exp(—/3S) with S the action.
The action is a functional of the plaquettes

M (n) = U, (n)U,(n + @)Ul (n + YU (n)

U,(n) = exp(i6,(n)) being the parallel transport along the link of the lattice
exiting from site n in direction f.
The group U(1) being abelian

11, = exp(if,,(n)) (11)
with
0,,(n) =0, (n)+6,(n+j1)—0,(n—0)—8,(n) ~ea®F, .
S + AS is obtained from S by the replacements

6°(71,0) — (7, 0) + bi(7) , (12)
g0 (7, t) — 07031, t) — bi(7D), (13)

b;(7) is the vector potential which describes the field produced by a monopole
sitting at 0.
Whatever form of the action as the lattice spacing ¢ — 0

(l,2

S = = FuFu (14)

and

2 3
S+AS o —%—F‘WF;,,, n “? S [Fos(i8, 0)bi(7) — Foilid, )0:()]  (15)

-

n
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which brings back to Eq. (7).
On the other hand

Z[S+AS]:/[H:’ 48, (n )e\cp{ B(S+AS)} (16)

27
n.u

is invariant under change of variables 8, (n) — 6,(n) + A, (n) with arbitrary
4,, because of compactness.
A change of variable

0;(7,1) — 0;(77, 1) + b;(7)
brings back
07 (2, 0) + by(77) = 6°(7i + 1,0) — 8°(7, 0) + 6*(7, 0) — 6°(7, 1) + b; ()
to 6 but changes 69 (7, 1)
69 (77, 1) — 69 (7, 1) + Asb; — Ajb;
i.e. adds the field of a monopole at time ng = 1, and
g0, 1) — 6°°(1, 1) + b;(7) .

Again changing variables from 6;(7, 2) — 8; (7, 2) +b;(77) sends back °°(
+ b; to 6°°(ii, 1) but adds a monopole at ny = 2 and shifts 6°9(, 2
00 (i, 2) + by (7).

The game can be repeated till ng = t where b; will cancel with —b; of
Eq. (13).

The net effect of the construction is to add a monopole field A;b; — A;b;
at all times between 0 and ¢. The independence of D(t) on the choice of the
classical gauge for b; is explicit.

U(1) system is known to be a dual superconductor confining electric
charges below 3. = 1.01 (Wilson’s action). (x) can be computed numerically
and checked as a disorder parameter for monopole condensation [11]: in the
limit of infinite volume one should have

() #0 B<B.  and  (u)=0 B> f. (17)

i, 1)
) —

To access the limit V — oo it proves convenient to deal not with (u)
itself, or D(¢) but with

plt) = Jdglnv( ). (18)
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In terms of p
B

D(t) = exp /p(t)dt

0

From definition of D(t) it follows

p(t) = (S)s — (S+ AS)s+as,

3001

(19)

(20)

where, with obvious notation, the average of the quantity in the brackets is

computed with the action in the subscript as weight.
At large ¢t from Eq. (9)

plt) = Cexp(~M?t) + poc

with po = 2(—1% In{u).

Fig. 1 shows a typical behaviour of p(t). p. is shown in Fig. 2.
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Fig. 1. p(t) as a function of ¢ (lattice 83 x 16).
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Fig. 2. poo as a function of 3. The negative peak signals the phase transition

(lattice 8% x 16).
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For 3 > 4. the theory describes free photons, the path integral is gaussian
and po, can be computed explicitely. The result for a lattice L3 x 2L is

poc = —10.1- L + 9.542 (22)

showing that p.. = —oc or, by Eq. (19). & — 0 for 3 > 3..

As L — oo, p — finite limit for 8 < 3., (Fig. 3), or () # 0. (u) is a
disorder parameter for the system in the thermodynamical limit. Indeed for
any finite volume (u) cannot be identically zero for 8 > 3., since it would
be zero everywhere being an analytic function of 3. Only when L — o Lee
Yang singularities can develop.

20.0 v —

10.0

0.0 ~
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o

0.058 0.10 0.18 0.20
1L

Fig. 3. peo versus 1/L for 4 = 1.009.

Around J. a finite size scaling analysis can be made of p. The transition
is known to be weak first order, or second order: in any case an effective
critical index v can be defined. For dimensional reasons, if ¢ is the correlation

length
§ a ; N
- _— >~ S B 23
p=ulreg) = 10 (23)

but £/L can be traded for (3. — 8)L'/* and the scaling law follows

Lf/v = f(LY¥ (3. - 3)). (24)

For the proper values of . and v data coming from lattices of different size

L should follow the scaling law (24). This is indeed what happens (Fig. 4).

8¢ and v can be extracted and compared with values obtained by completely
different approaches. We get

3. = 1.01160(5) v =.29(2) {25)

As B— B pu~(B.-p8)° d=11+.2 (26)

3 is in agreement with the commonly accepted value.
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Fig. 4. Scaling.

A measure of the penetration depth of the electric field can also be made.
The superconductor is at the border between type I and IL

As a conclusion we have a reliable disorder parameter for dual supercon-
ductivity, and the possibility of extracting critical indices from its behaviour
at the transition.

A similar construction for the XY model in 3d, which describes super-
fluid liquid Hey is a further test of this statement [14]. We will use it to test
condensation of monopoles in QCD.

3. Revisiting the abelian projection

Let @ - X be any gauge field in the adjoint representation of the gauge
group: X are the generators in the fundamental representation. To simplify
the notation we shall refer to SU(2) in what follows, but the arguments will
apply equally well to any gauge group, with some formal complication. Our
field will then be & - &. with & the Pauli matrices.

Usnally fixed colour axes are used. the same in all points of space-time.
Let &Y (i = 1,2.3) be the corresponding orthonormal unit vectors with

S0, &0 _ 5 S0 A &0 &0 .
& & =04 S NG =& - (27)

el

One can instead use a “body fixed frame”, (BFF) [15]. &(x), again with

§-&=06;, E&rNE=6 (28)
and .
- . &(2) ,
Glr) =) = — (29)
|P(a)]

In general
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The BFF is well defined except at the zeros of 4_5(:1') 5_;(1) being unit vectors

—

aué;(-L) :"3;1(7/)/\62(3/) (51)
or - . oo
D,&(2) = (0, — &, N)&i(z) = (0, — 16, - T)E(z) = 0. (32)

Eq. (32) defines what in geometry is called a parallel transport. 1t follows
from it that -
[D,,D,]&(z)=0 (33)

or, by completeness of & (), (D, D] = ’ff:iw(w) =0, e
Fo(w)=00,3, — 8,8, +3, A3, =0. (34)

The solution of Eq. (31) is then
5_2(:1:) = Pexp (i/d}u(;r) . fdx“) f—? (35)
&

which is independent of the path ', as long as Eq. (34) is valid. By com-
parison with Eq. (30)

R(z) = P exp (i/@(.@) - ffdar“) , (36)
J

In fact Eq. (34) is valid apart from singularities, which can make the connec-
tion non trivial. The singular fields are Dirac strings, with F,, (w) parallel
to &3(z), or B(x), and occur in the sites where & || f_g, or & - & is diagonal.
This can be seen by parametrizing é(z) in terms of polar coordinates with
respect to €2, with &0 polar axis, and computing &, (z). The result is

sin 8(2)0, ¢ ()
Jﬂ(;p)z( —9,8(x) ) (37)
—cosf(2)d,¢(x)

which is singular where ¥ is undefined, i.e. at § = 0, 7. There an abelian
field & - F;,,, = +(0,0, — 0,0,)Using exists, parallel to the field &(z). The
line integral fwgd:z:” around the singulariy is an integer multiple of 27: the
singularity is an abelian Dirac string. Monopoles exist at the sites where ¢
jumps from 0 to 7, or where @(2) is zero.

A gauge transformation R~!(z), Eq. (30,36) will bring 4;(1') along the
third axis evervwhere. This transformation is singular and is called abelian
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projection. As a consequence, when going to the fixed frame the singular
field F,, (w) will add to (7., and the singularities will show up as pointlike
U(1) Dirac monopoles. The U(1) field describing these monopoles is the
abelian part of F,,. Since in the abelian projected frame é*),ﬂ; = 0 apart
from singularities

~ -

D,®=gW,Ad (38)
and

¢ (DD AD,P) =g(W,AW,)b. (39)
It follows that the abelian part of the field is
& GW—g (D dAD,D) (40)

which is nothing but ’t Hooft “electromagnetic field”, and is a gauge invariant
quantity [16].

Monopoles defined by the abelian projection on @ are gauge invariant
objects. i

Of course different choices for ¢ will bring to different definition of
monopoles species.

Monopole are in any case U(1) Dirac monopoles. Their possible conden-
sation in the vacuum is a dynamical fact and reflects the relevance of the
field @ in describing the degrees of freedom responsible for confinement.

If monopoles defined by some field ¢ condense, the electric field corre-
spondig to the U(1) identified by the abelian projection should form Abriko-
sov flux tubes and hence produce confinement. Chromoelectric field in flux
tubes between heavy QQ pairs observed on the lattice should be therefore
oriented parallel to the field @ which identifies the monopoles.

This seems not to be the case, that field looking isotropically distributed
in colour space [17,18]. We will come back to this in Sec. 4.

A number of candidates for the field ¢ identifyng monopoles have been
proposed [12]:

— The Polyakov loop, i.e. the parallel transport along the time axis to
infinity and back to the initial point via periodic boundary conditions.

— The field implicitly defined by maximizing with respect to gauge trans-
formations the quantity

M =Y T {o3Uu(njastf(n)} . (41)

FiN )

The change U, (n) — 2(n)U, 21 (n+p) is performed and 2(n) is chosen
in such a way that M is maximum.
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-— Any component G, of the field strength tensor.

Of course there is a functional infinity of possible choices: on the lattice
any parallel transport coming back to the starting point is a candidate. The
guess of 't Hooft is that all possibilities are physically equivalent [12].

There are claims that the choice corresponding to the maximal abelian
gauge is better than others. The basis for this being that the correspond-
ing abelian field is a large fraction of the total field (abelian dominance)
and in addition the part do to monopoles almost saturates the abelian field
(monopole dominance) [19].

Our strategy is to use the disorder parameter defined to describe U(1)
monopoles for different fields @ to detect dual superconductivity.

Preliminary evidence is in favour of 't Hooft’s idea that all species of
monopoles are physically equivalent [13]. Fig. 5 and Fig. 6 show the be-

haviour of the disorder parameter for SU(2) and SU(3), with @ the Polyakov
line.
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Fig. 5. p v.s. 3 SU(2) gauge theory (lattice 127 x 4).

Our program is to perform a careful finite size scaling analysis to deter-

mine the deconfining temperature and the critical indices of the deconfining
phase transition [13].

4. Conclusion and outlook

The mechanism of colour confinement in dual superconductivity of vac-
uum is supported by many numerical experiments on lattice.
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Fig. 6. p v.s. B SU(3) gauge theory (lattice 12° x 4).

1. Flux tubes are observed between propagating heavy quarks [18.20].

2. Analysis in terms of a disorder parameter does show that a dual Higgs
phenomenon takes place at the deconfinig transition [10. 13]. A more
systematic analysis in this direction is on the way.

However
(1) Monopole species are defined by any field @ in the adjoint represen-
tation and infinitely many choices are possible. The question whether
some of them are better than others to produce confinement is an open
question.

(i1) Maybe a more clever way exists to describe non abelian dual super-
conductivity, which could look like ordinary dual superconductivity for
different species of monopoles defined by an abelian projections. and
explain the observed colour content of flux tubes [17.18].

In conclusion more work is needed to understand confinement.
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