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We apply lattice methods to the physics of quark confinement. We
exploit the close correspondence between the confinement of color flux and
vortices in superconductivity.
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1. Introduection

In these lectures I would like to describe the lattice approach to the study
of quark confinement. These techniques have opened up investigations of the
seminal ideas that were proposed long ago by Nielsen and Olesen [1], Kogut
and Susskind [2], Nambu [3], Parisi [4], Mandelstam [5] and 't Hooft [6].

A lattice simulation showing a linearly rising static quark potential gives
ample evidence that quarks are confined [7, 8]. But a global calculation
such as this can not reveal whether there is a simple underlying mechanism
governing the physics of confinement.

Calculations of the distribution of energy and action density surround-
ing a quark-antiquark pair have shown that these densities are enhanced
between quarks forming a string as the linear potential implies [9, 8]. This
is a calculation of local properties which begins to reveal details of the con-
finement configurations.

The present effort attempts to go a step further by looking at local rela-
tionships among field strengths and currents pointing toward the existence
of an effective theory of confinement.

Abrikosov vortices in type II superconductors are an example of a con-
figuration with confined flux. In Sec. 2 T will place this in the context of
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particle physics and show how one can verify these properties using lattice
simulations. In Sec. 3 T would like to describe the generalization to non-
Abelian theories based on the notion of an Abelian projection {10, 11} after
a partial gauge fixing that preserves a U(1) invariance. In Sec. 4 I report
on recent work by DiCecio, Hart and myself {12] in which we use an Ehren-
fest theorem to tighten up the definitions of field strengths and currents on
the lattice in an Abelian projected theory, which has been lacking in earlier
work.

2. U(1) gauge theories and superconductivity

The onset of superconductivity is governed by the spontaneous breaking
of the U(1) gauge symmetry via a non-zero vacuum expectation value of
a charged field [13]. An immediate consequence of this is the generation
of a photon mass and, for type Il superconductors, the formation of vor-
tices which confine magnetic flux to narrow tubes [14] as revealed by the
Ginzburg-Landau effective theory. Lattice studies of dual superconductiv-
ity in SU(N) gauge theories seek to exploit this connection in establishing
the underlying principle governing color confinement [15].

On a four dimensional lattice, the effective Euclidean lattice Higgs theory
is the appropriate generalization of the Ginzburg-Landau effective theory.
The Higgs field is a 0-form living on the sites and the gauge field is a 1-form
living on the links. Classical solutions to this theory exhibit the connection
between the non-zero vacuum expectation value of the Higgs field and vortex
formation.

In U(1) lattice pure gauge theory (no Higgs field), this same connection
is seen to be present, not in the defining variables, but rather in the dual
variables. More specifically:

1. A field with non-zero magnetic monopole charge, ¢, has been construc-
ted [16]. It is a composite 4-form living on hypercubes constructed
from gauge fields. There are also monopole current 3-forms.

On the dual lattice this monopole operator is a 0-form living on dual
sites. The monopole currents are 1-forms living on dual links. These
currents either form closed loops or end at monopole operators.

The monopole operator has a non-zero vacuum expectation value in
the dual superconducting phase, (@) # 0, thereby signaling the spon-
taneous breaking of the U(1) gauge symmetry.

2. Dual Abrikosov vortices have been seen in simulations [17]. They are
identified by the signature relationship between the electric field and
the curl of the monopole current in the transverse profile of the vor-
tex. The dual coherence length, §; measures the characteristic dis-
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tance from a dual-normal-superconducting boundary over which the
dual-superconductivity turns on. The dual London penetration length,
Aq measures the attenuation length of an external field penetrating the
cdnal-superconductor. The dual photon mass ~ 1/A; and the dual Higgs
mass ~ 1/&,.

A signal (@) # 0 without the consequent signal of a dual photon mass
does not imply confinement. An observation of a dual photon mass, i.e.
vortex formation, without (@) # 0 does not reveal the underlying principle
governing the phenomenon.

2.1. Huygs effective theory

The Higgs theory, treated as an effective theory, i.e. limited to classical
solutions, and considered in the dual sense, provides a model for interpret-
ing simulations of the pure gauge theory that can reveal these important
connections. Recalling the Higgs’ current

e . . . ; . o -~
Jp=— 5 (¢" (0, —ieA,) 0 — 0 (dy + ted),) 07). (1)

and spontaneous gauge symmetry breaking through a constraint Higgs po-
tential

tew(x)

6 = ve v = constant, (2)

leads to the London theory of a type II superconductor. Using Eqns.(1) and
{2) we obtain

J, = —e2p? (4, — dw) ,

(Oudy = 0,J,) +m? (0., — 0,J,) =0,

1
VxJ+FB:O, (3)
where
v = m?y =

= ﬁ .
Using Ampere’s law V x B = J. we obtain

B
2 i
VB = 4,

identifying A as the London penetration depth.
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If the manifold is multiply connected, then the gauge term in Eq. (3)
can contribute, as long as ew(x) is periodic, with period 27 on paths that
surround a hole.

/(B+A2V x J)-nda = f(AJr,\?J) Ll
C

S
= Vw-dl,
c
2
= /\'_.61 - Arem = ¢m

where N quanta of magnetic flux penetrates the hole in the manifold. In
real superconductors, the hole is a consequence of the large magnetic field
at the center which drives the material normal.

A cylindrically symmetric vortex solution is given by

B+ MV xJ = &,8(r )n,,
(1= A2V2)B.(ry) = ®,6%(ry),
)
B:(Tl) = Z{%I\’O(T‘i/A) .

The delta function core of this vortex is normal, i.e. no spontaneous symme-
try breaking, and the exponential tail of the vortex is a penetration depth
effect at the superconducting-normal boundary. The key point is that the
modulus of the Higgs field must be independent of position to get these ide-
alized vortices. For a “Mexican hat” Higgs potential, there is a coherence
length setting the length scale from a normal-superconducting boundary
over which the vacuum expectation value of the Higgs field changes from
zero to its asymptotic value.

On the lattice, the same phenomenon occurs but there is more. We can
generate vortices from finite configurations. In the continuum these objects
are singular. Since the lattice formulation is based on group elements, rather
than the Lie algebra the periodic behavior of the compact manifold is man-
ifest. This gives the 2r N ambiquity in the group angle leading to N units
of quantized flux. To see how this works, consider the lattice Higgs action

S = ﬂ Z (J — CO0S oyu(l))

T >

—K Z((ﬁx(l’)fie”(a\)O(l' -+ ,U) + HC) + Z "rHiggs(]@(I)[?) :

xT,u
where 8, (z) is the curl of the gauge field,

0111/(1') = AZ‘GU(Q’) - Aj_eu(m) ’
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and where ¢(z) is the Higgs field and ¢(z + ) refers to the Higgs field at the
neighboring site in the u direction and A} is the forward difference operator.
The electric current is given by

a® e * 10,(x)

L J(@) = Im (¢ (@)e“ O g(a + ),

ek *

where a is the lattice spacing. Let us choose a Higgs potential that constrains

the Higgs field |¢(z)] = 1. Then if
sin[f + 2Nn| ~ @,
we find a relation between the field strength tensor and the curl of the current

Fo = F @ (AfJ5(@) - ATJA(z)) _2nN 1 Ve, L
. : e?k a e a2 a?’

where
ea’F,, = sin[8,(z) +6,(z +p) — 0,(z +v) — 0,(z)].

If N = 0 then this is a London relation which implies a Meissner effect.
For N # 0 there are N units of quantized flux penetrating that plaquette,
indicating the presence of an Abrikosov vortex.

2.2. Pure U(1) gauge theory

In a pure U(1) lattice gauge simulation (without Higgs field), lattice av-
erages over many configurations exhibit superconductivity in the dual vari-
ables. The superconducting current carriers are monopoles. They can be
defined in a natural way on the lattice using the DeGrand Toussaint [18]
construction. They arise in non-singular configurations again because of the
2r N ambiguity in group elements. These are the magnetic charge carriers
for dual superconductivity. For a review of the monopole construction and
vortex operators in U(1) gauge theory see e.g. the 1995 Varenna Proceedings
[14].

As a brief summary, consider the unit 3-volume on the lattice at fixed
z4. The link angle is compact, —7 < 6, < w. The plaquette angle is also
compact, —4r < 0, < 47 and defined

ea2F,“,(:c) =40, (x) = A:H,,(:c) - Ajﬂﬂ(x) ,

where a is the lattice spacing. This measures the electromagnetic flux
through the face. Consider a configuration in which the absolute value of the
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link angles, |6, |, making up the cube are all small compared to 7/4. Gauss’
theorem applied to this cube then clearly gives zero total flux. Because of
the 2x periodicity of the action we decompose the plaquette angle into two
parts

0,,(2) =8,,(x) +27n,,(z). ()

where —~7 < 6, < 7. If the four angles making up one of the six plaquette
are adjusted so that e.g. ,, > 7 then there is a discontinuous change in
6., by —27 and a compensating change in n,,. We can clearly choose the
configuration that leaves the plaquette angles on all the other faces safely
away from a discontinuity. We then define a Dirac string n,,,, passing through
this face (or better a Dirac sheet since the lattice is 4D). 6, measures the
clectromagnetic flux through the face.

This construction gives the following definition of the magnetic monopole
current.

3
LI (@) = o A, (1) (5)
em,
This lives on dual links on the dual lattice. Although Eq. (4) is not gauge
invariant, Eq. (5) is. Further it is a conserved current, satisfying the conser-
vation law AF.J™ (z) = 0.
In simulations of a pure U(1) gauge theory we find that lattice averages
give a relation similar to Eq. (4), but in the dual variables

(A7 (@) = AT ) |
[y o : [ / v .
<'Fl“/>:<['uv>_)‘<zi< p :.\ea—z.

where *F,, is dual of F,,. This is the signal for the detection of dual vortices

114].

3. Non-Abelian theory

The link of these considerations to confinement in non-Abelian gauge
theory is through the Abelian projection [10, 11]. One first fixes the gauge
while preserving U(1) gauge invariance. The non-Abelian gauge fields can
be parametrized in terms of a U(1) gauge field and charged coset fields. The
working hypothesis is that operators constructed from the U(1) gauge field
alone, i.e. Abelian plaquettes, Abelian Wilson loops, Abelian Polyakov lines
and monopole currents, will exhibit the correct large distance correlations
relevant for confinement. But there is as yet no definitive way to choose
the gauge which defines the Abelian projection and lience no unique way to
define Abelian links and coset fields from the SU(2) links.
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Baker, Ball, Zachariasen [19] and co-workers have postulated a dual form
of QCD in the continuum. Their formulation describes a non-Abelian dual
superconductor and hence it confines color. They have calculated flux tubes,
static quark potentials, temperature dependent effects and many other quan-
tities in the tree approximation. Although their formulation does not focus
on monopoles, there is a large potential overlap between their work and the
lattice description developed here.

We are seeking a judicious choice of dynamical variables — defined by
a particular Abelian projection — which can account for confinement via
an effective theory involving these dynamical variables. This should be our
first goal. If this is solved satisfactorily, then we can investigate how the
picture changes if we go to an alternative set of variables — a different
Abelian projection — since the phenomenon we are describing is of course
gauge invariant. We do not expect that the same mechanism would describe
confinement in two different Abelian projections.

There is a very nice illustration of this point in a paper by Chernodub,
Polikarpov and Veselov [20]. They compare two Abelian projections.

e The first is the maximal Abelian gauge [11] which is the most widely
studied and perhaps the most promising candidate. Monopoles are the
magnetic charge carriers of the persistent currents.

e Second they exhibit an Abelian projection in which confinement is due
to objects other than monopoles. They choose the “minimal Abelian
projection” and show that confinement is due to topological objects
which are denoted “minopoles”.

Here we have two projections, two sets of dynamical variables, and two
different descriptions of confinement, both viable candidate mechanisms.

There is an intimate connection hetween vortex formation and a non-
zero vacuum expectation of the monopole field in a Higgs theory and hence
it is a strong test of the idea for the dual theory. Two candidate projections
are the Polyakov gauge and the Maximal Abelian gauge.

3.1. Polyakov gauge

Del Debbio, Di Giacomo, Paffuti and Pieri [21] have constructed a lat-
tice monopole field operator that shows a very strong signal with a sharp
discontinuity in the vacuum expectation value of the monopole operator as
a function of temperature in the neighborhood of T., the deconfining tem-
perature. The critical indices for the deconfining phase transition have been
measured in simulations and they agree with the critical indices measured
in other operators sensitive to the phase transition [22]. Their calculation is
manifestly gauge invariant.
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The monopole field operator creates the Abelian magnetic charge and
the accompanying Abelian field strength. The definition of gauge invariant
field strength is that defined by 't Hooft [23] in the Georgi Glashow model,

F, = Tr [QS(@uAV ~ 8,4, — ig|A,, A,,])]

+% Tr [cf)(aﬂqﬁ —ig[A,, @]) (&Af’ —ig[Au, O])] =

where ¢ transforms under the adjoint representation of SU(2). However
there is no adjoint scalar field in QCD. Instead one constructs a composite
field from a Wilson line, which begins and ends at the same site

W(x) = cosOw(z) + ip(z)sinfw (¢), ¢=¢-0, ¢d-d=1, 0w €[0,7].

Del Debbio et al. chose W(z) = P(z), a Polyakov line which closes through
the time dimension. The Polyakov gauge is obtained by rotating ¢(x) into
the the 3—direction at every site. Then the gauge invariant field strength
reduces to the curl of the the 3rd component of the SU(2) gauge field. Even
though the construction is gauge invariant we associate their calculation
with the Polyakov gauge.

In Ref. [24] we established vortex formation in the Polyakov gauge.
We anticipated that the monopoles in the Polyakov projection would give
a picture very similar to the maximal Abelian gauge. However we found
that the coset fields greatly suppress the static sources. It could be that
we are much farther from the continuum limit than we thought. But that
seems unlikely since other quantities are close to scaling values. It could be
that the dynamical variables arising from the Polyakov Abelian projection
do not adequately separate the short distance and long distance physics.
This leaves the maximal Abelian gauge as the prime candidate to define an
effective theory of confinement in this scenario.

In Sec. 4 of these lectures, we will offer another possible solution to this
discrepancy.

3.2. Maximal Abelian gauge

The maximal Abelian gauge is defined by a gauge configuration that
maximizes R, where

R[U] = Z%Tr (03U#(;E)G3Ul(:c)) ,

and where U, () is the link starting a site  and extending in the u direction.
In the continuum limit this becomes the gauge condition

(0, £943(2)) AZ(2) =0.
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The vortices are well established [25, 24] in this gauge. The typical
behavior is shown in Fig. 1. The London relation is seen in the confining
case for transverse distances larger than about two lattice spacing. The
dual coherence length &; ~ 2, i.e. the onset of the violation of the London
relation. The unconfined case is also shown where curl Jis almost zero, and
the electric field falls more gradually than in the confining case.

0.40
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Fig. 1. Transverse profile of the electric field and curl of the monopole current
in the mid plane between a static ¢¢ pair on the maximal Abelian gauge at finite
temperature for a confining (left) and unconfining (right) phases Ref. [24].

The static potential constructed from Abelian links gives as definitive
a signal of confinement as the gauge invariant static potential as found by
Suzuki et al. [15, 26], Stack et al. [27] and Bali et al. [28]. Bali et al. find the
Abelian string tension calculation gives 0.92(4) times the full string tension
for 3 = 2.5115. Whether this approaches 1.0 in the continuum limit remains
to be seen.

The calculation of Del Debbio et.al [21] of the monopole field operator as
a practical matter is not adaptable to this gauge. It would require hundreds
of gauge fixing sweeps of the whole lattice in order to accept or reject a single
link update. Chernodub, Polikarpov and Veselov [29] have more recently
calculated the constraint effective potential as a function of the monopole
field in this gauge and found a symmetry breaking minimum. However
they reported a problem of obtaining statistics and instead calculated an
approximation to the effective potential.

More recently Nakamura et al. [30] studied an alternative monopole op-
erator defined in terms of the variables which occur in the monopole form
of the action. We have not yet addressed the issue of establishing vortex
formation in that framework.
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4. Ehrenfest theorem for field strength and electric current

After applying Abelian projection to non—-Abelian gauge theories, the re-
sult is mathematically identical to a set of charged fields (vector-like in the
maximally Abelian gauge) coupled to an electromagnetic field, governed by a
complicated U(1) gauge invariant action. The charged fields have tradition-
ally been ignored, but numerical work suggests that we should re-examine
their role which can be quite significant in, e.g., the Polvakov gauge.

A comparison between the two different projections [24] shows that in
the Polyakov gauge the peak values of the electric field and of the curl of
the magnetic currents are more than an order of magnitude smaller than
the correspondent values in the maximal Abelian gauge. Suzuki ef al. [33]
reported similarly that the string tension was suppressed in the Polyakov
gauge.

To show the different role of the coset fields in the two projections, con-
sider the divergence of the electric field giving the spatial distribution of the
electric charge. The divergence at site 2 is defined as

<dn b > 23: sin Oppi (sin O4(2) — sin ;4(2 — 7)) 7

a®e {cosOppt)

where 0ppy is the angle corresponding to a product of Polyakov line sources.
All six plaquettes have in common the link starting at 2 and extending in the
time direction. In Fig. 2 we show the results for two Polyakov lines separated
by three lattice spacings. The figure clearly shows that the effective charge
of the static source is much smaller in the Polyakov gauge and that the coset
fields in the two prescriptions respond in opposite ways to the presence of
an electric charge with the fields in the Polyakov gauge shielding the static
charge. This led us to look for a definition of charge density and electric flux
on the lattice.

We are presently completing a numerical check of an exact relation for
SU(2) lattice averages after Abelian projection [12] that will accomplish both
of these ends:

<AN‘FHV - JV)sta,tic Abelian source = 0. (6)

Jy, the electric current in the remaining U(1), contains terms from the ex-
ternal source, the “off-diagonal” gauge potentials, the gauge fixing condition
and the addeev-Popov determinant:

n Jlggallge fixing)

(source) (dynamical)

Ju: v +]u

(Faddeev-Popov)

+ .1y

Eq. (6) resembles the Euler-Lagrange-Maxwell equation, of course, satisfied
at the extremum of the action. With a suitable choice of lattice operators,
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Fig. 2. Divergence of the electric field along the axis connecting two static charges

separated by three lattice spacings. Ref. [24].

however, lattice averages also satisfy this relation. The corresponding rela-
tions for U(1) and for SU(3) without gauge fixing are given in Ref. [31]. The
term “Ehrenfest theorem” is taken from the context of quantum mechanics,
where a classical equation is exactly satisfied for expectation values, e.g.
42 -

gz (1) = —(VV(r)).

4.1. Motivation

Equation {6) defines the electric current density on the lattice. Unlike
pure U{1). an electric current density occurs in the Abelian projected theory,
and is capable of screening sources and affecting the string tension; Bali et
al. {32] found that the string tension after Abelian projection to the maxi-
mal Abelian gauge is only 92% of the full SU(2) result. The contributions
from gauge fixing and the Faddeev—Popov determinant contribution to the
current can be measured by making use of this relation. The latter is the
contribution from the ghost fields. One uses the Ginzburg-Landau theory
interpreted as a dual effective theory to model the simulations. One needs
to modify this model. however, to include the effects of a dynamical charge
density.

Fquation (6) also defines the Abelian field strength on the lattice. For
regions where .J, = 0. this defines exactly the conservation of flux. It then
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gives precise meaning to the intuitive picture of the vacuum squeezing the
field lines. Crucial to this mechanism for confinement is the connection
between the spontaneous breaking of a gauge symmetry as indicated by a
non-zero vacuum expectation value of the monopole creation operator and
the formation of vortices. Both the monopole operator and the vortex opera-
tors [25] rely on a definition of electric field strength. Therefore a tightening
of these definitions could enhance our understanding of this crucial connec-
tion. One can compare this definition of Abelian field strength with the
lattice implementation [24] of the 't Hooft expression |23] which would lead
to an exact Ehrenfest theorem only to leading order in the lattice spacing, «a.

4.2. U(1) example

Consider the partition function for the U(1) plaquette action. S, =
P onpsw (1 —cosb,,(2)), including a Wilson loop:

Z = / [d6,]¢"W exp (—B5S.) .

It is invariant under shifting any link angle, 6,(z) — 6,(x) 4 =. Using this
invariance Zach et al. [31] derived the relation:

) in6u\ _—p3S
J1d8,] sin 6w (%Au%g") e _ eéﬁ
J[db,,] cos By e=PSe EPER

where 81y = 0 unless the shifted link lies on the Wilson loop external source,
when i = #1. By identifying sin6,,/(ea?) as the field strength we then
obtain an Ehrenfest theorem of the form:

1 tat]
<_AMFHU - -]ngta“C)> = 0.
a source

The choice of 8, /(ea?) as the field strength would not lead to an Ehrenfest
theorem for finite lattice spacing.

4.3. Generalization to SU(2)
The SU(2) Wilson plaquette action, S, gives
Zw = /[(l(]u]eww exp (—f8S5),

where W now indicates an Abelian Wilson loop. Ignoring gauge invariance
for the moment, we exploit the invariance of the measure under a right (or
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left) multiplication of a link variable by a constant SU(2) matrix, U, —

U, (1 - %503) . The derivative of S with respect to &, which we denote as
Sy, inserts a o3 in the six plaquettes contiguous to the shifted link. Similarly
the Abelian Wilson loop has a o3 insertion if it contains the shifted link. This
gives the relation

< 2 S(U) _Jlgstatic)

g3 =0, (7)

>Abelian source
This can be cast into the form Eq. (6) using the parametrization of the
link matrix:

U, = C05(¢u)610f1 sin(¢u)el¥“ (8)
g —sin(¢,)e"Xu cos(p,)e W )

where ¢, € [O,% and 8,, x, € [-7, 7). Separate this into the diagonal,

Z?ﬂ‘ and off-diagonal, O,, parts; U, = D, + O, . Applying this to Eq. (7)

gives

< 1 A Fyy — Jl(’dynamical) 3 Jlgstatic)> _o. )
a

Abelian source

. . . . dynamical
where iAu F,,, contains only D, contributions to the links and JV( 7 )

the rest. The first term in Eq. (9) becomes an ordinary divergence because
the inserted o3 in the loop commutes with the links and can take any position
in the loop.

4.4. Gauge fizing

Gauge fixing complicates the issue, although the essence of the argument
goes through as before. Prior to Abelian projection we gauge fix to satisfy
F;(U;n) = 0fori=1,2. When shifting a link U, = U, <1 - %503) we must
in general perform a simultaneous gauge transformation, g(z) =1- 3510,
where 7;(z) x ¢, to avoid leaving the gauge condition. S, is gauge invariant,
but we obtain extra terms from the Wilson loop source and the Faddeev-
Popov determinant when we differentiate with respect to ¢.

The partition function now reads:

o= / [dU,) €% App TTS(F:(Usn)) ™.

n,t

We are primarily interested in the maximal Abelian gauge.

F(U;n) = %Z {Tr (Oi(”‘t(ﬂf)0'3['7“($)) + Tr (O‘l‘Uﬂ(;l’ - ﬂ)agUI(:L‘ - ﬂ))} .
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and integrating out the ghost fields gives

FAU:n
AFP = det (M) i
87]]‘(771) Fi;(Un)=0

The Ehrenfest theorem is now given by

(AFP)H

4 (O ) e P9 =0.

v e App o) (-55, +

7,1

which is recast as Eq. (6).
4.5. Status

When shifting the link does not conflict with the gauge condition, ¢.g.
when no gauge condition is imposed, no extra gauge transformation is re-
quired and we find Eq. (9) is satisfied exactly. Ignoring this conflict, in the
maximal Abelian gauge, the sum of the first two terms in Eq. (9) is 1.128 (5)
for the case of a shift of the source link. (This is in a normalization where

(- £Sta'tlc)> = 1.) We have used a Abelian plaquette source (3 = 2.3 on a
12? lattice). Hence there is a 13% violation of the identity. On the same
lattice, in the numerically simpler gauge that diagonalizes all plaquettes in
a particular plane, the violation is —23%. In both cases there is a rapidly
decreasing, but non-zero signal for the summed terms that extends away

from the source where (. ISStatlc)> =0.

The corrective gauge transformation at every site that accompanies the
shift of a single link introduces a non-locality. The Wilson loop derivative.
(B),., 1s increased, and picks up a contribution even when the shifted link is
not one of those making up the loop. The magnitude of the gauge transfor-
mation falls off exponentially with distance from the shifted link, however,
and is a small effect. In other words, the derivative of the source is no longer
a delta function of position, but is slightly smeared by the gauge fixing.

Inclusion of this reduces the violation of the maximal Abelian gauge
Ehrenfest identity to 3% on a 6 lattice at $ = 2.3 (since this is a lattice
identity, finite volume and scaling considerations are irrelevant). On such a
lattice, the plaquette gauge relation is improved to —15%.

The calculation of the Faddeev—Popov term is incomplete, but prelimi-

. Faddeev-Popov), . . .
nary results indicate that (Jlg ! )> is relatively small and of the
correct sign and magnitude to cancel the remaining violation and satisfy

Eq. (6) both in the maximal Abelian and plaquette gauges.
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The lattice definition of Abelian field strength that follows from this
approach is

1 . .
F,(z) = ;ﬁTr |:0'3Du(l‘)'D,,(l‘ + ,u)DL(a: + I/)Di(&})} . (10)
This differs from the lattice version [24] of the ’t Hooft Abelian field strength
[23]. Fig. 3 gives the lattice implementation of this. This is SU(2) gauge
invariant because the adjoint fields transform under a gauge transformation
along with the links. We choose ¢ = o3 to compare with Eq. (10). Both

P,uu = +

[T

Fig. 3. Lattice generalization of the 't Hooft gauge invariant Abelian field strength.
The lines represent single links, . The adjoint field, indicated by the circle, 1s
normalized: ¢ =1, ¢=¢ 0. P, = —iga?Fpy.

agree in the continuum limit, but the latter would satisfy the Ehrenfest
theorem only to leading order in a.
In terms of the link parametrization, Eq. (8), the field strength is:

cos 8, ()

Fo(z)= {cos ¢, (z) cos ¢, (x + fir) cos g,z + ) cos b, (x)} (11)

ga?

The factors cos ¢, (z) — 1 in the continuum limit.

5. Summary and conclusions

The upshot of the previous section is that flux should be defined by
Eq. (11). We need to recalculate our London relation and G-L coher-
ence length calculations with this new definition applied to electric and
magnetic flux. The previous calculations were done without the factor
cos ¢, () cos ¢, (x + p1) cos ¢, (z + v) cos ¢, (z). We anticipate only a small
correction to the previous calculations in the maximal Abelian gauge. The
reason follows from a fact pointed out by Cernodub et al. [20] and Poulis
[34]. In this gauge this factor has very small fluctuations and is essentially
a constant. If it were exactly constant, it could cancel out of the London
relation.
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In other gauges, the London relation calculations suffered problems and
was very hard to interpret. We think now that some of the problems can be
traced to the definitions of flux and we will revisit these calculations.

We now know how to define charge density on the lattice after Abelian
projection. Hence there are new issues to address such as charge screening.
One is whether we have interpreted the charge of the source correctly.

The goal of this lattice work is to identify a confinement mechanism.
Currently these directions lead us to an effective Higgs theory in which
spontaneous gauge symmetry breaking provides the order parameter for the
confining phase transition. However many issues with this approach remain
unresolved. We look forward to addressing some of them with the newly
derived Ehrenfest theorem at our disposal.

[ wish to thank M.I. Polikarpov and F. Gubarev for discussions and
for pointing out that in our work on the Ehrenfest theorem, we should
expect a contribution from the Faddeev-Popov determinant. Work was
partially supported by the Department of Energy under Grant No. DE-
FG05-91ER40617.
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