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The Dualized Standard Model which has a number of very interesting
physical consequences is itself based on the concept of a nonabelian gener-
alization to electric-magnetic duality. This paper explains first the reasons
why the ordinary (Hodge) * does not give duality for the nonabelian the-
ory and then reviews the steps by which these difficulties are surmounted,
leading to a generalized duality transform formulated in loop space. The
significance of this in relation to the Dualized Standard Model is explained.
and possibly also to some other areas.

PACS numbers: 12.10. Dm

1. Introduction

From the standpoint of our present understanding and observation. the
Standard Model seems to encapsulate the major points of our knowledge
in particle physics but vet leaves many of its own ingredients unexplained.
Of these. the most striking are the origins of Higgs fields and fermion gen-
erations. Nor are details such as the fermion mass hierarchy or the CKM
(C'abibbo-Kobayashi-Maskawa) mixing matrix {1] given any theoretical ex-
planavions. A way to further our understanding is perhaps to study more
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closely Yang-Mills theory itself, on which the Standard Model is based. In-
deed, it was shown that by combining a recently derived generalized electric-
magnetic duality for Yang-Mills theory with a well-known result of 't Hooft’s
on confinement [2] one obtains a scheme ~- the Dualized Standard Model —-
which purports to answer some of these puzzling questions [3].

This paper reviews the theoretical basis for the scheme. while our other
paper [4] in the same volume reviews its physical consequences.

2. A first look at duality

[t is well-known that electromagnetism is invariant under the interchange
E — H, H — —F, which can be expressed equivalently as a symmetry under
the Hodge star operation on the field tensor

* . 1 o
F,ul/ - _ifu.upﬁ}:p . (1)

When there are charges present, then this duality interchanges electric and
magnetic charges.
Let us take one of the Maxwell equations:

9, " = 0. (2)

Using Gauss’ theorem, it is easy to see that (2) is equivalent to the absence of
magnetic monopoles. This is the physical content of (2). Using the Poincaré
lemma 1, it is also easy to see that (2) is equivalent to the existence of a
gauge potential A, such that F,, is its curl:

F,,=0,A,—-0,A,. (3)

This is the geometric content of (2). Notice that both conditions are neces-
sary and sufficient. This situation can be schematically represented as:

. Pojncaré ., « Gauss .
A4, exists T EST 9, T =0 ES' no magnetic monopoles . (4)
N’ -
geometry physics

The dual of Eq. (2) is:
dF" =0, (5)

which is satisfied where there are no electric sources. By the same line of
argument as for () we deduce that where (5) is satisfied, there exists also a
dual potential A, such that:

*Fm/ = (‘)Il“i/,l - 0;1 -‘iu s (b)

' This particularly simple example of Poincaré lemma can easily be seen by a direct
construction of the gauge potential A,.
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so that a symmetry is established under the * operation, that is

A, exists < 0,F" =0 <= pno electric sources . (7)
—_——— -
geometry physics

This is the celebrated electric-magnetic duality.

For nonabelian gauge theories, however. the picture is totally different.
Using the covariant derivative D, = d,, —ig[A4,, ], we still have the analogue
of (2):

D, F* =0, (8)

which is usually known as the Bianchi identity. However, since there is no
nonabelian analogue to Gauss’ theorem, i.e. in this case there is no satis-
factory way of converting a volume integral into a surface integral, (8) has
nothing to say about the existence or otherwise of the nonabelian analogue
of the magnetic monopoles. In fact, even the concept of flux is lost so that
one has to give an entirely new kind of definition to a nonabelian monopole.
Furthermore, although (8) holds identically for any tensor F,, which is the
covariant curl of a potential 4, the converse is false. In fact, on can hardly
formulate the converse given that the covariant derivative D, has to involve
the potential A,. This means that the above diagram (4), so significant in
the abelian case, has hardly any content in the nonabelian case:

4

A, exists = D, F* =0 .-- 7 (9)

Further, there need not exist a dual potential related to *F),, in the same
way as A, is related to F,,. In fact, Gu and Yang [5] constructed some
explicit counter-examples of potentials A, which satisfy D,F*” = 0 (and of
course D, "['* = () but no f‘iu exists for which *F),, is its covariant curl. So
we have also the ‘would-be’ analogue of (7):

. Gu-Yang Yang—Mills
Ay exists &E D™ =0 ° no electric sources. {(10)

Hence we see clearly that the nonabelian theory is not symmetric under the
Hodge star, as the abelian theory is.

However, this does not mean necessarily that there is no nonabelian
generalization to duality. Indeed, it was shown in [6,7] that there is a
generalized dual transform under which nonabelian theory is invariant. This
generalized transform (A) reduces to the usual star operation (1) in the
abelian case, but (B) does not do so in general in the nonabelian case, as it
must not because of the Gu-Yang counter-examples [5].
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3. Nonabelian monopoles and loop space

Nonabelian duality is closely connected to the concept of nonabelian
monopoles, which in turn is best expressed in the language of loop %I);lce.
We shall therefore first recall, in this section, some old results [8.9] on these
topics. partly to introduce the notation.

Let us first recall the general definition of a monopole in a gauge theory
whether abelian or not. Let G be the gange group. Then a {magnetic)
monopole is defined as the class of closed curves in G [10}. Two curves are
in the same class if they can be continuously deformed into each other. For
example, if G=U(1). then the monopole charge is given by an integer — this
is the original magnetic case. If G=SO(3). then the monopole charge is a
sign: +1. For the gauge group of the Standard Model. which is our main
concern. and which is strictly speaking SU(3) x SU(2) x U(1) Zs and not
SU{3) x SU{2) x V(1) as usually written. the monopole charge is again an
integer n. In this case, a monopole of charge n carries (a) a dual colour
charge ¢ = e2™i/3 (1)) a dual weak isospin charge 5 = (—1)", and (c) a dual
weak hypercharge Y = 23”" where ¢ is the weak hyvpercharge coupling [11].

The monopole cha,lge thus defined is quantized and conserved. But how
does one express it in an equation? We found that we can do so nsing
Polvakov's loop space formulation of gauge theory [S.12].

Let £"(5). s = 0 — 27, be a closed curve in spacetime beginning and
ending in a fixed point £4(0) = £“(2r) = x;. Then the phase factor or
Wilson loop or holonomy {13] is the following loop-dependent but gauge-
invariant element of the gauge group G:

2r

B[c] = Py exp w/‘4,,<f<s))£“(s>r/s ‘ (11)

where P, means path-ordering with respect to s. From this we can define
the ‘loop space connection

Fulgls] = 07 ] dul)@le] (12)
and the corresponding ‘loop space curvature’
Gr€ls) = 8, Fu[8ls] = 8, B 815) + iglFulgls]. US|l (13)

where §,(s) denotes the loop derivative at the point s on the loop.
With this apparatus. one can first of all write down for example an SO(3)
monopole of charge —1:

CGulélst =k, expinrn=—1. (14)
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Secondly. what is more important. one can prove the so-called extended
Poincaré lemma [8], which states that, apart from some minor technical
conditions. the vanishing of the loop curvature is equivalent to the existence
of a local gauge potential A4, giving rise to (7, [€]s] in the above manner.

Thus we can now replace the contentless (9) with the true nonabelian
analogue of (4):

A, exists <= ((/,, =0 <= no magnetic monopoles {15)
N e
gevmetry physics

once again linking geometry to physics via a simple condition.

4. Nonabelian duality

Just as we sought a nonabelian version (15) of (4). we now seek to gen-
eralize the notion of duality suitable for the nonabelian case. We recall that
the abelian duality transformation * satisfies the following two conditions:

~

(I) It is its own inverse apart from a sign: “("F,,) = —F,.
(II) It interchanges electricity and magnetism: ¢ «—— ¢.

We thus look for a generalized duality transformation for a nonabelian gauge
theory which satisfies (1) and (II), requiring that it (A) reduces to * i the
abelian case but (B) does not do so in general in the nonabelian case.

First. we need to make clear what is meant by (I1} in a nonabelian theory.
We recall that for the abelian theory, in the “electric’ description inn terms of
A, an clectric charge is a source represented by a nonvanishing current on
the right-hand side of (5). while a magnetic charge is a monopole which in
terms of A4, is topological in origin but also representable by a nonvanishing
cdual current on the right-hand side of (2). Hence, for a nonabelian theory,
in the “electric” description in terms of A4,,. an electric charge should also be
a source represented by nonvanishing current on the right of:

Db = " (16)

while a magnetic charge should be a maonopole represented, by virtue of (15).
by a nonvanishing loop curvature v,,.

To write down the generalized duality transform, introduce the following
set of variables |7]:

EL[¢]s] = P (5. 0) 1, [E]s]07 ' (5.0) . (17)
where

52
Pe(s1.52) = Psexp | ig / Ap(E(s))EM()ds | (18)
5
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We see immediately that the E variables are the F variables parallely trans-
ported by (18). It is clear that E,[¢|s] depends only on a segment of the
loop &(s) around s, and is therefore a *segmental’ variable rather than a full
‘loop” variable. In the limit that the segment shrinks to a point. we have

EL[€]8] — Fu (6(s))€" (%) . (19)

However, the limit {19) must not be taken before other loop operations such
as loop differentiation are performed. as these loop operations do reqire at
least a segment of loop on which to operate.

It is not too difficult to show that the variables F,[£|s] constitute an
equivalent set of variables to F,[¢]s]. Using these. we can now define the
duality transform by

T () Enltle () =

e (0) [ BESEIESE (EHSE) ~ (). (20)

At first sight. this is quite unlike (1). However. if we regard the loop
dependence of E”[¢|s] as a continuous index. then the loop integral on the
right is nothing but saturating indices, just like the summation on the right
hand side of (1). By (19) we see that it is reasonable that the tangents
é”(s) and 1¥(t) should oceur. The factor N is an (infinite) normalization
constant inherent in doing the functional integral. One novel ingredient is
the local quantities w(x) on the left hand side. For concreteness, let us take
G=5U(3). Then w is a 3x 3 unitary matrix which represents the change from
the frame in internal colour space with respect to which F,, is defined to the
frame in internal dual colour space with respect to which f:‘n is defined. Such
a change in frame is necessary to balance the two sides of Eq. (20) since £,
is “electrically” charged but “magnetically’ neutral. transforming thus only
under SU(3), not under its dual §G(3) (see the last section for a discussion
of dual gange symmetries). while for Eu, the reverse holds. In the abelian
case, the factors w™! and w commute through and cancel. so that there we
do not see this feature. Moreover, we do not always have the freedom by
gauge transformations to set w = 1 evervwhere. because in the presence of
charges either E or E (or both) has to be patched?, so that w may have to
be patched also. It thus takes on some dynamical properties and. as can be
seen in our companion paper [4], the rows or columns of the matrix « can
even be interpreted as the vacuum expectation values of Higgs fields. As
such. they play a crucial role in the Dnalized Standard Model.

3 Ny - . . . . . . .
“ This is similar to the case of the clectric potential 4, in the presence of a magnetic
monopole. requiring either patching or equivalently the Dirac string.
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Coming back to the duality transform (20), we note that it has been
constructed specifically in such a way as to satisfy the condition (1) above
and (A) to reduce to the Hodge * in the abelian case yet (B) without doing
so for the general nonabelian case [7]. Furthermore. it was shown there
that it satisfies also the condition (II) by the following chain of arguments.
As known already to Polyakov [12], a source in the “electric’ description in
terms of A, can be represented in his loop notation of (12) as nonvanishing
loop divergence 0#(s)F,[¢]s] # 0, which by the relation (17) can also be
expressed as nonvanishing loop divergence of E,[€]s], namely 6" I, [¢]s] # 0.
The duality transform (20), however, is so constructed that a nonvanishing
loop divergence for E, gives a nonvanishing ‘loop curl’ for the dual variable
By ive. 8,(O)Eu[nlt] = 8,(6)E,[n|t] # 0. Further, using (17) again, but now
for E,. it is seen that a nonvanishing “curl’ for E, means nonvanishing
loop curvature G;,u, or in other words, by the dual of (15), a monopole in
the "‘magnetic” description. Hence, we have that a source in the “electric’
description is a moenopole in the magnetic description. Moreover, because of
(I). the converse is also true, namely that a ‘magnetic’ source is the same as
an “electric” monopole. This then is the nonabelian generalization of (II) as
desired.

For a pure Yang—Mills theory with neither sources nor monopoles. then
it follows by (15) that both the potential 4, and the dual potential fi“ exist,
substantiating thus the claim that the pure theory is symmetric under the
dual transform (20). For the situation with sources and monopoles around,
however. some more tools are needed.

5. Dynamics and the Wu—Yang criterion

In abelian theory, the equations of motion governing the dynamics of
a charge. whether electric or magnetic. can be derived from its topological
definition as a monopole by the Wu-Yang criterion [14]. For concreteness.
consider first a magnetic charge regarded as a monopole in the electric de-
scription in terms of 4,,. Instead of the nsual minimally coupled action, one
starts with the free field plus free particle action, which one varies under the
constraint that there exists a magnetic monopole. Introducing a Lagrange
multiplier A, for the constraint, we have

A=l / Eyo —j (it — 772)@'4—//\“(('),,’“[7““ Famy . (21)

where the magnetic current j# is given by

JH = ("'z;w“{j.‘ . (22)
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and ¢ is the magnetic coupling related to the usual electric coupling ¢ by
the Dirac quantization condition

€€ = 27. (23)

Here we have assumed the monopole to be a Dirac particle. but we could
equally have formulated the procedure classicallv. Varving with respect to
1, we get

=0, (21)
which is equivalent by (4} and dualitv 1o the existence of a dual potential
A, In fact we have

Ay =AmA, . (25)

with

Fr = 0'/‘411 —du A, (26)

Varying with respect to v we get

(103" = m)e = =4, e, (27)
Together with the constraint
0,71 = iz (2%)

equations (24) and (27) constitute the equations of motion for the field-
monopole system [1:4].

The argnment can be repeated for electric charges by regarding them as
monopoles in the magnetic description in terms of .4,1. The constraint is
then given by

J, F" = —Am (29)

vielding instead the usnal Maxwell and Dirac equations, r.¢. exactly the
duals of (24) and (27). One concludes therefore that electromagnetism is
dual symmetric even in the presence of charges.

6. Dynamics of nonabelian charges

We wish next to extend the argument to nonabelian Yang-Mills theory
using the formalism developed above. Again we shall use the Wu Yang
criterion to study the dvnamies of nonabelian charges. regarding them as
monopoles. [n loop variables. the free field action is

1o e
Ap = - / SedsTr(E, EM)E-? . (30)
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The free (Dirac) particle action is as before

Ay = / DA — m). {(31)
The constraint that there s a monopole is

U// [’:Yp - (v)ut‘u - "“'“T']/Ju . (’;2)
where the magnetic current ./, has the form

1) = g am PPEO =Ty
']i”/l%‘b] = Gepe (L HE TV (33)
and f; s a gencrator in the relevant representation of . The monopole
charge is originally given as a nonvanishing loop curvature (v, which is the
loop covariant curl of /7. However. as already mentioned above. it can be
shown that by going over to the variables L, hy (17). the loop covariant curl
becomes simply the loop curl: hence the constraint (:32).

The full action

A= Ap+ Ay 4 / SEASTH W (O, Fy — Oy +47d,0)) (3]

is then varied with respect to the variables F [¢]s] aud & (r). giving respec-
tively

() Eu[€ls] = 0. (35)
(" — myelr) = —gA, v o). (36)

where the dual potential 4, is given by the Lagrange multiplier W/, in
analogy to (25):

) = 17 [ s &N sl SN E 208 — ) (37)

A= already noted above, (35) is equivalent to the usual Yang-Mills sonrce-
ree equation

DFE,, =0 (3%)

To study the dvnamies of nonabelian electric ('lmrg_,'ex we start from
Yang Mills equation (38) with a novnvanishing right hand side. This implies
that

S () EEIs £ 0. (39)

which in turn buplies

S, 5, =8, F, #0. (10)
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But this is the condition that signals the occurrence of a monopole of the
E, field (¢f. (32)). Since the free field action (30) can equally be expressed
in terms of the dual variables:

1 N r Ty ¢—2 ’
A= / SedsTr(F, Er)é-?, (41)
we can easily derive, by imposing the appropriate constraint
S, E, —6,F, =—4r1J,, (42)

with an expression for the current similar to (33), the equations of motion
of nonabelian electric charges as:

3 (s)EL[E]s] = 0, (43)
(107" = m)v(x) = —gA " (). (44)

We see that the equations of motion for the nonabelian electric charge are
exactly the duals of those given above for the nonabelian magnetic charge,
namely (35) and (36). Hence we conclude that, as claimed, the dynamics is
indeed symmetric under the generalized duality transform (20) even in the
presence of charges, just as in the abelian case.

7. Remarks and conclusion

We have presented the salient features of nonabelian duality, without
supplying many details. A few remarks, therefore, are in order.

Firstly. since both the potentials A, (x) and fiu(:v) are local spacetinme
variables, it may be tempting to speculate that the duality transform (20)
itself could perhaps be formulated entirely in terms of local spacetime vari-
ables rather than loop variables. At present, we certainly do not know a way
of doing that. Suppose we start with the variables 4, (z), then by (15) we de-
duce that in the presence of monopoles 4, () cannot be everywhere defined.
If at the same time there are no sources, then /—iu(.’L‘) is everywhere defined.
By duality the existence of sources, while allowing 4, (2) to be everywhere
defined, forces 4“(1) to be undefined in certain regions of spacetime. This
means that if there is only one type of charges present (whether monopole
or source), we may, by choosing our variables, stick to spacetime variables
only. However, if both charges, or dyons, are present, then it seems that loop
space variables are inevitable. Unfortunately, the rigorous mathematics of
loop space analysis remains largely unexplored [15]. For the work reported
above. we have devised certain operational rules which seem to us consistent
at least for the use we put them to, but the lack for a general loop calculus
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is often acutely felt. For more details, we refer the interested reader to [7]
and earlier work cited therein. Nevertheless, the existing operational rules
already allow one to explore Feynman diagram techniques using loop space
variables [16], which can be a first step towards building a full guantum field
theory in these variables.

Secondly. because of dual symmetry. a nonabelian gauge theory is not
invariant just under the usual gauge group G but rather two copies of it: G
xG. Here we denote the group under which A, transforms as G, although
as a group it is identical to G. This makes it easier notatmnally and also
underlines the fact that G has parily opposite to that of G, because of the
e-symbol in the transform (20). This extra symmetry is a direct consequence
of duality, which in turn is inherent in any gauge theory. That this sym-
metry has interesting physical consequences will be shown in detail in our
companion article [4]. We note further that although the gauge symmetry
is found to be doubled. the number of degrees of freedom remains the same.
In a way not yet fully explored, the potentials A, (x) and A, () represent
the same degrees of freedom. since the duality transform (20) is an equation
relating E,,[€]s] and E,[¢]s]. The situation is even more immediately evident
in the abelian case. Under a U(1) transformation A(x).

Ay(x) —» Au(x)+ A ().

Ay(x) = A, (2): (45)
while under a UTI) transformation A(x),

La) = A,(x).

Ay(x) = Ay () + DA (x) . (46)

The two phases A(x) and A(z) are entirely independent. Similarly the wave
function ¢ (z) of an electric charge and the wave function w(z) of a magnetic
monopole will transform under A(x)

v(x) — M p(a) .
elx) = v(e): (47)
and under A(x)

(z) — P(x),

D) = NI Py, (48)

However, the variables 4, («) and lu('z) clearly do not represent different
degrees of freedom, because their field tensors F,, () and "F,, () are related
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by the following algebraic cquatvion

T () = =5 e F77 (). (49)
That A, and A, shonld correspond to two gange synmetries but vet repre-
sent the same physical degree of freedomn can have very interesting physical
conseqrences [3.4.21.23].
Thirdly. since si,,(.r) 18 a local tield. we can construct s phase factor:

2m
HlE) = Pyexp | ig / A (E(s))EM(s)ds (50)
0

in complete analogy to the lfamiliar @[¢] in (11). Now. in the famons work
of "t Hooft [2] on confinement the trace of @[¢] has a very important role to
play as an order parameter which he called A{C"), depending on the loop .
Hence. by the duality discussed above. one expects that the trace of $[¢] in
{50) will play the role of "t Hoolt's disorder parameters B{C) [2]. This turns
ont to be indeed the case. Using Dirac’s quantization condition

99 = 7 (51)

it was shown [17] that the traces of @ and @ do indeed satisfy the commu-
tation relation

[
[N
~—

AR o ., 2
AC)BCT) = B{CT) AH( )(*xp( N

for Gi=SU(N). as required by "t Hoolt for his order disorder parameters [2].
It follows then that we can apply "t Hooft’s confinement result 2] to our
sitnation, namely that if the G svinnetry is confined then the G symmetry
as defined above is broken and Higgsed. and vice versa. As can be seen in
ot companion paper 1], this playvs a crucial role in the Dualized Standard
Model [3]. When applied. for example. to the confined colonr group SU{3).
it implies a completely broken dual colour symmetry 57’{3) which may be
identified with generations. The explicit {orn (50) for the "t Hooft disorder
parameter B{C) . which up to quiite recently was known only by a somewhat
abstract definition. is likely to he aselul also in the problem of confinement
[15].

Apart from giving rise to the physical consequiences reviewed in ||, rang-
ing from masses of fermions and their mixing {19] to flavour-changing nentral
cnrrent decays [20- 22| and very high energy cosmic rayvs [20.21.23] the con-
siderations above raise also some intrigning theoretical questions that are
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beginning to be asked. For example, throughout this lecture so far we have
been concerned only with the nonabelian generalization of electric-magnetic
duality in a strictly non-supersymmetric context and in exactly 4 spacetime
dimensions. We have not touched upon the possible extension to supersym-
metry and. or higher spacetime dimensions. This could be interesting, given
the vast amount of exciting work [24] which has been done in recent vears
following the seminal papers of Seiberg and Witten [25] on supersymmetric
duality. In a completely different direction. the doubling of the symmetry
is reminiscent of complexification in geometry and particularly general rel-
ativity. One would like to know how this generalized duality relates to the
vast literature of self-dual fields. both in geometric Yang-Mills theory and
in general relativity, especially in the twistor description [26,27]. The vistas
that are being opened up are truly fascinating.

Previous collaborations with Peter Scharbach and Jacqueline Faridani are
gratefully acknowledged.
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