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We analyze the topological structure of the pure gluonic SU(2) vacuum
at finite temperature in both phases of the theory by computing correlation
functions between the topological charge density and the monopole density
in maximum abelian projection. On gauge average we find a nontrivial
spatial correlation between both topological objects. We show that the
coexistence of monopoles and instantons also holds per gauge configuration.

PACS numbers: 11.15. Ha, 12.38. Aw, 12.38. G¢

1. Introduction and theory

There are two different kinds of topological objects which seem to be
important candidates for the confinement mechanism: color magnetic
monopoles and instantons. In lattice calculations we demonstrated that
color magnetic monopoles and instantons are correlated on realistic gauge
field configurations [1]. Similar phenomena were discussed by other groups
on semiclassical configurations [2]. This might indicate that both confine-
ment mechanisms have the same topological origin and that both approaches
can be united. It is believed that instantons and also monopoles can explain
chiral symmetry breaking [3,4]. In this contribution we study the origin
of the relation between the topological objects by analyzing the correlation
functions per gauge configuration and by visualizing the topological struc-
ture by means of 3D graphics.

To investigate monopole currents we project SU(N) onto its abelian
degrees of freedom, such that an abelian U (l)N ~1 theory remains [5]. We
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employ the so-called maximum abelian gauge being most favorable for our
purposes. For the definition of the monopole currents m;(z, ), 1 = 1,..., .}V,
we use the standard method [6]. From the monopole currents we define the
local monopole density as
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There exist several definitions of the topological charge on the lattice.
The field theoretic prescriptions are a straightforward discretization of the
continuum expression. To get rid of the renormalization constants we apply
the “Cabbibo-Marinari cooling method” which smooths the quantum fluctu-
ations of a gauge field. Other topological charge operators can be obtained
from the geometric definitions. The discrete set of link variables is interpo-
lated to the continuum and then the topological charge is calculated directly.
Concerning the correlation between monopoles and instantons it was shown
in [7] that the geometric Liischer charge definition yields qualitatively the
same results as the field theoretic prescriptions. Therefore we employ in
these studies the field theoretic plaquette and hypercube prescription of the
topological charge density [8]
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with Off*{i) being the Wilson operator for the closed path along a plaquette
and hypercube, respectively.

To measure correlations between topological quantities we calculate func-
tions of the type

(q(0)q(r))  (p(0)|q(r)]) - (3)

They are normalized after subtracting the corresponding cluster values.

2. Results

Our simulations were performed for pure SU(2) gauge theory on a 123 x4
lattice with periodic boundary conditions using the Metropolis algorithm. In
the case of the Wilson plaquette action the observables were studied both in
the confinement and the deconfinement phase at inverse gluon coupling 3 =
4/g? = 2.25 and 2.4, respectively. For each run we made 100 measurements,
separated by 100 iterations.

The normalized auto-correlation functions {¢(0)¢(r)) of the topological
charge density with ¢(z}) in the hypercube definition are displayed in Fig. 1
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Fig. 1. Auto-correlation functions of the topological charge density for 0, 5, 20,
40 cooling steps in both phases of the theory (top). After cooling the existence of
extended instantons becomes visible. Correlation functions between the monopole
density and the absolute value of the topological charge density after 0, 5, 20, 40
cooling steps {bottom). These normalized correlation functions are hardly affected

by cooling And are similar in both phases.

(top). They are presented for 0, 5, 20, 40 cooling steps in both phases. With-
out cooling the auto-correlation function is §-peaked due to the dominance
of quantum fluctuations. It becomes broader with cooling reflecting the ex-
istence of extended instantons. As a measure for the local relation between
abelian monopoles and instantons, we calculate the correlation functions
{p(0)|g(r)|) between the monopole density and the absolute value of the
topological charge density. They are displayed in Fig. 1 (bottom) both in
the confinement and the deconfinement phase for several cooling steps. The
shape of these correlations hardly changes under the influence of cooling and
is essentially unaffected by the phase transition. They extend over approx-
imately two lattice units. This indicates that there exists a nontrivial local
correlation between these topological objects and that the probability for
finding monopoles around instantons is clearly enhanced.
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Fig. 2. Auto-correlation functions of the topological charge density after 20 cooling
steps for 100 independent configurations in both phases (top). In contrast to the
confinement phase only 15 % of the configurations carry a topological charge in the
deconfinement phase. The corresponding p|g|-correlations are displayed in both
phases (bottom). All configurations with nonvanishing gg-auto-correlation give
rise to a nontrivial plq}-correlation.

Next we analyze the origin of the nontrivial correlation between
monopoles and instantons. In particular we are interested in the reason
for the similarity in both phases. Fig. 2 displays the auto-correlations
of the topological charge density in the plaquette definition and the p|g|-
correlations after 20 cooling steps for 100 independent configurations. In the
confinement phase the auto-correlation functions have many different ampli-
tudes indicating a variety of topologically nontrivial configurations. Also the
corresponding monopole-instanton correlations show many different ampli-
tudes. In the deconfinement phase only about 15 % of the auto-correlation
functions are nontrivial. All of these configurations give rise to a nontrivial
plgl-correlation. This indicates that the relation between monopoles and
instantons found on gauge average also holds for single configurations.
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Fig. 3. Topological charge density ¢q(z) as a function of the linearized lattice site
for configurations with the largest (top), a medium (middle), and a small (bottom)

amplitude of the auto-correlation function.

Fig. 3 displays topological charge densities ¢(z) as a function of the lin-
earized lattice site z for 20 cooling steps in both phases. On top we chose
the configuration with the largest amplitude of the auto-correlation func-
tion, in the middle (bottom) one with a medium (low) value of correlation
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strength, respectively. These simple one-dimensional representations give a
first impression of the topological content of the four-dimensional configu-
rations. They become topologically more and more trivial for a decreasing
strength of the auto-correlation function. Therefore the auto-correlation of
the topological charge can be used to select interesting configurations for
three-dimensional visualization.

Confinement Deconfinement

Fig. 4. The four topologically nontrivial configurations of Fig. 3 for fixed time
slice. Light (dark) dots represent the topological charge density with ¢(z) > 0.005
(¢(z) < —0.005). Lines correspond to monopole loops.

In Fig. 4 we visualize the relation between instantons and monopoles by
directly displaying clusters of topological charge and by drawing monopole
loops in fixed time slices for specific configurations. For any value of the
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topological charge density ¢(z) > 0.005 a light dot and for ¢(2) < —0.005
a dark dot is plotted. Monopole currents are represented by lines. Fig. 4
presents the four topologically nontrivial configurations of Fig. 3. It can be
seen that clusters of topological charge are accompanied by monopole loops.

Next we study the influence of the type of the gluonic action on the
stability of topologically nontrivial configurations. Beside the standard Wil-
son action we employed a simplified fixed-point action [9] with 4 = 1.50
(T/T. = 0.83) and 3 = 1.65 (T/T, = 1.20). The speed of cooling was cho-
sen such that the decrease of the action under cooling is approximately the
same for both actions.

Fig. 5 displays cooling histories of the action and the topological charge
for 100 independent configurations in the deconfinement phase for the Wilson
action and the fixed-point action. Except for a single configuration with
topological charge @ = 2 no clear plateau of the action can be found for the
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Fig. 5. The action {top) and the topological charge {bottom) for the Wilson action
and a fixed-point action as a function of cooling in the deconfinement phase. In
contrast to the Wilson action clear plateaus can be observed for the fixed-point
action. The action of the stable configurations is exactly a multiple of the action
of a single instanton.
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Fig. 6. Auto-correlation functions of the topological charge density (top) and p|g|-
correlations (bottom) for a fixed-point action after 20 cooling steps for 100 indepen-
dent configurations in both phases. Like in the Wilson case the configurations with
a nontrivial auto-correlation function are those with a nontrivial p|g|-correlation.

Wilson action. After 30 cooling steps the configurations become unstable
and the instantons vanish. The performance of the fixed-point action is much
better. After 20 cooling steps two plateaus form whose action is exactly the
action of one instanton and an anti-instantons, respectively.

In Fig. 6 the auto-correlation functions of the topological charge and the
p|q|-correlations are shown for the fixed-point action in the confinement and
deconfinement phase after 20 cooling steps. They yield qualitatively the
same result as those produced by the Wilson action.

3. Conclusion

We analyzed the topological structure of the SU(2) vacuum at finite
temperature in both phases of the theory. The auto-correlation functions of
the topological charge density are nontrivial after 20 cooling steps reflecting
the existence of instantons. Correlation functions between the topological
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charge density and the monopole density are hardly affected by cooling in-
dicating a close spatial relation between instantons and monopoles. This
observation also holds in the deconfinement phase. Studying the origin of
the coexistence between monopoles and instantons in more detail we com-
puted correlation functions per configuration. In the deconfinement phase
only approximately 15 % of the configurations carry a topological charge
and all of these configurations give rise to nonvanishing p|g|-correlations.
Besides the standard Wilson action we employed a fixed-point action to in-
vestigate the impact of the action on the stability of topologically nontrivial
configurations under cooling. In the deconfinement phase no strict plateau
of the action can be seen for the Wilson action and instantons vanish after
30-40 cooling steps. With the fixed-point action however there exists a clear
plateau of the action and the topological charge after 20 cooling steps. The
action of these configurations is a multiple of the action of a single instanton.

REFERENCES

[1] S. Thurner, H. Markum, W. Sakuler, Proceedings of Confinement 95, Os-
aka 1995, eds. H. Toki et al., World Scientific, 1996, 77 (hep-th/9506123);
S. Thurner, M. Feurstein, H. Markum, W. Sakuler, Phys. Rev. D54, 3457
{1996).

[2] M.N. Chernodub, F.V. Gubarev, JETP Lett. 62, 100 (1995); A. Hart,
M. Teper, Phys. Lett. B371, 261 (1996); V. Bornyakov, G. Schier-
holz, Phys. Lett. B384, 190 (1996); M. Fukushima, S. Sasaki, H. Sug-
anuma, A. Tanaka, H. Toki, D. Diakonov, hep-lat/9608084; R.C. Brower,
K.N. Orginos, Chung-I Tan, hep-th/9610101.

P. Di Vecchia, K. Fabricius, G.C. Rossi, G. Veneziano, Nucl. Phys. B192, 392
(1981); Phys. Lett. B108, 323 (1982); Phys. Lett. B249, 490 (1990).

[9] T. DeGrand, A. Hasenfratz, P. Hasenfratz, F. Niedermayer, Nucl. Phys.
B454, 578 (1995); Nucl. Phys. B454, 615 (1995).



