Vol. 28 (1997) ACTA PHYSICA POLONICA B No 12

RESUMMATION OF PERTURBATIVE QCD
BY PADE APPROXIMANTS*

E. GARDI

School of Physics and Astronomy
Raymond and Beverly Sackler Faculty of Exact Sciences
Tel-Aviv University
69978 Tel-Aviv, Israel

e-mail: gardi@post.tau.ac.il

(Received September 9, 1997)

In this lecture I present some of the new developments concerning the
use of Padé Approximants (PA’s) for resuming perturbative series in QCD.
It is shown that PA’s tend to reduce the renormalization scale and scheme
dependence as compared to truncated series. In particular it is proven that
in the limit where the 3 function is dominated by the 1-loop contribution,
there is an exact symmetry that guarantees invariance of diagonal PA’s
under changing the renormalization scale. In addition it is shown that in
the large 3y approximation diagonal PA’s can be interpreted as a systematic
method for approximating the flow of momentum in Feynman diagrams.
This corresponds to a new multiple scale generalization of the Brodsky-
Lepage-Mackenzie (BLM) method to higher orders. I illustrate the method
with the Bjorken sum rule and the vacuum polarization function.

PACS numbers: 12.38. -t, 12.38. Cy

I will talk about resummation of perturbative series in QCD *. The basic
question I deal with is how to use finite order perturbative calculations in
QCD to make unambiguous theoretical predictions, with controlled errors.
As experiments improve one requires the theoretical predictions to be more
accurate. However, in QCD it is very hard to get accurate predictions,
basically because the coupling constant is large. This leads to non-negligible
non-perturbative effects as well as a badly divergent and renormalization
scheme dependent perturbative series.

* Presented at the XXXVII Cracow School of Theoretical Physics, Zakopane, Poland,
May 30-June 10, 1997

! For a recent review on the nature of perturbative series and resummation techniques
see Ref. {1}
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In this talk I will show that PA’s which start out as an alternative to
a finite order perturbative series having the same formal accuracy, actu-
ally have an important advantage over the finite order series’. Through
the resummation of certain all-order effects related to the running of the
coupling-constant, PA’s become independent of the choice of the renormal-
ization scale and therefore lead to more accurate and more reliable predic-
tions. The material presented in this lecture appears in greater detail in
Ref. [3-5].

The outline of the talk is as follows: I will start by introducing the PA’s
method and the problem of renormalization scale dependence in QCD. I will
mention some of the other ideas that were raised to confront the problem
of renormalization scale dependence and show how PA’s solve it in a most
elegant way. Then [ will address the question of what higher order effects are
summed-up by PA. I will show that there is a direct interpretation of PA’s
in terms of approximating the momentum distribution of virtual gluons in
Feynman diagrams.

First, what are PA and how do I use them? I start with an effective
charge related to some physical observable, written as a power series in x:

S, =z (1 + e+ ozl 4+ 7n1") , (1)

where 2 = a,/m. A PA is constructed by writing a ratio of two polyno-
mials such that when expanded back to a Taylor series, it gives the known
coefficients ry through r,:

1+a2+ ...+ anzy

N+M=nmn.
1+b1x+...+bM.2:M ’ * "

Punpp=2

There is a theorem that for any degree N in the numerator and M in the
denominator such that N + M = n there is a unique PA function [6]. I will
mainly deal here with diagonal PA’s which are written, in my notation, as
z[N/N + 1], having one power of 2 out of the brackets. I will soon come
back to discuss PA’s.

A renormalized perturbative series in QCD is not expected to give ex-
act predictions for measurable quantities due a few limitations. First, the
series is divergent and not even Borel-summable. The resulting ambigu-
ity is related to the existence of non-perturbative effects. Second, at any
given order, the partial-sum depends on non-physical parameters, such as
the renormalization scale. This also makes the prediction ambiguous.

2 PA have various successful application in physics. Examples of applications to sta-
tistical physics and quantum field theory are listed in Ref. [2]. Applications to QCD
appear in Ref. [3]
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Let us concentrate on the renormalization scale dependence. Usually,
when we calculate some observable R that depends on one external mo-
mentum @2 in perturbation theory, we choose as an expansion parameter
the renormalized coupling-constant at the external scale Q?. This “natu-
ral” choice of u? = Q? is, however, quite arbitrary. We can, just as well,
use some other expansion parameter y = a,(e!Q?)/m, where t # 0. The
renormalization group equation

dz
= = Boz” + B1a” + Bzt -

determines how the two couplants are related,
o=yt Batyt + (B3 + Gut) P+ (360 + 38100t 4 Bat) ' o (2)
and thus how the finite order series can be written in terms of y:
Sn(t):y(1+F1y+F2y2+F3y3...+ Fny”). (3)

The new coefficients 7; are different from the original coefficients r;, so as
to compensate for the scale shift, such that the total effect is some residual
dependence on t which is of the next, uncalculated order. Still, in QCD, since
the coupling constant is large, the numerical difference due to the change
of scale can be quite large. This limits the predictive power of the theory.
Beyond two-loops, there is also the question of scheme dependence which
can be parameterized by the higher-order coefficients of the 3 function, s,
3 and onward.

In order to test the significance of this scale and scheme dependence, we
studied [3] the polarized Bjorken Sum-Rule. In Fig. 1 the Bjorken effective
charge at NNLO for Q? = 20 GeV? is plotted as a function of the renormal-
ization group non-physical parameters: the coupling z = a,(p?)/7 and the
second coefficient of the 8 function: Cy = 2/8. We see that the surface is
far from being flat.

The same surface is drawn again in Fig. 2, but here — as a contour plot.
The thick lines are contours of equal effective charge. Large renormalization
scheme dependence corresponds to large higher-order corrections, since these
are required to compensate for the scale dependence. This observation makes
it clear that we should carefully choose the renormalization scale and scheme
that we are using.

In Fig. 2 one can identify a region of relatively low renormalization scale
and scheme dependence. Specific scales and schemes are chosen according to
different criterions such as the method of Effective Charges [7], the Principal
of Minimal Sensitivity [8] and the BLM scale-setting method [9]. For the
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Bjorken effective-charge - a NNLO partial-sum
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Bjorken Sum-Rule example (Fig. 2), all of the above are located in the
central region of low renormalization scale and scheme dependence. Note
that in this case, MS, with u? = Q? is not a good choice.

Let us go back to Eq. (2) that describes the scale transformation relating
the coupling-constants @ and y defined at two different scales. If we assume
that the 1-loop coefficient of the 3 function, g, is large enough, i.e.

Bo > ,Bzfl'i

for any 7 > 1, we can approximate the full relation by one that includes only
the leading terms in fp:

e~y + fotyt+ AP+ B3yt 4
This can be written in a closed form:

Yy
T e,
1 — doty

It is important to realize that in the physical case of QCD with 3 to 5
flavors, this approximation is good. Fig. 3 shows the renormalization scale
transformation itself, namely the running coupling constant as a function of
the scale. The dashed line is the best we know of the running coupling in
QCD (it includes the 4-loop effects), and the solid line is the 1-loop running
coupling. The two are quite close and I shall use here the 1-loop formula.

I now get to the main point, which is the independence of PA on the
renormalization scale. We saw that partial-sums as usually written in per-
turbation theory always yield different results in different renormalization
scales:

Sa(0) # Sa(t),
where S, (0) refers to u? = Q? as in Eq. (1), S, (t) refers to yu? = €'Q? as
in Eq. (3), and @ = y/ (1 — Boty). However, if we construct a diagonal PA
from the series in z (Eq. (1)),

~ . 1+(L1.’L’+...+a1\/l‘1\v
o 1+b]$+...+b1\7+1(L‘N+1

PJT[N/N+1] (1‘)

and independently, another PA from the series in y (Eq. (3)),

P (v) 1+ éay+ ...+ any™
N/N y) =y 7. i /
yIN/N+1] 1+ by + ...+ byyyVH!

we will get the same result in both:

Ponyn41() = Pyvnin(y)-
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Scale Transformation for N,=3 vs. large §, approximation
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This is due to the mathematical property of diagonal PA’s: they are invariant
under homographic transformations of the PA argument (z — z/(1 +
Kz), see [4,6]). We know that the all-order result does not depend on the
renormalization scale. The fact that diagonal PA are invariant suggests that
they correctly resum certain all-order effects that are related to the running
of the coupling-constant.

Non-diagonal PA are not exactly invariant. However, on the global level
(for large scale shifts ¢) they always have a reduced scale dependence [4].
Going back to the example we examined above, namely the NNLO Bjorken
sum-rule, we show in Fig. 4 the z[0/2] PA. Clearly (compare with the partial-
sum of Fig. 1) the renormalization scale and scheme dependence is almost
completely eliminated!

Non-diagonal PA’s may be dangerous, since specific renormalization scales
and schemes are sometimes particularly deviant, as in the example of the
2[1/1] PA for the Bjorken sum-rule shown in Fig. 5. Therefore it is best to
use a diagonal z[N — 1/N] PA.

I now consider the question of what higher-order contributions are summed-
up by diagonal PA’s. It turns out that we can get some rigorous results [5]
if we limit ourselves to the “large B¢” approximation [10-12], where only
the leading term in fp in each perturbative coefficient is taken into ac-
count. This approximation corresponds to summing certain higher-order

Bjorken effective-charge - [1/1] PS

Bjorken
effective

charg:
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contributions that are related to the exchange of one virtual gluon. [ use
Neubert’s formulation [10], where resummation is achieved by using the run-
ning coupling-constant at the vertices. The resummation integral is then a
weighted average of the coupling-constant at all scales:

Aree= [0t (@)ak = [ p(s)a¥ (eQP)ds,

— O

where w(k) is the Feynman integrand and s = In (k—i) The superscript
V stands for the V-scheme which is the most convenient renormalization
scheme for my purposes. While a specific scheme is used here in order to
simplify the formulae, it is important to understand that the above resum-
mation integral is scheme-invariant [10]. The function p(s) describes the
distribution of momentum of the exchanged gluon, and z" (e*Q?) describes
the interaction strength as a function of the momentum. Using a 1-loop
formula for 2V (e°Q?) I get:

B o¢ xv(Qz)
Aves = / pls) (1 ¥ sho xV(Qz)) o

—03

Clearly the integral includes contributions from an infinite set of diagrams.
The exact distribution function (in the large 8o approximation) has been
calculated for a few observables, such as the vacuum-polarization D-function
[10,13,14] which I shall use here as an example. A representative diagram is
the following: In this particular diagram the exchanged gluon is dressed by

fermion loops. However, gluonic corrections that are related to the 1-loop
running of the coupling are resumed in the above technique just as well.
Of course, the resummation integral is not well defined, due to the inte-
gration over the infrared pole in the 1-loop formula for the running coupling
(Landau pole). This is how infrared renormalons appear in this formulation.
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I will not deal here with the renormalon ambiguity which cannot be settled
completely within perturbative QCD, but rather use the resummation inte-
gral to study the PA method. The general methodology is to assume that
only a first few coefficients in the perturbative series are known, construct
a PA basing on this limited information and then compare the PA with the
exact all-order result. We will see below that this comparison can be done
also on the level of the momentum distribution function, since PA’s can
be interpreted as what one obtains by replacing the continuous momentum
distribution function with a particular discrete distribution.

It was found empirically that the momentum distribution function in the
large 3y approximation is a non-negative function in many physical examples
[5,10]. This justifies a posteriori the probabilistic interpretation implied by
the name ‘momentum distribution’. If indeed p(s) > 0 for any s, then the
resummation integral defines a so-called Hamburger function [6]:

')_4,%5/30—/;) s = /1 “do(s). ()

where z = o2V (Q?) and ¢(s) is the indefinite integral of p(s). The pertur-
bative coeflicients are moments of the distribution function:

for ¢ > 0.
There is a theorem [6] that guarantees that for a Hamburger function, a
z[N — 1/N] PA constructed from the partial-sum:

2N -1

2 > fil=2)
1=0

can be written as:

f(z) ~ z[N=-1/N] =

with ¢; realand r; > 0 for: =1,2,...N.

Through this decomposition of the PA function, together with Eq. (4) one
realizes that the PA corresponds to approximating the all-order continuous
distribution function by a sum of N weighted é-functions:

N

px(s) = Y ridls — )

i=1
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or, equivalently, its indefinite integral ¢(s), by a piece-wise constant function
composed of N steps:

v
o () = D0l — g5).

Note that pn(s) is optimal (and unique, of course) since the equation
for constructing the PA imply that pn(s) reproduces the first 2V moments
of the distribution function, which we know. Using a diagonal PA of a
Hamburger function to identify the optimal scales (¢;) and weights (r;) is
the basic idea behind the method of Gaussian quadrature for numerical
integration [6].

In the Brodsky-Lepage-Mackenzie (BLM) approach [9] one evaluates the
coupling-constant at a scale that corresponds to the average momentum of
the exchanged gluon (the BLM scale). This is exactly equivalent to approxi-
mating the distribution function by a single §-function located at its center.
This same effect can also be achieved simply by using a z[0/1] PA.for the
leading 3 series [4]. In the method described above one uses an z[N — 1/N]
PA of the leading g series that corresponds to approximating the momen-
tum distribution function by a set of N weighted & functions. Therefore it
can be viewed as a generalization of the BLM method for higher-orders.

Momentum Distribution within the Adler D—function in the large f, limit
vs. Pade—Approximants é—function location

x[0/1) PA +
x[1/2) PA
1.0} x[2/3] PA ©
x{3/4) PA 2
x[(4/5] PA -

o(s)

Fig. 6.
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Distribution within the Adler D—function vs. Pade~Approximants
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In the following, I illustrate the above ideas with the vacuum-polarization
D-function. The all-order distribution function p(s) [10] is plotted in Fig. 6
as a continuous line. We see that there are contributions from both UV scales
(positive s) and IR scales (negative s). The different symbols correspond
to the locations {g;) and weights (r;) of the diagonal PA’s poles. For the
z[0/1] PA, there is one é-function at the BLM scale. For the z[1/2] PA,
there are two §-functions, and so on. In Fig. 7 we see how using z[N — /N]
PA corresponds to approximating the integral distribution function ¢(s) by
a piecewise constant function, composed of IV steps.

To conclude, we saw that diagonal PA’s can be used to resum certain
all-order effects that are related to the running of the coupling constant,
and thus provide a systematic method for obtaining reliable scale-invariant
predictions. There is a rigorous relation between diagonal PA and the mo-
mentum distribution of virtual gluons. I stress that this result holds only
for a single gluon exchange, i.e. within the large fy approximation. The
way to go beyond this approximation is still unclear. Nevertheless, from the
results presented here for the Bjorken Sum-Rule, it is clear that PA’s are an
important tool for QCD phenomenology.
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