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The analytical approach is applied for description of small angle Bhabha
scattering at LEP1. The QED correction to the Born cross-section is calcu-
lated with leading and next-to-leading accuracy in the second order of the
perturbation theory and with leading one in the third order. All contribu-
tions due to photon emission and pair production in the second order are
calculated starting from essential Feynman diagrams. The third order cor-
rections are computed by means of the electron structure function method.
Inclusive and calorimeter event selections for asymmetrical wide-narrow
circular detectors are investigated.

PACS numbers: 12.20. Ds

The small angle Bhabha scattering (SABS) process is used to measure
luminosity of electron-positron colliders. At LEP1 an experimental accuracy
on the luminosity better then one per mille has been reached [1] and to obtain
the total accuracy a systematic theoretical error must be added. That is
why in recent years a considerable attention has been devoted to theoretical
investigation of SABS cross-section [2-11].

The theoretical calculation of SABS cross-section at LEP1 has to cope
with two problems. The first one is the description of the experimental
restrictions used for event selection in terms of final particles phase space.
The second concerns the computation of matrix element squared with the
required accuracy. There are two approaches for the theoretical study of
SABS at LEP1: the one based on Monte Carlo programs [3-6] and the
analytical approach [7-11].

* Presented at the Cracow International Symposium on Radiative Corrections to the
Standard Model, Cracow, Poland, August 1-5, 1996.
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The advantage of the MC approach is the possibility to model different
types of detectors and event selection |[3]. But at this approach some prob-
lems with exact matrix element squared exist. Contrary, the advantage of
the analytical one is the possibility to use exact matrix element squared and
its defect is low mobility relative the change of an experimental conditions
for event selection. Nevertheless, the analytical calculations have a great
importance because allow to check numerous MC calculations for different
types of ideal detectors.

In this talk we list some analytical results for SABS cross-section at
LEP1 suitable for inclusive and calorimeter event selection in the case of
asymmetrical wide-narrow circular detectors.

1. First order correction

Let us introduce the dimentionless quantity Y = 4—%—7@'{001)5 where
2 = €202 (¢ is the beam energy and 6, is the minimal angle of wide detec-

tor). The experimentally measurable cross section 0,5 is defined as follows

do(et +e” — et +e +X) ()
dxydzodiqld?qy '

Oobs = /(lmlda,'g@d?q{tdzqé'"gieg

where X denotes the particles created in the final state, x;(x2), ¢i (43)
are, respectively, the energy fraction and the transverse component of the
momentum of the electron (positron) in the final state. Functions ©f do
take into account angular cuts while function @-cutoff on invariant mass of
detected electron and positron:

C=0(0;—-0_)0(0-—6,), O5=0(0,—0,)0(6,—62), O =0(z122—2.).
0 - lgi | I 6, = g | i @)
1€ o€

For wide-narrow angular acceptance
0;
63 > 04 > 0, > 6y, Pi:0_>l-
1

The first order correction includes the contributions due to virtual and
real (soft and hard) photon emission

Si=Syis+ S+ 28 (3)

For the case of inclusive event selection (IES) contribution due to virtual
and soft photon (with the energy less than Ae¢, A <1 ) reads
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dz 3 €207z
Cyis = 23/—[2@ SDWA+SL- L=h S @)

where = = (¢3)%/Q%, m is electron mass.

The second (third) term in r.h.s. of Eq. (3) is responsible for the correc-
tion due to hard photon emission by positron (electron). It can be derived by
the integration of the differential cross-section of the single photon emission
( see [10] Eq. (A.16)) over the region

- q;
1< <p§a $P%<’:1Q12 <1P4, 'lc<l'2<1-—;j r1 =1,
(Pa<z<pl 22 < <a®pl zo<a; <1 =4, 22=1). (5

The result may be written as follows:

o2
3
o dz
Iy =— / —
2r ] 22
1

P2 1-a

dz 1+ 2? )
PH = (‘L‘) - ye - ~ ~
- Zﬂ- 1—-2 [(l+03 )(L ”+K(-L,Z7PS’])]0«’~’L, (())

f?dm[( (A +28) + Kl sipapm]

P2

~ (-2
142

+(§4 - 92’ )zs+ (54 - 02)24’

z <J42 + J(fz)) + ALy + AE;?JM

- 1— )2 fool T -
I‘(x*:;p3*l):£'r+—,;%“(1+(}( )+L1+0( )L2+6 )L (7)

When writing Eqs.(6) and (7) we used the following notations for 6-
functions

0 = 0(a2p? — 2), 6;=0(p>-2), 0:D =1-6", B=1-6,

Aip =06y, Al =67 gl
and for L,

(z— )(P4") 2 I, =1n

(1/’4 )(-l/’2 z)

(z — 2%p3)(2%p3 ~ 2)

L1 =In ;
v (xpd -
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(z — P%)(UM - z)
(P;i - :)(lPQ - z)

(z - T"'ﬂ%)(rﬂi — z)

5 . ., Ly=In
(22p3 = z)(xpd - o) °

IJ3 —_ lﬂ

The quantities L; may be obtained from L by substitution py — p3, p2 — 1.
The sum in r.h.s. of Eq. (3) does not depend on auxiliary parameter A

and reads as
I\ ) dx}

Sl:2w{1/~
*/ Elve f(-nen e ]y

where function Py(2) defines the iterative form of nonsinglet electron struc-
ture function (see for example [5]). The first (second) line in the r.h.s. of
Eq. (8) is the contribution due to photon emission by positron (electron).
The terms accompanied with x-dependent é-functions under integral sign
correspond to initial-state correction while the rest - to final-state one.

Formula (8) is suitable for IES. Let us investigate the calorimeter event
selection (CES) labeled in [3] as CALOLl. The CALOL1 cluster is the cone
with angular radius & = 0.01 around final electron (or positron) momen-
tum direction. If photon belongs to the cluster the whole cluster energy is
measured. and electron can have any possible energy. Therefore. the limits
of x-integration for ¥, extend from 0 to 1 in this case. If photon escapes
the cluster the event looks the same as for IES. The above restrictions on
x-integration limits can be written symbolically as follows:

l\a

[—\424'/( P () (A + A5 +

1 . 1 Te
/(l:r—é—/(if}ﬂ < d)dr = /rl.r - /(ifiﬂ > d)dx {9)
Ie 0 0 0
where 7 = 5 - —}j— and w(l?) is the energy (transverse momentum) of hard
photon.

As we saw for IES it is necessary to differ the contributions into Xy due
to electron and positron radiation

YZi=Y"+ Y, (10)
and according to (9) we have

L’“’:S,'+Sf+$;+5‘;9 Sw:—‘j‘i‘f‘-‘;f'kjiz_“"l‘{’ (1
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where index i(f) labels initial (final) state and ¢ shows on a cluster form
dependence. B

The quantities X; and X; coincide with corresponding initial-state cor-
rection for IES (see comments after Eq. (8)). For Xy and X'y we can use
the IES form of differential cross-section with enlarged x-integration limits.
The result reads

P3 - 1 1 2
P B N _ +z
T o) 2|72 +/ ] o + —x Ll)dx] )
P2 - Y
P%z ) 1 -
g - o [ 1 REE Ay
—f = 27 =2 2—-\42+ (1 T+ 1 _ Ll)_Lu
1 - 0
1
i (@—%)L;}dr], (12)

In order to find the additional contributions into ¥y, which depend on
the cluster form. it is enough to use the simplified differential cross-section
of single photon radiation, neglecting electron mass, and take into account
the restrictions |F] < d (for initial state) and |F] > & (for final state). The
contribution due to initial-state electron emission may be written as follows:

c z o
Y= 1+1 da /d /(Ll‘llfp I 2V A). A= — (13)
1—-=x 01

where ¥ defines the limits of = (in the straight brackets) and z; (in the curve
brackets) integration:

U = [a® ad](2%zp. 2Y) + [b% a®) (22 2y %20 ) + [b3. 0P (x2p3, 2Pz )
ay = p2. bo=py. a=max(pz, 1+ A(l - z)),
b = min(py, p3 — M1 —2)). 2z = (Vz+ +A(1 — z)?,
and function & reads

¢ = %(:1_1:”4-3_1~ )arctan————— \/__\/1__
A1 = 2)? = (71 — e/2)?
(VEL + 2v/z)? — \Eg2(1 — 2)2

The cluster depndent contribution due to final-state electron emission reads:

Q= (14)
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c a 1422 dz
Ef = :2—7;/ 1_$dx[/;—2—/dzl!PF(zl,z;x,,\)

lz — =
1—-=z

2 bgd
nl%3—4‘+1+)+/—2;(1n +12)],
02

p3— =

2 1 1 (VZ1 — 2+/2)?
F= .7;(:1 —2z - $22) arctan (z1 — 222)Q I
A(2vz F A(1 — )
= . 1
l+ = In zE 220z — A%2(1 — 2) (15)

In order to obtain Ef it is enough to substitude a, 13, ag and 130 instead of

a, b, ag and by, respectively, in the expression for ¥, where

i@ = pa+ A1 —2), a=max(l,ps— A(1~-2z),
b= ps— A1 -2), bo = min(ps + A(1 — ), p3) .

Finally, the cluster dependent contribution due to final-state positron
emission may be written as follows:

T1+ 22 pgd
e« x A z -2 . IT
== dl/:—z{e(ao —2)— 8(= ~ b3)] Ls
0 1
+X%(a, b, ag, bo — @,b,d0,bo;  p3, 1 = pa, p2) .- (16}

CALO?2 event selection differs from CALO1 one with the form of the
cluster ( see [3] ). Only cluster dependent contributions into Ij will be
changed in this case. Analytical formulae are very cumbersome, and we give
the result for symmetrical wide-wide case only (X7 = X))

Te
c o 1+ a? dz 2 1 1
Y= — de | — | dz;—
! ‘27r/1—m 1/22/ 17r(zl—:z:z+z—zl>
0

X[!plibl + U,d, + ‘I’3¢3] . (17)
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&, = arctan Qg‘) — arctann, @y = arctan n'l, @3 = arctan

o5 (V- A

n = ricot ——, P
QF =y [CWEHVE)T - (- a2/ £ 2t
' 1-1)2 \/_i;w,,\)g—??\/- VZ1)?
2J’" e?2) + [(pa ~ (1—wm‘.z§ ’](z ph,2%24),
$ (e%24,2%) + [(p3 — (1 — ©)N) 2 ) (@221, 2202)
+[p§ pa— ( )N (2203, 222) .
# (1= 2)0)2(22I2, 2%+ o, (1 + (1 — 2)2)?) (2%, 2%2.).

(+)

1

&
l

(18)

The corresponding formula due to final electron emission reads:

Ze 9
o o I+ /dz 2 L 1
f 27r0 1_$d:1:[ 22 dﬂﬂ(zl—;vz 2y — 22z
[Wl F1 + Wy Fy + W3 Fs)
03
(l,, z)(.]f_ -2z) i dz x—z| -
—(1 I_
+/ z)(x.]}_—z)+ / 22(n 1—z+ )
(14 (1~z)2)2

(19)

1
Fy, = arctan — Ty F, = arctan(, F3 = arctan Qﬂrﬂ ,
f

C=r 45;5 . _I_i[__‘ I =1_(A=)),

= rycot ry= 5 — 22z
Q&i) —. .’_ngi)g sin & = ‘/i— sin@,
r; Z
v, = [ngr),I}(.?:?J’ :L‘z)—}- {3:(3_)“‘1 }( 2J+, 2}2)
+[o 7 wod ). (20




498 N.P. MERENKOV

The quantities @ and A which enter into Eqs.(17)-(20) define the form
and the size of CALO?2 cluster, namely

3 ;_ b 0.051
32’ 6, 0 16
Finally, the functions .J4 and z,l(i) are defined as follows
1 < A < , P
Jigy) = 3 {\/73 —22(1 — 2)2X?sin? & £ (1 — 2)A\(1 — 22 sin? 5) ,

B =1-4z(1 —:c)sin2§, zz(i)

= (piE (1= 2)A)? = 4a(1 — 2)pi(p; £ A) sin’

no|

2. Second order correction

In this Section we want to give the second order correction to SABS cross-
section with next-to-leading accuracy. It contains the contributions due to
pair production and two photon emission. The result for pair production
have published yet for symmetrical angular acceptance [11]. That is why we
will deal with photonic correction only

h ,
SRS L 45 (21)

The first term in r.h.s. of Eq. (21) is resposible for two photon (real and
virtual) emission by the electron, the second one — by the positron, and the
third one describes the situation when both, the electron and the positron,
radiate.

The leading contributions in the case of IES read

N P2 1 1
L dz , 11 (z) ' dt T\ (¢)
E"/"/ = m -Z—2'L /dl[§(1+03 )P2(1)+ —t_Pl(t)Pl ? 03 ]
o2 Fe
2 B Pt
o dz dt T
b= [ E0 [el5n s aPn@ + [ Tron(F)al].
1 Te z
. 00 1 1
L o [dz _,
R = ?/3[; /dm1/(lw2P1(:L'1)P1(.7;2)
0 Te Ig

T

X (A31 + A,‘?ﬁ”) <4’;\42 + Jf{;)) , (22)
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where

dt
Py = [ TR0P ( ) /Pg(?,)dx ~ 0.
In the case of CES we have to take in the r.h.s. of Egs. (22) the terms
accompanied with x-dependent #-functions only.

As concerns next-to-leading contribution into £ " we have result for sym-
metrical angular acceptance (¥ = X ) and asymmetrical wide-narrow
one for IES only

2
N2 T dz
L’””:%(%) /(f—zLY, (23)
/ =
1 l-x 1 1
Y:y—{—/di {A—}-/dzl [———4 1+ ((9(1’[1—{-12)
1
Te 0
1+ T 2(1+z) -
- o) (1-21) (1 m)]
+( 1_T1(1_$)>(l4+ la 261 7*)15) + S
1 1-r . 5 \/E/p~rd
2] [ e (e 2z) s o)
1-z Ty Ty l-m J o

1-Vz/p
p 45 2
y = 12(3+ 10(; — T 16In“(1 — ;) — 28In(1 — z.),

oM . 1+ 2?
A=(14+67)2(5+2z)+4(z+3)In(1 —z)+4 N Inz

1+22[,3 1 (1-a)?

9 Yo . Rl PR O Sl
+ 1 [(2 ln:z:)K(z,z,p,l) 2111:1: 51T 27)

xip? — 2 z—1)(z - 2H)(p? - 2)

201 — o) (8 In | =L _ZZ| 410 |{ )]
+2In( J)(p n P 4+ In (:“8)2(%[)2_3)

A 1
+gt) [1_6 ln(l—z)—}-——l%—(l—:c)lnr

14w 3,9 i . z(l—z)+4zlnz
+2 1_$( 2]11 t+3lnzin(l —z)— Lix(1 —z) — 31 + 29

1+2)? z— - 2 _

L+ 22 p=Vz p x?p? — 2

(%" = 2)(wp? = =
l;:ln N
(#(1 = z1)p? - 2)(z(x + 21)p? - 2)
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o [0 = 2?1 -2 - 3)(2?p? - 2)?
b=l 23ay(x(1— z1)p? - 2)? ’
Iy = In (z—2)(z = (L= 2))))(z = (z + 71)?)
(z=- (Il —z))z-a(l - a))((@+a1) - 2)(z(z+21) - 2)

1o [0 =212 = ) (@ 4+ 20)%? = 2)(wp® - 2)
((z + 21)p? = 2)((1 = 71)p? — z)(2a?p? - )
I, = In (1 —zy)xzy(z - )(z - 2?)(z = (1 — 21)*)?
wa(z = (L= 21))¥(z — (1 — 21))?
(P = 2)(z(1—21)p® - 2)°
I 2 = (= ) -

=da
({1 = 1,)%p? — 2)?
(1 —21)?(2(1 = 21)p? = 2)((1 — 2y)p? - 2)?
(zp® — )((Jf+r )2p? — 2)?

(22p? = 2)(z(z + 1)p? - 3)((1 +z1)p% - 2)
For wide-narrow angular acceptance it needs to consider only the case

of positron emission X, because the corresponding expression for electron
emission 7 is just Eq. (23) with (p32, p2) as the limits of z-integration and

p3 instead p under the integral sign.
The analytical expression for £, in this case has the following form:

1 dz
3 —_ | = b
b 4(,,)/ =LAy, (24)
1

1
= yJ42+/ {A42[4(4+3:1:)+6(17+3) In(1 - z)

15 =In

lg = In

+<1:— 1+4 + )lnx} +Ag§)[(1 -z)(3+Inz)
) 1+ 2? 2
+2(z +3)In(l-2)+4 T—1n ]+4§,2’1_I(4

vz — zps
ps— 7

1+ a2 1+2°
B (! —_
) +/(xl[ (1—1)561

+(1+2))In(1 - z) +2 gl—@)—(m‘x In

Vz = zp2
p2— V=

~6,87) In
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z — 1+:I;
(—3( iy + Aoy + (B0 = 05+ (8 - 32)12_) + (—1 ks
z (z) (1 —2z1)%zy (1 —x;)%z,
_m> (A42 (ln —"1"*3:7:]— + l3+ + Agol In —T“ + l‘H-
%ﬁ?“%mnaf%744ﬂ)+@Ykﬂ¥m%+4m_%ﬂ%
1-x
g p— —_r 1 -7 1 z? =z
+(@ ) — o ")15-) 12 FT AL "} +2 1123 ’[ / dzy
11— -z
1~z pa
1 Vz/pa— ) -
7 ary {z
—lg — —1 —l| +2 9,0
X<7316 xy nl—?l)+ 0/ x) ‘] 2
l—x Vz/p2=zx
R _..z}}
1-%/ps "2 o 0 !

(2 — p3)(z = 2%p3) (%P

ERFTALER
(z-2 Pz)(ﬂf - 2)
z4(z — zpk (:cp4 z)

B = A42<4ln(1 —z)ln

-{-QA(J:)I (1 -2x)ln +(3-21In T).K( T, 25 P4, P2)

—(z i i . teln 2
+Ag2)<7—2lnxln(1~$)_31n2$_2Li2(1_$)_@(1 z) + xn;)

1+ z2

+2(§4 - 02) In(l - 'l’) lH

(b~ 212273 - -
2085 - 63" (= — 2%p3) (xp — )
4 2 ) ( ) (-Z'Z/)?;—Z)(lfpg—:)
— /= (rn? _ -
+494§£T)ln ¥pa = V= In l(ng z)
Pa | Tipy — z
s _ 222
+46,05" In “[ LA T it
z(z — zp3)

(z — 2%p3)(z — xp3)
(z—2(1—20)pd)(z — 2(z + 21)p)) |
(z = 2p})3(z — (1 — 21)%p3)%(z — (z + 71)%p3)?

(z—22p%)(z — 2(1 - 21)pd) (2 — z(z + 21)p3)
—(1+&)In[(z - (1 - 21)p3)*(z - (z + 21)p3)?],

e =(1£¢)In

ly = (1+é)In




502

N.P
l3:t = (1 + é) In

MERENKOV

z—2%p}

—(i= o173
sy =(1£¢)In

o p%
, lx=(01£él — :
(z = (1 —z1)*p3)?
(z = z(1 = z1)p3)(z = (1 — 21)p3)
N 22(z — (1 1)%)*
6= 22|
(1—21)%(z = 2(1 — 21)p3)2(z — (1 — z1)p3)?
- (2 = 2pd)2(z = (2 + 21)%p3)"
’ (z = 22p3)%(z — z(x + 21)p})(z = (z + 21)p3)? |
where 1o = 1 — 2 — zy, and ¢ is the operator of the substitution
f(p2) = flpa)s lo=—éls, Ir=—élr.
One can verify that in the symmetrical limit formula (24) coincides with
Eq. (23).
For opposite side emission the next-to-leading contribution into by
reads
1
T = 46,8, - / dz [ + 2

=2
2(1 —x)
1

N(z,2p, 1)+ Z(a) + T
X / dz, [(1+.’E1)5(l1)+
ze/7)

where

(25)

1+ 22
ton o

T
z)

1
A=—-6-14In(1l —z.) - 8In?(1 — 2, +/dr{ 1+ 2)
BK (2,210, 1) + 705 + 21n =
4 =z
+——8'")
l1-z

14+ 22
, T

1-—

ZoEe 34 a1+ 67

xI
1—z.)
Niazip0)] + el
We introduce the following reduced notation for #-functions
Z(z) = 0,8, + 698",

Z(z) = 0,8 — 6,87
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The quantity K'(z, z; p, 1) entering into espression for A is the K- factor for
single photon emission, and the quantity N(z, z; p, 1) may be derived by the
help of Eq. (7) in the following way:

___)_
1+

Nz, z:ip,1) = <E($=Z;P«zaﬂz) - (_\42+Af,2)))

pa=p, p2=1

In the wide-narrow case the corresponding formula for X may be written
as follows:
2 e d
(4 W
0

where

1
1 1+ 22 . 1 —uq
W =4 - [ de | —_N(z, = Eay(z A
N z{/” [2(1_;1;)[\’“’ R

T

1
= 2
X / dz, [(1+$1)=42($)+ Af;z)]

1 — Iy

IC/I

- I —
+fd1 [-———— (x. 2P0, p2) + Zaz{2) + 1 — mAi2)J

2 —
X / (1.1,‘1 [(1+$1):31(CL‘)+ A'(Bllj)]}’
1 — T

rfx

and

A

+/d1:{;342[7(1+x)+ 8 lul'(lﬁl.c)]
-z T — .

1+ z? [3

2(1— )12

(;l42.l31 -+ _kgl_l(l))} 4—ln

(=6 — 141n(1 — 2,) — 8In*(1 — 2.)) Ay

-

3
A K (z, 2 p3, 1) + - A311((:1: Zi P4,y P2)

; - [(3 + 2)(A31Z42(2) + Q42531 (2))

1+2

2

4 —(x T
+__’IT(A~'(!2)A31 + Zél’An)

1 — (4342fV( v 5 03, )

+ A3y Nz, ::mmﬁ)]} :
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where

Zp(z) = 040, + 9§I)§é$) =Ap+ Z-\f;;) .
Ta(e) = Az + A8, AV = Ay - AR

It is obvious that in symmetrical limit formula (26) coincides with (25) one.

3. Numerical results

In this Section we will use the standard abbreviation for inclusive event
selection, namely barel instead of IES. The numerical calculations carried
out for the beam energy and limited angles of detectors are as given in [3].
The Born cross-section

°3

Vg = __47ra»2 / d= [ ﬁ
Q? 22 2z
I

(in symmetrical wide-wide case the limits of integration are 1 and p?) equals
175.922 nb for w — w barel and calol, 139.971 nb for w — w calo2, n — n
barel and calol, 103.299 nb for n — n calo2. The values of the Born
cross-section for n — w and n — n cases are the same.

The results of our calculations of QED correction with the switched off
vacuum polarization are shown in the Tables I-1II. For comparsion we give
also the corresponding numbers derived by the help of Monte Carlo program
bhlumi {3].

As one can see from the Table I there is an approximately constant dif-
ference on the level of 0.3 per mille between our analytical and MC results
inside first order correction. The possible reason of this effect is the follow-
ing. In our calculation we systematiccaly ignore terms accompanied with
6? ~ |t|/s as compared with unit. It is well known that such kind of terms
have double logarithmic asvmptotic behaviour and parametrically equal to

(e|t|/7s) In? |—§ which is just 0.1 per mille for LEP1 conditions. As we know
MC bhlumi program takes into account all first order contributions [12].




Analytical Calculation of Small Angle Bhabha Cross-Section at LEP1

0

ot
o

TABLE |

The SABS cross-section at LEP1 with first order QED correction. Vacuum polar-
ization is switched off.

z. bhlumi ww ww nn wn
barel
0.1 166.046 166.008 130.813 134.504
0.3 164.740 164.702 129.797 133.416
0.5 162.241 162.203 128.001 131.428
0.7 155.431 155.390 122.922 125.809
0.9 134.390 134.334 106.478 107.945
calol
0.1 166.329 166.285 131.032 134.270
0.3 166.049 166.006 130.833 134.036
0.5 165.287 165.244 130.416 133.466
0.7 161.794 161.749 128.044 130.542
0.9 149.934 149.866 118.822 120.038
calo2
0.1 131.032 130.997 94.666 98.354
0.3 130.739 130.705  94.491 98.127
0.5 130.198 130.141  94.177 97.720
0.7 127.549 127.491 92.981 95.874
0.9 117.553 117.491 86.303 R7.696

In the Table IT we give the values of the SABS cross-section taking into
account the second order photonic correction and compare our result suit-
able for barel event selection with exponentiated version of MC bhlumi
program. The second and leading third order corrections are shown in the
Table III. As concerns the second order we give contributions due to pair
production and two photon emission.

TABLE 11

The SABS cross-section at LEP1 with second order photonic correction.

barel
z. bhlumi ww ww nn nw
0.1 166.892 166.958 131.674 134.808
0.3 165.374 165.447 130.524 133.583
0.5 162.530 162.574 128.474 131.127
0.7 155.668 155.597 123.206 125.255
0.9 137.342 137.153 108.820 109.677
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TABLE III
The higher order corrections to SABS cross- section at LEP1.

barel
pair production correction
T, wWW nn nw
0.1 0.007 - 0.004 0.015
0.3 - 0.033 -0.033 - 0.020
0.5 - 0.058 - 0.050 -0.041
0.7 - 0.090 -0.074 - 0.069
0.9 -0.142 - 0.115 -0.115

second order photonic correction
0.1 0.742 + 0.208 0.679 + 0.182 0.249 + 0.091
0.3 0.546 + 0.199 0.556 + 0.171 0.069 + 0.098
0.5 0.140 + 0.231 0.292 + 0.182 - 0.314 + 0.013
0.7 -0.027 + 0.234 0.117 + 0.187 -0.571 + 0.170
0.9 2.961 + 0.048 2.458 - 0.116 1.822 - 0.090
leading third order correction

0.1 - 0.055 - 0.047 - 0.006
0.3 - 0.065 -~ 0.053 - 0.018
0.5 - 0.038 - 0.040 0.004
0.7 0.089 0.058 0.124
0.9 0.291 0.220 0.331

Beside this we divide the photonic correction by leading and next-to-
leading parts. Third order correction include both, pair production accom-
panied with single photon emission and three photon emission.

As we can see for intermediate values of x. the next-to-leading pho-
tonic correction may be more than leading one but exponentiated version of
bhlumi program absorbs its main part.
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