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We describe the state of the art in the field of radiative corrections
for deep inelastic scattering. Different methods of calculation of radiative
corrections are reviewed. Some new results for QED radiative corrections
for polarized deep inelastic scattering at HERA are presented. A compar-
ison of results obtained by the codes POLRAD and HECTOR is given for the
kinematic regime of the HERMES experiment. Recent results on radia-
tive corrections to deep inelastic scattering with tagged photons are briefly
discussed.
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1. Introduction

The knowledge of QED, QCD, and electroweak (EW) radiative correc-
tions (RC) to the different deep inelastic scattering (DIS) processes is in-
dispensable for the precise determination of the nucleon structure functions
(SF). The forthcoming high statistics measurements of unpolarized and po-
larized SF at H1, ZEUS, HERMES, and SLAC require the knowledge of
the RC at the percent level. This has to be met by adequately precise
theoretical calculations.

In this report we summarize the actual status in the field of RC’s for
DIS. In section 2, we present a short review of different methods used with
an emphasis on the so-called Model Independent approach (MI). Here, we

* Presented at the Cracow International Symposium on Radiative Corrections to the
Standard Model, Cracow, Poland, August 1-5, 1996.
** Supported by PECO contract ERBCIPDCT-94-0016.

(511)



512 D. BARDIN ET AL.

also describe results of a recent new calculation [1] of the QED corrections
for polarized DIS including both v and Z-boson exchange and accounting
for all twist-2 contributions to the polarized SF’s for both longitudinally and
transversely polarized nucleons. In section 3, we present some new numerical
results of this calculation. Section 4 sketches briefly recent results on the
RC’s for DIS with tagged photons {2]. This report represents a natural
continuation of a talk [3] presented at the Warsaw Rochester Conference.
In that talk an additional motivation is presented showing why the field is
still a very vivid one.

2. Different approaches

2.1. A qualitative comparison of Monte Carlo, semi-analytic, and
deterministic approaches

Until recently, two basic approaches to the RC’s for DIS were used:

e The Monte Carlo (MC) approach aims at the construction of pre-
cise event generators (MCEG). This approach is exclusive and deals
with completely differential cross-sections. Therefore it is rather flex-
ible with respect to experimental applications, e.g. allowing for cuts.
MCEG are real tools for data analysis. In principle, this approach
suffers of statistical errors although a very impressive performance of
MCEG’s has been reached in recent years, see [4] and [5]. Typical
examples of MCEG’s for DIS are: HERACLES [6], LESKO-F [7], and
KRONOS [8].

e Semi-Analytic (SAN) approaches aim at partly integrated cross-sec-
tions. Therefore they are much less flexible concerning possible cuts as
compared to MCEG’s. Only a limited number of inclusive distributions
can be usually evaluated and no event generation is possible. However,
the method provides fast and precise codes, provide exact benchmarks
for MCEG’s. The underlying physics is clearly exhibited, and some-
times appealing formulae emerge as a reward. These are the reasons
why people will probably always try to perform SAN calculations. Fur-
thermore, SAN codes may be used for fitting of theory predictions to
experimental data at the final phase of their analysis. Examples of
SAN codes for DIS are: HELIOS [9], TERAD91 [10], FERRAD [11, 12],
APHRODITES [13], POLRAD [14] and finally HECTOR [15], to which this
talk is largely related.

Recently people began to use the so-called Deterministic Approach (DA),
see, for instance, [16]. The DA is an alternative to the MC approach but
without the ability of event generation. It also operates with completely
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differential cross-sections but integrates avoiding MC methods. A faster
computing than in the case of MC may emerge since the integration is based
on methods possessing better convergency (see the talk by Ohl [17] in these
proceedings for a discussion of basic issues of DA). A necessary feature of
DA should be the access to any realistic experimental cuts. This is usually
achieved by the explicit solution of the relevant kinematic inequalities for
the phase space boundaries. The elements of the DA are used in two of
our recent codes, pela 1.00 [18] and one of the new branches in HECTOR
1.11 [19].

2.2. Model independent approach

The Model Independent approach to the problem under consideration is
usually understood as the description of the QED RC’s to only the leptonic
line of the Born-level Feynman diagrams. The hadronic part of the diagrams
is assumed to be untouched. Therefore both the Born approximation and
the radiative diagrams contain the same hadronic tensor accessing hadron
dynamics through a potentially Model Independent description by means of
the structure functions. This is possible only for the neutral current (NC)
DIS where a continuous flow of the electric charge through the leptonic line
ensures the QED gauge invariance of the description to all orders. The MI
approach was comprehensively reviewed in [20] recently.

2.2.1. Born cross-section for the process ep — eX

Here we present a complete set of formulae for the polarized DIS Born
cross-section which can be written as a contraction of leptonic (L#") and
hadronic (W,,) tensors:

2wl

doyonn = 0 J[L‘“’VVW} dzdy, (1)

with the usual notation for momentum transfer (g), the invariants (Q?, S),

g =k~ ke, Q*=-¢*=-t. S =2(p- ki), (2)
and the Bjorken scaling variables (z, y)
2 .
) _ Py (3)

3‘—3;’ y_P'kl.

The polarization of the lepton beam is described by the spin density matrix

plky) = 32w (ko) (k) = § (1= 75 ) (1 +m), (4)
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where £, is the lepton polarization vector, satisfying
& -k =0. (5)
The leptonic tensor on the Born-level is derived straightforwardly

LM = 2[ktky + k{ky — g (ky - k2)] L5 (Q%)
+2ipekiakape ™ L, (QP). (6)

It contains a symmetric (S) and an antisymmetric (A) part

Ly (Qz) = Qz + 2|Qc| (ve — PeAeac) X(Qz)
+ (Uz + (Lg - 2]76/\6”6“6) X2 (Qz)q
L, (Qz) = _pe’\ng + 2|Qe| (ac = peAcve) X(Qz)

+ (2veae ~ pee (v2 + a?))x2 (@) (7)

In (7), ve and a. stand for the vector and axial-vector couplings of electrons
to Z-boson, p. = 1 for a particle beam and p, = —1 for an antiparticle
beam, x(Q?) is the v/Z propagator ratio

G, ME O Q?

= VASra QMY v

X(Q%)

The expression {6) possesses a nice factorization property when the ten-

sorial structures decouple from vy and Z propagators and couplings. This is

a consequence of the Ultra Relativistic Approzimation (URA) for the longi-
tudinal polarization of incoming leptons which implies

Ae
‘ge - m kl- (9)

This approximation is very accurate for the description of the Born
cross-section since it results in neglecting of terms of O(m?/Q?). It is not
precise enough, however, for the description of radiative polarized DIS, and
as a result the factorization property (6) is lost.

The hadronic tensor is being constructed from general principles of
invariance (Lorenz invariance, current conservation). There is no unique
presentation for it in the literature. We use the form of Ref. [21], where one
can also find a review of other presentations used:
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’ J J: 1 ! ! '
W = p°(2m)°y / @17, 1P)pl " 1) v —#) T L
A 2 /.
= (_gl-tu + Iy )F1JIJ2( "vQ )+ p”qu;l 2( vQQ)
q? p-q
A A O
. q'p° nn q s nn 2
—1e u,\a.—F Q + ie vie 4 va
i3 qu ( ) 22 p‘q 1 ( )
A o o
. ¢ (p-gs” —s-qp°) nx 2
+ieuurs (»-q)? 92 (.’L’,Q )
Pud + 5.py pubo] 1
+[ H - 122 — 5 .q M ] gal Q(x’Qz)
2 Pqglp-q
Pul/’z\/ J1J2 2 quqv g I 2
+s-q g w,Q)+( v+ )—g (z,Q7),
(p-q)2™* ( I T2 ) p g™
(10)
with
o~ P-q — s-q
pll»:p/.t—?—(hi’ Sy = Su — (]2 qu (11)

and s is the four-vector of the nucleon spin. In the nucleon rest frame one
has

s = A,M(0, 7). (12)

The hadronic structure functions F;'”™ and g'™ are associated with the
respective currents Jy,.Jy = v, Z.

Contracting the leptonic and hadronic tensors in (1), one derives the
three Born cross-sections, depending on the nucleon spin orientation. The
unpolarized DIS Born cross-section reads

U
do 2ra? &

= T Y S (5, @) Fi( Q). (13)

with the kinematical factors

u

Si (y’ QZ) - QyQZa
Sy (,Q%) = 2[S(1 - y) — 2yM?],
S5 (1:Q%) = (2- ¥R (14)
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The two polarized DIS Born cross-sections are

dUL’T 27&’01 LT LT
BORN _ ; 15
e 2, 5, 0,162 @), (15)
where
=,
T dp | 4M?*z M?*Q? )
— gy 16
f A pCOS 27r\} Sy (1 y-—g | (16)

and S.;'iT_gs(y,Q2) are kinematical factors which obey a compact explicit
form similar to (14), see Ref. [1].
The square root in (16) is related to the electron scattering angle 8s:

4 2, 22 .
M7z 1—y—M,Q — 17 Y, (17)
Sy S? Y-

The angle ¢ is an azimuthal angle between transverse spin vectors and
reaction plane. The nucleon polarization vector in (12) was taken as

= A L (18)
L3
for the longitudinal case, and as
7= AL (19)
for the transverse case, where 77, satisfies
ky-iy =0. (20)

The expressions (13) and (15) possess the same factorization property
as leptonic tensor (6) does. As a consequence of it, the SF’s combine with
the v and Z propagators and coupling constants and factor out from the
universal kinematic factors, .S;'Lg;r, which are simple functions of the two

independent invariants, taken as y and Q? for definiteness.

The SF’s Fijl 2 and gijl 2 enter actually in only two combinations which
are due to only two factorizing scalar structures, Ly and L,, in (6). They
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are sometimes called generalized or combined SF’s and read

Fia(2,.Q%) = Q2F}(x,Q%)
+2]Qe] (ve — pereac) X(QDFYE (2,Q%)
+ (Uz + flz - 2pe)‘evear3> XZ(Q2)FIZ,2Z($7Q2)7

Fa(2.Q%) = pe{zm (e = Pedeve) X(QM) F3 7 (2, Q%)
+ (20000 — peAe (v2 + 2] x2<Q2)E£Z<a~,Q2)},

G1,2(x, Qz) = pe{—Qgpe)\eg’lY}(wv Q2)
+2|Qe| (ae - pe)‘eve) X(Q2)g?§($a Q2)
+ [20eac = pede (02 4+ a2) | N (QM97F (w, QZ)},

G345(2, Q%) = 2/Qel (ve = preae) X(Q*) 934 5(, Q°)
+ (UZ + (lg - 27’6/\eveae) X'2(Q2)93Z,£5($v QQ) (21)
Eqgs. (13)—(21) represent the complete set of formulae for the unpolarized

and polarized DIS in the Born approximation. Now we turn to the first order
QED RC’s within MI approach.

2.2.2. Radiative process ep — eX~y

For the description of the radiative process ep — ¢X, one has to dis-
tinguish leptonic and hadronic variables:

q = ki — ko, g = p' —p,
Qf = -4 QF = —qt,
2p-q 2p - qp
= , = L ah 29
U 3 Yh 3 (22)

Four invariants, y;, Q7, yn, Q?, together with an azimuthal angle o, vary-
ing from 0 to 27 (see [20] for a complete description of the kinematics of
the process ep — eX ), form a complete set of five independent kinematic
variables.

The differential cross-section for the scattering of polarized electrons off
polarized protons, originating from the four bremsstrahlung diagrams (for
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both v and Z-boson exchanges) has a form similar to (1)

Aoy pem / 1 dyyg Sy1 L .
—BREM v , 23
1y, = 2a° dythhQ4 - = LRADW (23)

= S%y?+4MQ7. (24)

Here W, is given by the same formulae (10)-(12) as for the Born case but
now with all 4-momenta acquiring an index h, which stands for hadronic
variables. This is a property of the MI approach. The quantity L. = denotes
the leptonic radiative tensor, an analog of the Born leptonic tensor (6),
but for four bremsstrahlung diagrams. Its explicit form is presented in [1].
It does not exhibit such a simple factorizing structure as (6), see below. The
unpolarized cross-section reads

with

U
do

BREM — 2'
dzdy; = 20” /‘th‘lQth; Se (. QF oy Q) Filan. Q3) . (25)

The explicit form of the kinematic factors SLU is given by Eqgs. (3.14)- (3.16)
of Ref. [20]. They are analogs of the factors (14) for the case of bremsstrah-
lung. Due to this they are functions of four invariant variables (22) (they
are assumed to be integrated over the angle ;). As is seen from (25), the
factorization for the three generalized SF’s is fulfilled for the unpolarized
cross-section.

The polarized DIS bremsstrahlung cross-sections have a more compli-
cated structure:

y L,T‘ a s o
oo = 20’7 fan Qh{l " 0.0 QD512
(B 1) [
+/\ 2m 3/2 Z vi (JUQ;’ Yhs Qh) (Lh Qh)
Cl t==1
+8 (- Q2 yn. Q2)GE (. Qh))
+ZS~2 yr QF yn, Q1) G (’ImQh)}} (26)
=3

We note that the first sum in (26) exhibits the same factorization prop-
erty as (25). but now for five polarized SF’s. There also appear seven
new generalize(l SF’s, G**(24,Q%), and seven associated kinematic fac-

tors, S, All these non-factorizable terms are proportional to A, and

Ul (ll zit
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m?. These contributions turn out to be rather important since after one

integration more they yield terms of O(1)!.
The additional generalized SF’s are:

G1o(2.Q%) = Q%] %(z,Q%)
+2/Qclvex (@) 975 (2, Q) + v2x*(QY)gfE (2. Q).
G 2(2.Q% = 2\* Q%97 % (2. Q).
G5.45(2,Q%) = |Qelacx(QY)g37 5(2, Q%) + veacx*(Q*)gZ% 5(2,Q%). (27)

. . LT -
All kinematic factors S;;" and Sm ai,z; are of comparable complexity to

those for the unpolarized DIS. They all were explicitly derived in [1]. The
expressions for By, and (1 5 are given in [20], Eqs. (A.30)-(A.31).

2.2.3. The net radiative correction

In all figures we show the dimensionless radiative correction factor:

d*o* /dady

8 =% (any) = HAD - (28)
l2oé o /d1dy;
. 2k s . 2k . R
where d®a;__is the Born cross-section for DIS and d o, is the radiatively

corrected cross-section. The index k runs over unpolarized, longitudinal and
transverse configurations. The cross-section dzafmn is usually presented as
the sum of two terms:

d‘zo.k @ d2crk d20‘k
RAD _. _ 5 T BORN R . 29
dzdy, 1+ T v (1 41) dz;dy + dxdy; (29)

The first term contains the universal, factorized correction, originating from
the vertezx diagram and an IR-divergent part of the bremsstrahlung contri-
bution. In leptonic variables it is given by Eq. (4.45) of [20]. The second
nonuniversal, non-factorized term originates from the rest of bremsstrah-
lung contributions, which are free of IR-divergences by construction:

d?*o ’Z‘ — dund S }—k
([1 ld’l/l = L& / Yn Qh Q4 Z Jlﬂleyh Qh) (‘th Qh)
‘“1“4 Sfaom (u, QDL (1, Q2 yn, Q) Fh(z1. Q) |,  (30)

[

where LR (y;, Q2, yn, Q3) is given by Eq.(5.4) of [20].

! In the notation of Ref. [20], these are terms of O(m?/z{), which are known to give a
non-negligible contribution in complete O(a) calculations.
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In (30), the indices i, ¢ run over the set of kinematical factors and gen-
eralized SF’s F or G relevant to the index k. We note that all “additional”
terms in (26) of O(m?) are infrared finite. Therefore, they need not be
subtracted in (30). Due to this one has two different indices 7,4’ running in
different limits.

The formulae of this subsection, together with all kinematical factors
being not given here, present a complete set of formulae for the MI approach
to the RC’s for polarized DIS. Here the presentation follows the spirit of the
review [20].

2.3. Leading logarithmic approzimation
In the leading logarithmic approximation (LLA), the O(«) corrections

consist of three incoherent contributions due to initial and final state radi-
ations (ISR and FSR) [22-24] and the Compton peak [12, 25, 26]

d*o,, . _ d?o; + d®o;  d?0.0up (31)
dzdy dedy = dzdy dzdy

The ISR and FSR cross-sections have a similar generic structure:

2ot
W 2 ——1
dady 2n
d2 k asi,f d2ak
X 9(2—-2())._7 __}m ___ﬂN_ ,
{ dxdy emby—p. 5= S dady
~ Q2 2 8(:&1?)
==, J = Jl(z,v, = . (32)
i 999 =30,y)
The lower integration boundary zp derives from the conditions
#(z0) <1, g(z0) < 1. (33)

Here the new index « stands for the different types of measurements, for
which the definitions of the &, 7, S, as well as of the zp, are known to be
different (see for example [15]). Formulae of similar structure are known in

the second order LLA, O((aL)?) [27).
For leptonic variables all the Compton contributions are known [1]:

(2max

/ dQ; [Z+Fm(77h,Qh)
Q3
@y

2 U 3 L
daCOMP _ v Yy [dap

duidyr Szt y, S
]
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Th
1 (Q7)m>
d20'L iy o Y. Q2
COMP 2.\ —/d / _hz_ Y , 2 ,
dzidy, ( ”> Szt y, 4 Th 52297 (zh, Qf)
x) (Q%)mm
d20<§0MP _ (_2/\ /\T)—(icos d_gogL 4M2:E[< _ A/I?:clqu)
dzdy P/ Sa? 2ryt V' Sy ! S
1 (Qi)max
d 2
X/diEh / %{(Y— - yiz) 29) " (zr, Q})
ot (Qi)min h
+2[Y: (1= 2) +y,) 957 (24, QF), } : (34)
where
Yo =142, Ze = [1£(01-2)7,
7
y, = 11—y, 7= —. (35)
Th

The LLA formulae are remarkably compact. To derive the ISR and
IF'SR contributions one has to know only the Born cross-section. No more
complex are also the relations for the Compton peak contributions. A nat-
ural question arises: How precise are they as compared to complete O(c)
calculations? We will present some figures with comparisons of LLA and
complete calculations in Section 3.

2.4. QPM approach, EWRC

The only way to go beyond leptonic corrections is to give up the MI
approach in favour of complete O(«a) calculations within the framework of
the quark-parton model (QPM) approach where one can access the following
RC’s:

(1) The QED RC’s to the leptonic current;

(2) The QED RC'’s to the quark current — a model of hadronic RC’s:

(3) The interference of lepton and quark bremsstrahlung together with the
corresponding vy7v,vZ, vW boxes;

(4) The electroweak radiative corrections (EWRC).
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If identical SF’s are chosen, the QPM leptonic current QIED corrections
(1) should agree exactly with those calculated in the MI approach. However,
there is no access in the MI approach to the corrections (2), (3), and (4).
The EWRC (4) are usually taken into account using the language of effective
weak couplings.

HECTOR 1.00 [15] contains two QPM-based branches with complete O(a)
QED and EWRC'’s to:

e NC and CC DIS in leptonic variables [28];
e NC DIS in mized variables [29].

3. Numerical results

In this section we present some numerical results obtained with an up-
graded version of the HECTOR package [19] and present an updated compar-
ison with the results obtained by the code POLRAD15 [14].

For a brief description of main features of these codes as well as for some
numerical results illustrating the comparison between LLA and complete
O(a) calculations, and for a first comparison of these two codes we refer the
reader to [3] and [30].

In all numerical calculations we used the CTEQ3M parametrization [31]
for the unpolarized SF’s and the GRSV’96 parametrization [32] for the
polarized SFk’s.

3.1. New results of LLA/complete comparison

In Figs. 1 and 2 a comparison of the RC factors (28) is shown. For
the calculations we used the O(«) QED formulae presented in subsections
2.2 and 2.3 of this report. In the LLA calculations, all the three contribu-
tions (31) were used. We note that taking into account the Compton peak
contribution in the form of the twofold integral (34) with a tuned upper limit
(Q%)m2x (see [1] for details) improves substantially the agreement as com-
pared to the case when only initial and final state RC (32) were considered.

An agreement at the same level of precision persists even if a cut on the
invariant mass of the final hadronic state, M7, or on the transfer momentum,
Q?#, of the order of 100 GeV? is imposed.

We would like to warn the reader, however, that taking into account
LLA alone is not fully sufficient in all cases. In particular, at HERMES
energies the agreement becomes poorer, see Figs. 3 and 4 below, and even
worse when rather loose cuts are imposed.
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Fig. 1. A comparison of complete and LLA RC’s at HERA collider kinematic
regime for NC unpolarized DIS in leptonic variables.
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Fig. 2. The same as Figure 1 but for longitudinal DIS.

3.2. An updated comparison of HECTOR 1.11 and POLRAD15 results

This comparison, like the previous one, was done for the kinematic range
of HERMES, for the leptonic measurement of polarized DIS on a proton
target both for longitudinal and transverse orientations of the proton spin.
Only the v exchange diagrams and the first order QED RC’s were retained.
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Fig. 3. A comparison of RC’s calculated by HECTOR and POLRAD for NC longitudinal
DIS in leptonic variables.
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Fig. 4. The same as Figure 3 but for transverse DIS. For g, the Wandzura-Wilczek
relation {33] was used.

Figures 3 and 4 update corresponding figures of [3] and [30]. These fig-
ures, together with a figure from Ref. [30] for the unpolarized DIS, demon-
strate a very good agreement of the results of the “tuned” (i.e. with ex-
actly the same, simplified input) comparison between HECTOR 1.11 and
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POLRAD15. This does not replace future comparisons in the real experi-
mental applications. The previously registered small disagreement for the
polarized cases for low 2 and high y was due to the omission of terms
of O(m?) in Eq. (26) in [3] and [30].

From figures 3 and 4 one can also see how well the LLA and complete
calculations do agree at HERMES energies.

4. RC for tagged photon DIS

The interest to DIS with tagged photons arose recently. The H1 and
ZEUS collaborations collected samples of DIS events in which a photon is
observed in the so-called backward luminosity tagger with a typical angular
acceptance of 0.5 mrad around the beam axis. Although the present statis-
tics is limited to several thousand events, it will largely improve with more
HERA data coming. This is the reason why the RC to this sample have
to be calculated at the percent level of precision. The relevant DIS Born-
level cross-section, instead of (13). is described by a three fold-differential
expression

d’opreM 207 > .
m —-yg/(lCOSG /dgwa(l ; (36)

where the integration is performed over the angular range covered by the
photon tagger. In (36) the kinematic factors 51 , contrary to (25), are
understood to be completely differential in five kinematic variables. The
latter are chosen as 2, y;, and 6., ¢, E, in the laboratory frame, where
the photon variable cuts are defined. We note that the usual definitions of
x; and y; (22) are used in this section, i.e. they are not recalculated using
the reduced electron beam energy.

In a recent paper [2], we performed a detailed calculation of the Born
cross-section (36) and an evaluation of the RC to it. The main idea is to
combine the MI approach for the description of the Born cross-section (25)
(the DIS bremsstrahlung is the Born-level process in the problem under con-
sideration) with the LLLA for the description of ISR QED corrections (32).

In figures 5 and 6 we show the Born cross-section and the RC for £, =5
GeV, the peak value of the distribution of tagged DIS events.

The RC exhibits nice properties: it shows a typical behaviour in soft
and hard bremsstrahlung corners in y and is quite flat in between. In the
plateau region, its value is limited within a £10% band. The RC grows
slightly with increasing F.,, e.g. for E, = 10 GeV the plateau behaviour
becomes less pronounced and for reasonable z; and y; (e.g. y; < 0.9) its
value is limited within a +5%, +25% interval.
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Fig. 5. The threefold differential Born DIS cross-section with tagged photons for
E,=5GeV, y. = E,/E., E. = 27.5 GeV.
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Fig. 6. The RC to DIS cross-section with tagged photons.

The fact that the RC’s for DIS with tagged photons are not so big gives
reasons to trust a simplified approach as used here. However, a complete
calculation of O(a) RC’s to the DIS bremsstrahlung cross-section seems to
be still an important physical task in view of high statistics data to be taken
at HERA in the coming years.
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