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We discuss some properties of the algorithm ALPHA developed in col-
laboration with M. Moretti (F. Caravaglios, M. Moretti, Phys. Lett. B358,
332 (1995): F. Caravaglios, M. Moretti, Oxford University preprint OUTP-
9613P, e-Print: hep-ph/9604316).
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1. Introduction

In this section we summarize (in a more heuristic fashion) the basic ideas
of the algorithm ALPHA for the computation of the scattering amplitudes,
for a more detailed and formal discussion we refer to the paper [1]. Suppose
that we want to compute the amplitude of two scalars with momenta p; and
p2 going into scalars with momenta p3 and p; within a A/6¢> model. The
free wave functions for these external states are given by the exponentials
a; exp{ip;x), where the a; are some normalization constants. At the zero
perturbative order (z.e. at the classical level) these four interacting plane
waves will excite additional states, whose wave functions are the plane waves
with off-shell momenta given by the sum of the external momenta ps =
P1+ P2, P6 = P1 + pa,p7 = p1 + pg. In other words our physical system is
described by the superimposition of 7 plane waves

B(x) = bje'Pr® j=17. (1)

Neglecting all the other states (that are not excited at this perturbative
order), the action for this simplified system with 7 states can be written

1. A
S = _jpfbf - 'géijkbibjbk- (2)

* Presented at the Cracow International Symposium on Radiative Corrections to the
Standard Model, Cracow, Poland, August 1-5, 1996.
(593)
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The &;;x is similar to a Kronecker delta: since in our system only those
combinations of states which conserve the total momentum interact with
coupling A; thus &8 = 1if p; + p; + pr = 0 otherwise the states will not
interact and é;;z = 0. One can verify that this action is well defined and
that the scattering amplitude is correctly given by the legendre transform
of this function (2) with respect the sources a,. In particular the equation
of motion for the above action is

AL
p?a,,- = b; — 5()1’1‘1\-1)]‘(};;. (3\*

Solving the b; perturbatively with respect to A, one can find the value b; ,,
corresponding to the order A™ in the coupling constant:

1) 7 r+s=m-1
bim =353 85k, 10k rb1 5. (4)
2
Pigi=1  re

We have fixed b;0 = 1 when the index j corresponds to an external mo-
mentum, otherwise b, = 0. Higher orders in the coupling constant can
be obtained from the iterative formula (4). For instance bs; is given by
(reminding that ps = p; + p2)

A A
bs | = ~=biobog= —4mM8M—. 5
5.1 7 1,002.0 1 ¥ p2)? (5)

Following a derivation [1] very similar to the (2), we can obtain a formula
for the scattering amplitude (the truncated connected Green functions) in
terms of the b; ,,,. For our specific example

m4r4s=1 A
A= Y 65ijkbi.mbj,rbk,s- (6)
m,r”.s

For scattering amplitudes with several external legs, we have to compute
this sum for higher values of m + r + s, according to the power A" expected
in the final result.

This simple algorithm can be generalized for any lagrangian (also includ-
ing fermionic particles), and we have used it to compute several physical re-
alistic processes. In the next section we discuss some interesting properties
of the algorithm.
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2. Some properties of the algorithm ALPHA

The time required for the evaluation of a single matrix element is an im-
portant parameter: for Monte Carlo integrations, especially when the phase
space contains a lot of variables, the matrix element has to be evaluated
in a very large number of points. As a result, one could be even unable to
achieve a satisfactory accuracy in the integration within a reasonable time.
It is clear that this time significantly depends on the way we write a formula
for a computer evaluation: two equivalent mathematical formulas as

(a1 +az+azs+---+ap)" (7)
and
ki tka4-tkn=n ! \ \
kl!‘-'kn!all...ann (8)

kik2,nkn

require very different number of operations; the computer which performs
the sums inside the parenthesis before the products is very fast.

Here we estimate the number of operations performed by the algorithm
for a process involving N scalar particles and we compare it with the number
of Feynman diagrams. For the simplest lagrangian

L= ¢3¢ — A\¢® (9)
a process of the type

(p1) + d(p2) = ¢(p3) + d(pa) + - - -+ (pN) (10)

has NV external momenta, and any internal momentum ¢; can be written as
a linear combination of the external momenta p;

N
G =Y a;p;. (11)

i=1

The coefficient a; can only take two values: 0 or +1 (or —1, depending if the
corresponding momentum is ingoing or outgoing). Since each a; can only
have two values, we have 2V possible choices for the set of a; in the sum
(11). From this set we have to subtract two forbidden choices: one with all
the a; = 0 and the other one with all a; = +1 since both would give a null
and unacceptable momentum (remembering that p; +p; +---+ py = 0 for
the momentum conservation). Again from the momentum conservation one
can easely observe that for each choice, the complementary one obtained
changing each a; from 0 to +1 and vice versa from +1 to 0 gives the same
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internal momentum. Therefore dividing by two the previous set we have
that the number of b; required is 2V=! — 1. For each iteration in (4) we
have to perform (2V-1 — 1)(2¥-1 — 1) operations. Neglecting non-leading
terms the number of operations needed to evaluate a matrix element with NV
external particles increases as =~ 4V~1(N). Even if an exact calculation of
the computation time must take into account several details of the fortran
code, one can appreciate how this behavior is in good agreement with Table I,
both for the case A¢p> and A\¢> + N¢*.

TABLE 1
Required CPU time for the computation (single precision) of the matrix ele-
ments of a scalar model.

n° external legs  A¢°>  Ag> + Ng?

5 610 2300
6 2840 11250
7 11280 50600
8 48200 230000

We believe that this behavior is remarkable, especially if compared with
the number of Feynman diagrams involved in the processes. It is easy to see
that such number is given by (2N — 5)!!, where N is the number of external
legs: in fact if we add a new external leg to a scattering amplitude , we
have to multiply the number of diagrams by (2N — 3), since the new leg can
be attached to any of the 2N — 3 internal or external legs of the previous
smaller process. Thus the above factorial growth is easy to understand. For
a realistic lagrangian the time growth is in general better, since internal
symmetries will forbid some interactions and the number of operation for
each iteration (4) can be reduced. The standard model processes in Table 11
show a growth close to 3.

TABLE 11
Required CPU time for the computation (single precision) of some matrix ele-
ments in the Standard Model in electron positron annihilation.

final state | cpu (sec/100000 events)
ete ete™ 1120
eteete y 3399
ete—eteyy 10729
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Therefore the algorithm ALPHA gains a factor with respect the Feyn-
man diagrams which increases as a factorial (the ratio of a factorial and an
exponential, still increases as a factorial).

Another nice property of the algorithm which is worthwhile to mention is
the good accuracy of the result after all the iterations have been performed.
Physical amplitudes of gauge theories often involve significant cancellations
among different graphs: each Feynman diagram increases as the initial en-
ergy increases. The more particles are in the final state the greater is the
power of this growth. But taking the sum of all the contributing diagrams
the result do not grow with the energy, since all the powers of the energy
cancel each other out. This cancellation among these diagrams needs sev-
eral digits on a computer machine, and one is forced to use double precision
numbers in the fortran code. On the contrary all the b;,, involved in the
algorithm are complete physical amplitudes with just one off-shell external
leg and various on-shell external legs; thus they do not increase as the en-
ergy increases, and the computer machine does not have to deal with huge
numbers.

In other words at each iteration there are some soft cancellations between
quantities which do not have huge powers of the energy.

As a clarifying exercise one could compare the accuracy achieved by a
computer in the evaluation of two equivalent formulas

(E - (E~1))° (12)

and
8 8'
o\ kp8—k( g 1k :
,?4:3( DB E = ) g

(13)

for E = 100.

Only in the former case where the sum inside the parenthesis is performed
before the products and only a soft cancellation between F and E -~ 1 occurs,
one gets an accurate result.

The code ALPHA can compute the connected Green functions for any ef-
fective lagrangian by explicitly performing the legendre transform: any kind
of interaction, including form factors which have a complicated momentum
dependence can be easily implemented.

In addition it is worthwhile to note that even if the algorithm is originally
based on the legendre transform formula, its realization into a fortran code
can be adapted to more complicated rules which do not come directly from
the legendre transform of an effective lagrangian; this will enable the user to
modify the code according to his requirements and to apply it for different
physical problems.
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