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The calculation of the O(N;a?) corrections to muon decay is described.
These are the 2-loop diagrams containing a massless fermion loop and they
form an important gauge-invariant subclass. It is shown that all such dia-
grams can be expressed in terms of a universal master integral. We focus
on the calculation of box diagrams and in particular on the removal of their
infrared divergences.

PACS numbers: 14.60. Ef

1. Introduction

Muon decay, p~ — v e~ 7., has always been a proving ground for both
pure QED and electroweak radiative corrections [1-3]. Until recently the
muon decay coupling constant, G, and the electromagnetic coupling con-
stant, «, were by far the best measured electroweak observables and played
a pivotal role as input to the Standard Model. The accuracy of theoretical
predictions was limited by the errors on Mz which was taken as the third
input required to make the model predictive. Now the situation has changed
somewhat. Both Mz and G, are determined to an accuracy of 2 x 1075 and
it may be possible to reduce the error on My still further if the LEP beam
energy calibration can be better understood.

By comparison electroweak calculations have attained an precision of
only a few permill. Obviously it would be desirable to have the results of full
2-loop electroweak calculations at our disposal and considerable progress has
been made in this direction [4]. Such calculations are likely to be intractable
when expressed in analytic form and in practice one would quote only nu-
merical results. There do exist, however, a few 2-loop calculations for which
exact analytic results can be obtained in a compact closed form [3, 5-8]. Here
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we discuss one such set of corrections. These are dubbed O(N;a?) correc-
tions to muon decay, where Ny is the number of light fermions. Because
Ny is quite large, the O(Na?) corrections are expected to be a dominant
subset of 2-loop graphs and since Ny provides a unique tag, the complete
set of O(N fa'z) corrections contributing to a particular physical process will
form a gauge-invariant set. Diagrams of this type have been considered in
connection with the muon anomalous magnetic moment [9).

A priori the O(N;a?) corrections can be expected to contribute at the
level of 1.5 x 1074, Without their calculation and inclusion, theoretical
predictions remain uncertain at least at this level.

If the fermions are assumed to be massless compared to My, an excellent
approximation for all but the third generation, then the only ‘dimensionful’
quantities appearing in the calculation are My, Mz and My and there are
very few diagrams containing a Higgs. The contributions from diagrams
not involving Higgs bosons can then only be a polynomial in sin? @y with
coefficients involving In cos? 8y, In 7 and Euler’s constant, ~.

Assuming massless fermions reduces the topologies of diagrams that must
be considered since the fermions can then only couple to vector bosons but
not to Goldstones. However, the calculation is still a fully-fledged 2-loop
electroweak calculation requiring the complete renormalization of the Stan-
dard Model at O(N;a?). Although muon decay represents a zero momentum
transfer process, much can be learned from it about the cancellation of di-
vergences in high-energy processes. Indeed unlike the case of the calculation
of O(a?m}) corrections to the p-parameter [5, 6, 8], there is a proliferation
of diagrams involving counterterms and these constitute significant fraction
of the effort involved.

In addition to the calculation of diagrams at zero momentum transfer
one also requires the W and Z° mass counterterms that must be obtained
by evaluating diagrams at high scales. In principle this can be done in any
renormalization scheme using methods expounded in Refs. [10, 11] but the
work is considerably reduced by adopting the MS scheme in which only the
simpler divergent parts of the diagrams are required.

In this talk we will summarize some of the salient features of the calcu-
lation. In Section 2 the master integral will be given and in Section 3 we
will concentrate on contributions coming from box diagrams. Diagrams of
this type do not occur in other 2-loop electroweak calculations performed to
date. It will be shown how the IR divergences can be separated from these
diagrams in a well-defined manner that permits them to be meshed with
bremsstrahlung diagrams.

The work reported here was undertaken with R. Akhoury and P. Malde.
Full details of the general methods used can be found in Ref. [12] and results
for muon decay in Ref. [13].
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2. The master integral

In what follows an anticommuting s is assumed. A Euclidean metric
with the square of time-like momenta being negative will be used and all
calculations will be done in R¢=; gauge. The sine and cosine of the weak
mixing angle, 8y, will be denoted sy and cg respectively. vz and yg are the
usual left- and right-handed helicity projection operators.

Many, but by no means all, O(Na?) diagrams are obtained simply by
inserting a fermion loop into the boson propagator of a one-loop diagram.
Because the original one-loop diagram is often logarithmically divergent, the
fermion loop insertion will need to be calculated to O(n — 4) in dimensional
regularization, where n is the dimension of space-time. It turns out, how-
ever, that for all O(Nya?) diagrams occurring in low-energy processes, it is
possible to obtain expressions that are exact in n.

For the massless fermion loop insertion, it may be shown that

el e
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where 3, 8r and 3%, ﬁh of the couplings of the attached vector bosons.

For processes at zero momentum transfer it is possible to immediately
reduce all tensor integrals that occur to scalar integrals by using projec-
tion operator techniques [12]. These scalar integrals can then be written as
expressions involving a general master integral,
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3. Box diagrams

A useful set of identities for calculating one-loop box diagrams appears in
Ref. [14]. They are, however, valid only for n = 4 because of their intended
use at one-loop. For general n it may be shown that these relations become
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where the square brackets [ ]; and [ ]; indicate that the enclosed y-matrices
are associated with the separate external fermion currents .J; and .J; respec-
tively. These identities, along with projection operator techniques, may be
used to reduce box diagrams to the form I - Mg where [ is a scalar integral
and Mg is the Born level matrix element.

All O(N;a?) box diagrams correspond to the insertion of a fermion loop
into boson propagators in one-loop box diagrams. The box diagrams. so
obtained, are either logarithmically divergent or have double poles at n = 4
corresponding to mixed UV and IR divergences or fermion mass singularities.

Fig. 1. A class of box diagrams containing UV and IR divergences.
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Consider the diagrams of Fig. 1. The crosses represent fermionic parts
of O(a) counterterms. The fermion loop contribution in Fig. la vanishes
at ¢> = 0 where ¢ is the 4-momentum in the photon propagator and the
diagram is thus IR finite. If the counterterms on the W line in Fig. 1b—d
together vanish at g2 = 0 then they too will be IR finite however this depends
on the renormalization scheme that is chosen and is not generally the case.
It happens, for example, in the MS but not in the on-shell renormalization
scheme.

In Fig. 1(b)~(d) the insertion of counterterms corresponds to replacing
the W propagator in the one-loop box diagram

1 5g> 1 S My
5 (2% - 7
¢+ M2, ( 9/ ¢ +Mg (¢ + My)? "

_ <25_g> " M (2‘.52> _oME
9/ (@®+ M%) (42 + ME)? g M,
(8)

where 8g and dM@, are the SU(2) coupling constant counterterm and W
mass counterterm respectively.

The first term of (8) yields an IR finite contribution and its UV diver-
gences cancel against those of Fig. 1a. The second term in (8) is UV finite but
generates an IR divergence and must be combined with soft bremsstrahlung
correction to produce a finite result. As mentioned above the last term
vanishes in the MS scheme.

Fig. 2. A class of box diagrams containing UV and IR divergences and fermion
mass singularities.

A similar thing happens for the diagrams shown in Fig. 2 except that
now Fig. 2(a) is both IR divergent and has a fermion mass singularity. If
we denote the fermion loop insertion in the photon propagator as (g3, —
q.q.) 1 (¢*) then we may write

Y

1T, (¢%) = [12,(0)) + T2, (0) = [T}, (0)] + [T}, (¢?) — ITop (O], (9)
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where 5 sa/
a.,0) =822+ 3% (10)
g g
and ¢’ is the U(1) coupling constant.

The first term on the rhs of (9) yields an IR divergent correction that
cancels against the IR divergences of the counterterm diagrams Fig. 2(b) and
2(c) leaving an overall UV divergence. This remaining UV divergence cancels
against those of other box diagrams involving Z° bosons. The second term in
square brackets yields an IR divergent term that needs to be combined with
soft bremsstrahlung diagrams to yield a finite result. Finally, the third term
gives a finite contribution that is singular for vanishing fermion masses. It
will be subject to a hadronic contribution and should therefore be evaluated
using dispersion relations. We do not consider the second and third term
further.

Once IR divergences are removed in this way, the O(Nya?) corrections
to the Born level matrix element, My, coming from box diagrams may be
written as MoAr(?), where

Ar(® — g9° 2 ‘21112(:2 s 6 . -
= N 167’(’2 983 (880 + 1289 - 13159 + 13580 — )

~3 0 B(26} — 1) =~ BT, (- M3) ~ IT,, (0)]

v

h;:e {H' (-M3%) - H'W(O)}(Qse — 1052 + o)} (11)

for each massless fermion generation.

This result is given in the on-shell renormalization scheme and the pho-
ton vacuum polarization, I, (—-M 2) — I1._,(0), arises from the definition
of one-loop counterterms in this scheme. lhe corresponding expression in
the MS scheme is somewhat longer because of the presence of terms such as
In M3 /u? and Inm.

REFERENCES

[1] T. Kinoshita, A. Sirlin, Phys. Rev. 113, 1652 (1959).

[2] A. Sirlin, Phys. Rev. D22, 971 (1980).

[3] A. Sirlin, Phys. Rev. D29, 89 (1984).

[4] J. Franzkowski, these proceedings

[5] J. J. van der Bij, F. Hoogeveen, Nucl. Phys. B283, 477 (1987).
[6] R. Barbieri et al., Nucl. Phys. B409, 105 (1993).



O(Nsa?) Corrections to Muon Decay 605

{71 A. Denner, W. Hollik, B. Lampe, Z. Phys. C60, 193 (1993).
[8] J. Fleischer, O. V. Tarasov, F. Jegerlehner, Phys. Rev. D51, 3820 (1995).
[9] A. Czarnecki, B. Krause, W. Marciano, Phys. Rev. D52, 2619 (1995); A. Czar-
necki, these proceedings.

[10] G. Weiglein, R. Scharf, M. Bohm, Nucl. Phys. B416, 606 (1994).

[11] R. Scharf, J.B. Tausk, Nucl. Phys. B412, 523 (1994).

[12] R. Akhoury, P. Malde, R.G. Stuart, preprint UM-TH-96-186.

{13] R. Akhoury, P. Malde, R.G. Stuart, in preparation.

[14] A. Sirlin, Nucl. Phys. B192, 93 (1981).



