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A survey is given of the various gauge-invariance-related aspects that
play a role when dealing with unstable gauge bosons.
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1. Unstable gauge bosons: lowest order

The physics goals of LEP2 and the next linear collider (NLC) cover a
large variety of topics, e.g. the determination of the W-boson mass, estab-
lishing the Yang--Mills character of the triple gauge-boson couplings, the
search for the Higgs boson, the search for supersymmetric particles, a de-
tailed study of the symmetry-breaking mechanism, etc. Most of these stud-
ies require a careful investigation of processes with photons and/or fermions
in the initial and final state.

If complete sets of graphs contributing to such a process are taken into
account, the associated matrix elements are in principle gauge-invariant.
However, the massive gauge bosons that appear as intermediate particles
can give rise to poles 1/(k?— M?) if they are treated as stable particles. This
can be cured by introducing the finite decay width in one way or another,
while at the same time preserving gauge independence and, through a proper
high-energy behavior, unitarity. In field theory, such widths arise naturally
from the imaginary parts of higher-order diagrams describing the gauge-
boson self-energies, resummed to all orders. This procedure has been used
with great success in the past: indeed, the Z resonance can be described
to very high numerical accuracy. However, in doing a Dyson summation of
self-energy graphs, we are singling out only a very limited subset of all the
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possible higher-order diagrams. It is therefore not surprising that one often
ends up with a result that retains some gauge dependence.

Till recently two approaches for dealing with unstable gauge bosons were
popular in the construction of lowest-order Monte Carlo generators. The
first one involves the systematic replacement 1/(k%* — M?) — 1/(k% - M? +
tMT), also for k2 < 0. Here I' denotes the physical width of the gauge
boson with mass M and momentum k. This scheme is called the ‘fixed-
width scheme’. As in general the resonant diagrams are not gauge-invariant
by themselves, this substitution will destroy gauge invariance. Moreover, it
has no physical motivation, since in perturbation theory the propagator for
space-like momenta does not develop an imaginary part. Consequently, uni-
tarity is violated in this scheme. To improve on the latter another approach
can be adopted, involving the use of a running width ¢MI'(k?) instead of
the constant one M I" (‘running-width scheme’). This, however, still cannot
cure the problem with gauge invariance.

At this point one might ask oneself the legitimate question whether the
gauge-breaking terms are numerically relevant or not. After all, the gauge
breaking is caused by the finite decay width and is, as such, in principle
suppressed by powers of I'/M. From LEP1 we know that gauge breaking
can be negligible for all practical purposes. However, the presence of small
scales can amplify the gauge-breaking terms. This is for instance the case
for almost collinear space-like photons or longitudinal gauge bosons at high
energies, involving scales of (’)(pg/E’g) (with p, the momentum of the in-
volved gauge boson). In these situations the external current coupled to the
photon or to the longitudinal gauge boson becomes approximately propor-
tional to p,. In other words, in these regimes sensible theoretical predictions
are only possible if the amplitudes with external currents replaced by the
corresponding gauge-boson momenta fulfill appropriate Ward identities.

In order to substantiate these statements, a truly gauge-invariant scheme
is needed. It should be stressed, however, that any such scheme is arbitrary
to a greater or lesser extent: since the Dyson summation must necessarily be
taken to all orders of perturbation theory, and we are not able to compute
the complete set of all Feynman diagrams to all orders, the various schemes
differ even if they lead to formally gauge-invariant results. Bearing this in
mind, we need some physical motivation for choosing a particular scheme.
In this context two options can be mentioned, which fulfill the criteria of
gauge invariance and physical motivation.

The first option is the so-called ‘pole scheme’ [1-3]. In this scheme
one decomposes the complete amplitude according to the pole structure by
expanding around the poles (e.g. f(k%)/(k? — M?) = f(M?)/(k? — M?) +
finite terms). As the physically observable residues of the poles are gauge-
invariant, gauge invariance is not broken if the finite width is taken into
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account in the pole terms o< 1/(k? — M?). It should be noted, however,
that there exists some controversy in the literature [3, 4] about the ‘correct’
procedure for doing this and about the range of validity of the pole scheme,
especially in the vicinity of thresholds.

The second option is based on the philosophy of trying to determine
and include the minimal set of Feynman diagrams that is necessary for
compensating the gauge violation caused by the self-energy graphs. This
is obviously the theoretically most satisfying solution, but it may cause an
increase in the complexity of the matrix elements and a consequent slowing
down of the numerical calculations. For the gauge bosons we are guided by
the observation that the lowest-order decay widths are exclusively given by
the imaginary parts of the fermion loops in the one-loop self-energies. It
is therefore natural to perform a Dyson summation of these fermionic one-
loop self-energies and to include the other possible one-particle-irreducible
fermionic one-loop corrections (‘fermion-loop scheme’) [5]. For the LEP2
process ete™ — 4f this amounts to adding the fermionic triple gauge-
boson vertex corrections. The complete set of fermionic contributions forms
a gauge-independent subset and obeys all Ward identities exactly, even with
resummed propagators [6]. As mentioned above, the validity of the Ward
identities guarantees a proper behavior of the cross-sections in the presence
of collinear photons and at high energies in the presence of longitudinal
gauge-boson modes. On top of that. within the fermion-loop scheme the
appropriately renormalized matrix elements for the generic LEP2 process
ete™ — 4f can be formulated in terms of effective Born matrix elements,
using the familiar language of running couplings [6].

A numerical comparison of the various schemes [5, 6] confirms the im-
portance of not violating the Ward identities. For the LEP2 process ete™ —
e~ U, ud, a process that is particularly important for studying triple gauge-
boson couplings, the impact of violating the U(1) electromagnetic gauge
invariance was demonstrated [5]. Of the above-mentioned schemes only
the running-width scheme violates U(1) gauge invariance. The associated
gauge-breaking terms are enhanced in a disastrous way by a factor of
O(s/m?), in view of the fact that the electron may emit a virtual (space-like)
photon with p? as small as m2. A similar observation can be made at high
energies when some of the intermediate gauge bosons become effectively
longitudinal. There too the running-width scheme renders completely un-
reliable results [6]. In processes involving more intermediate gauge bosons,
e.g. e¥e™ — 6, also the fixed-width scheme breaks down at high energies
as a result of breaking SU(2) gauge invariance.
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2. Unstable gauge bosons: radiative corrections

By employing the fermion-loop scheme all one-particle-irreducible fer-
mionic one-loop corrections can be embedded in the tree-level matrix ele-
ments. This results in running couplings, propagator functions, vertex func-
tions, etc. However, there is still the question about the bosonic corrections.
A large part of these bosonic corrections, as e.g. the leading QED correc-
tions, factorize and can be treated by means of a convolution, using the
fermion-loop-improved cross-sections in the integration kernels. This allows
the inclusion of higher-order QED corrections and soft-photon exponentia-
tion. In this way various important effects can be covered. Nevertheless, the
remaining bosonic corrections can be large, especially at high energies (7, 8].

In order to include these corrections one might attempt to extend the
fermion-loop scheme. In the context of the background-field method a
Dyson summation of bosonic self-energies can be performed without violat-
ing the Ward identities [9]. However, the resulting matrix elements depend
on the quantum gauge parameter at the loop level that is not completely
taken into account. As mentioned before, the perturbation series has to be
truncated: in that sense the dependence on the quantum gauge parameter
could be viewed as a parametrization of the associated ambiguity.

As a more appealing strategy one might adopt a hybrid scheme, adding
the remaining bosonic loop corrections by means of the pole scheme. This
is gauge-invariant and contains the well-known bosonic corrections for the
production of on-shell gauge bosons (in particular W-boson pairs). More-
over, if the quality of the pole scheme were to degrade in certain regions of
phase-space, the associated error is reduced by factors of «/7. It should be
noted that the application of the pole scheme to photonic corrections re-
quires some special care, because in that case terms proportional to log(k? —
M?)/(k* — M?) complicate the pole expansion [3, 8].
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