Vol. 28 (1997) ACTA PHYSICA POLONICA B No 3-4

MAINZ TWO-LOOP METHODS *

L. BrRUCHER,J. FRANZKOWSKI, A. FRINK, AND D. KREIMER

Institut fiir Physik, Johannes Gutenberg-Universitat Mainz
D-55099 Mainz, Germany

(Received January 14, 1997)

In the recent past procedures for the calculation of two-loop Feynman
diagrams were developed at the University of Mainz. They solve self-energy
and vertex diagrams involving arbitrary massive particles. The procedures
are bound together to a program package called XLOOPS which is de-
signed to treat Feynman diagrams up to the two-loop level in a completely
automatic way.

PACS numbers: 12.20. Ds

1. Two-loop integrals

The aim of our two-loop routines is not only to solve special mass cases
or kinematical regions. They also supply the general case where all internal
masses are different and the external momenta can be completely arbitrary.
Full tensor structure and not only the scalar case is supported. As a conse-
quence these general routines cannot return analytic results for all topologies.
Therefore we adopt the following strategy:

1. separate the divergent parts (in any case analytically calculable)
2. find a two-fold integral representation (in D = 4)
3. integrate numerically the two-fold integral

In the following we comment these three items.

* Presented at the Cracow International Symposium on Radiative Corrections to the
Standard Model, Cracow, Poland, August 1-5, 1996.
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1.1. UV divergent tntegrals

For the separation of divergences it is necessary to find a convenient
subtraction term. If a two-loop integral is multiplied by a term like the one
in brackets
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it can be shown that the degree of divergence is decreased by m [1]. To be
specific, in the case of a logarithmic divergent integral which corresponds
to the case m = 1 one gets a difference of two terms which turns out to
be convergent. To recover the original integral it is necessary to add the
subtraction term again.
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The first line which denotes the convergent part is treated in D = 4 and will
be reduced to a two-fold integral representation which is solved numerically.
The second line contains the divergent part which can be solved analytically
in D # 4. This procedure can be extended to any UV divergent diagram.

1.2. Integration strategy

We integrate directly in momentum space. Therefore we split the mo-
mentum components in parallel and orthogonal space variables. The defi-
nition of this splitting is simple: The parallel space describes the sub-space
spanned by the external momenta, whereas the orthogonal space is the or-
thogonal complement of the parallel space.

In the two-point case only one external monientum is present, therefore
the parallel space is one-dimensional. The external momentum ¢ and the
loop momenta [ and k can be written as

q“ = (qu O* 0-, 0) ’ l“ = ([0? l_l.) ) k“ = (k(), E-L) Y
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so that the parallel space is represented by the 0-component of the four-
vectors. The integration measure simplifies in the following sense:

m

/ al / &'k = 82 / dlodko / 12 Al k2 dk / sin 9d9 |
’ —.fx. Q

0

¥ is the angle between /1 and l:l
In the case of three-point functions the parallel space is two-dimensional.
If one chooses the 0- and 1-components as parallel space variables one gets
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In any case the ly and kg integrations are left for numerical evaluation. All
other integrations are performed analytically [2, 3].

To go into more detail we concentrate on the non-planar three-point
function which is known to be the most challenging three-point topology.
The integrand consists of six propagators:

(

I+ k+ q2)* —m3 +ip,
Py = (l—q)?—mi+ie,

(k +q2)* — mi + 0.
Ps = 12—m§+ig,
Ps = k? — mi +ip.

After having performed first the angular integration the residue theorem can
be applied twice — for /; and k;. One gets five different integration areas
A-F in the lg-kg-plane:
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With the help of Euler’s change of variables [4] two more integrations (/.
and k) can be performed analytically. The integrand involves then the
dilogarithm and Clausen’s function [5].

1.3. Numerical evaluation

The two-fold integral representations can be directly taken for numerical
evaluation. As far as there were independent data available we found perfect
agreement [5-7].

1.4. Status

Up to now we solved all two-point topologies for scalar and tensor eval-
uations. In the three-point case all topologies are solved for the scalar case.
At present we work on the extension to three-point tensor and four-point
scalar integrals.

2. Decay of a heavy Higgs

As an application the decay of a Higgs into a Z or W* pair was calculated
[8]. In the limit where the masses of the vector bosons are small compared to
the energy the so-called equivalence theorem holds [9]. This means that the
vector bosons W, Z are replaced by the corresponding Goldstone modes
¢%, %, As a consequence only scalar integrals occur. The only remaining
mass scale is the Higgs mass. Six proper three-point topologies had to be
calculated:



Mainz Two-Loop Methods 839

L2
< L=<

The result confirmed an earlier calculation by Ghinculov [10].

3. XLOOPS

The program package XLOOPS automates the integration methods de-
scribed above. The package consists of the following parts:

e Input via Xwindows interface:
In a window the user selects the topology which shall be calculated.
A Feynman diagram pops up in which the particle names have to be
inserted.

e Processing with MAPLE:
The selected diagram is evaluated. The necessary steps for reducing the
numerator (SU(N) algebra, Dirac matrices) are performed by routines
written for MAPLE [11]. The result is expressed in terms of one- and
two-loop integrals.

e Evaluation of one-loop integrals:
One-loop one-, two- and three-point integrals are calculated analyti-
cally or numerically to any tensor degree using MAPLE. This part was
already released separately [12].

e Evaluation of two-loop integrals:
All two-loop two-point topologies including tensor integrals are sup-
ported by the MAPLE routines. For those topologies where no analytic
result is known, XLOOPS creates either an analytic two-fold integral
representation or integrates numerically with the help of VEGAS [13]
using C++. The other topologies can be calculated analytically or
numerically like the one-loop integrals.

At present a demo version covering one-loop diagrams is available on the net.
Version 1.0 which contains all features described above is in preparation [14].
In any case the current version is available on

http://dipmza.physik.uni-mainz.de/ franzkowski/xloops.html
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