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We briefly summarize theoretical methods for carrying out QCD cal-
culations to next-to-leading order in perturbation theory. In particular,
we describe a new general algorithm that can be used for computing arbi-
trary jet cross sections in arbitrary processes and can be straightforwardly
implemented in general-purpose Monte Carlo programs.
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1. Motivations

During the last fifteen years many efforts have been devoted to carry out
accurate QCD calculations to higher perturbative orders. These calculations
are motivated by three main reasons.

First of all, the comparison between perturbative calculations and ex-
perimental data allow one to perform precision tests of QCD in the strong-
interaction processes that involve a large transferred momentum @ [1,2].
These tests are essential for measuring the strong coupling as(Q) and its
running [3] as predicted by asymptotic freedom. Perturbative QCD studies
are also important to evaluate the background for new physics signals. An
outstanding example of that is the current investigation [1] of the discrep-
ancy between the single-inclusive jet distribution at large p;, as measured
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by CDF [4], and the QCD predictions. More recently, a renewed interest
in perturbative calculations has been motivated by phenomenological and
theoretical models of non-perturbative phenomena (see [5] and references
therein). Using these models and having under control the perturbative
component, one can use experimental data on high-energy cross sections to
extract information on the underlying non-perturbative dynamics.

To these aims, calculations at the leading order (LO) of the perturbative
expansion in the QCD coupling ag(@Q) are insufficient. In fact, just because
of its perturbative nature, the running of the QCD coupling can be hidden
in higher-order corrections. Thus at LO the value of as is essentially un-
determined and a LO calculation predicts only the order of magnitude of a
given cross section and the rough features of a certain observable. The accu-
racy of the perturbative QCD expansion is instead controlled by the size of
the higher-order contributions. Any definite perturbative QCD prediction
requires (at least) a next-to-leading order (NLO) calculation.

In general, NLO calculations are highly non-trivial. The first bottleneck
one encounters in producing new NLO calculations for a certain process is
the evaluation of the relevant matrix elements. In recent years new tech-
niques [6] have been developed to compute QCD Feynman diagrams and
most of the one-loop five-point amplitudes are now available [7,8]. However,
even when the process-dependent matrix elements are known, there are prac-
tical difficulties in setting up a straightforward calculational procedure. The
physical origin of these difficulties is in the necessity of factorizing the long-
and short-distance components of the scattering processes and is reflected
in the perturbative expansion by the presence of divergences. QCD theo-
rems guarantee that these divergences eventually cancel in the evaluation
of physical cross sections but do not prevent their appearance in interme-
diate steps. Since single intermediate expressions are usually divergent, the
nuinerical implementation of NLO calculations forms a second bottleneck.

The main issue one has to face is thus the following. On one side many
different NLO calculations (i.e. calculations for different observables) for a
certain process and, possibly, for many processes are warranted. On the
other side each calculation is very complicated (see also Sect. 2).

In particular, it is very important to reduce the second bottleneck by
setting up efficient and simple methods for computing arbitrary quantities in
a single process. It is even more important to have at our disposal simple
algorithms for computing arbitrary quantities in arbitrary processes. The
goal is a universal algorithm that, in principle, can be used to construct a
general-purpose Monte Carlo program (not a Monte Carlo event generator)
for carrying out NLO QCD calculations. Conceptually, such an algorithm
could be used in the same manner as some universal Monte Carlo event gen-
erators (e.g. HERWIG [9]): any time one wants to compute a new quantity
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or to vary the experimental cuts, one simply modifies the ‘user routine’ ac-
cordingly; any time one wants to study a different process, one simply enters
the corresponding matrix elements.

A new general algorithm of this type was recently presented [10]. It
is based on two key ingredients: the subtraction method for the numeri-
cal cancellation of the divergences among different contributions: and the
dipole factorization theorems for the universal (process-independent) ana-
lytical treatment of individual divergent terms.

In this contribution, after a brief summary of general methods, we de-
scribe these two ingredients and show some numerical results for the specific
cases of jets in et e~ annihilation and deep-inelastic lepton-hadron scattering

(DIS).

2. NLO QCD calculations
The general structure of a QCD cross section in NLO is the following

o = ot 4 oNLO (1)
Here the LO cross section ¢© is obtained by integrating the fully exclusive
cross section do® in the Born approximation over the phase space for the
corresponding jet quantity. Let us suppose that this LO calculation involves
m partons with momenta p; (kK = 1,...,m) in the final state. Thus, we

write
o0 /(IUB’ (2)
m

where the Born-level cross section is:
da® = d") ({p )M (e DIEFT™ (i) - (3)

and d®™) and M,, respectively denote the full phase space and the tree-
level QCD matrix element to produce m final state partons. These are the
factors that depend on the process.

The function F}m) defines the physical quantity that we want to com-
pute, possibly including the experimental cuts. Note that this quantity has
to be a jet observable, that is, it has to be infrared and collinear safe: its
actual value has to be independent of the number of soft and collinear par-
ticles in the final state. Thus, we should have (we refer to [10] for a more
detailed formal definition)

Ii(]m-&-l) R Ingm) : (4)
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in any case where the m + l-parton configuration on the left-hand side is
obtained from the m-parton configuration on the right-hand side by adding
a soft parton or replacing a parton with a pair of collinear partons carrying
the same total momentum.

Efficient techniques, based on helicity amplitudes [11] and colour sub-
amplitude decomposition [12], are available for calculating tree-level matrix
elements. Thus the evaluation of the LO cross section does not present any
particular difficulty. Even if o© cannot be computed analytically (because

M, is too cumbersome or the phase-space cuts in F}m) are very involved),
one can straightforwardly use numerical integration techniques, for instance,
a Monte Carlo program where the function F’}m) is given as ‘user routine’.

At NLO one has to consider the exclusive cross section dof* with m + 1
partons in the final state and the one-loop correction do¥ to the process

with m partons in the final state:

oNLO — / daR+/d0V. (:

m+1

N
—

The exclusive cross sections do and do¥ have the same structure as the
Born-level cross section in Eq. (3), apart from the replacements |M,,|* —
IMpg1)? and | M7 — thml?l-—loop)' Here mel?l_loop) denotes the QCD
amplitude to produce m final state partons evaluated in the one-loop ap-
proximation.

The calculation of the loop integral in |Mm|%l—-]oop)
soft and collinear singularities. The ultraviolet singularities can be handled
in a simple way within the loop corrections by carrying out the renormaliza-
tion procedure. Thus we can assume that the virtual cross section in Eq. (5)
is given in terms of the renormalized matrix element and the ultraviolet
divergences have been removed.

Soft and collinear singularities instead lead to the main problem. These
singularities do not cancel within the sole do* and are accompanied by
analogous singularities arising from the integration of the real cross section
dof. In the case of jet quantities, adding the real and virtual contribution,
these singularities cancel and the physical NLO cross section in Eq. (5) is
finite. This cancellation is guaranteed by the property in Eq. (4). However,
the cancellation mechanism is not trivial because it does not take place at
the integrand level.

The two integrals on the right-hand side of Eq. (5) are separately di-
vergent so that, before any numerical calculation can be attempted, the
separate pieces have to be regularized. The most widely used regularization
procedure (actually, the only regularization procedure that is gauge invari-
ant and Lorentz invariant to any order of the QCD perturbative expansion)

leads to ultrawviolet,
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is obtained by means of analytic continuation in a number of space-time
dimensions d = 4 — 2¢ different from four. Using dimensional regularization,
the divergences (arising out of the integration) are replaced by double (soft
and collinear) poles 1/¢? and single (soft or collinear) poles 1/e. Thus the
real and virtual contributions should be calculated independently, yielding
equal-and-opposite poles in . These poles have to be combined and, after
having achieved their cancellation, the limit ¢ — 0 can be safely carried out.

In principle this computation procedure does not pose any problems. In
practice, it is not so. On one side, analytic calculations are impossible for
all but the simplest quantities because of the involved kinematics for multi-
parton configurations and of the complicated phase-space cuts relative to
the definition of the jet observable. On the other side, the use of numerical
methods is far from trivial because real and virtual contributions have to be
integrated separately over different phase-space regions and because of the
analytic continuation in the arbitrary number d of space-time dimensions.

The most efficient solution to this practical problem consists in using
a hybrid analytical/numerical procedure: one must somehow simplify and
extract the singular parts of the cross section and treat them analytically;
the remainder is treated numerically, independently of the full complications
of the jet quantity and of the process.

2.1. General methods and algorithms

There are, broadly speaking, two general methods for doing that: the
phase-space slicing method and the subtraction method. Both the slicing [13]
and the subtraction [14] methods were first used in the context of NLO
calculations of three-jet cross sections in e*¢™ annihilation. Then they have
been applied to other cross sections, adapting the method each time to the
particular process. Only recently has it become clear that both methods
are generalizable in a process-independent manner. The key observation is
that the singular parts of the QCD matrix elements for real emission can be
singled out in a general way by using the factorization properties of soft and
collinear radiation [15]. Owing to this universality, the two methods have
led to general algorithms for NLO QCD calculations.

In the context of the phase-space slicing method, an algorithm has been
developed for jet cross sections in lepton and hadron collisions [16,17]. The
generalization of this method to include fragmentation functions and heavy
flavours is considered in Refs [18,19].

As for the subtraction method, two approaches are available for setting
up general algorithms. The ‘residue approach’ introduced in Ref. [20] has
been further generalized in Refs [21-23]. The dipole formalism [24] has been
completely worked out in Ref. [10].
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The advent of these algorithms has made feasible NLO QCD calculations
for multi-jet cross sections. Monte Carlo programs have been constructed
for most of the physical processes that involve four particles at LO. For
- five-particle processes, the three-jet cross section in hadron collisions in the
simplified case of pure-gluon subprocesses is available [25], as is the four-jet
cross section in electron-positron annihilation in the approximation of large
number of colours [26]; the full QCD results are expected to appear soon.

We refer to Sect. 12.2 of Ref. [10] for a discussion of the comparison
among different general methods for NLO calculations. In the rest of this
contribution we describe the approach, based on the dipole formalism.

3. The subtraction method

The general idea of the subtraction method is to use the identity

oNLO — f {daR - dfcrA] + / do? +/dav, (6)

m+1 m+1

which is obtained by subtracting and adding back the same quantity do4.
The cross section contribution do# has to fulfil two main properties.

i) Firstly, it must be a proper approximation of do® such as to have the
same pointwise singular behaviour (in d dimensions) as do¥ itself. Thus,
do? acts as a local counterterm for do® and one can safely perform the
limit ¢ — 0 under the integral sign in the first term on the right-hand side
of Eq. (6). This defines a cross section contribution o™ {m+1} with m 4 1-
parton kinematics that can be integrated numerically in four dimensions:

o~ [ f(af) @) ) o

m+1

i) The second property of da? is its analytic integrability (in d dimen-
sions) over the one-parton subspace leading to the soft and collinear diver-
gences. In this case, we can rewrite the last two terms on the right-hand
side of Eq. (6) as follows

oNLO {m} _ / do¥ + / dod . (8)
m 1 e=0

Performing the analytic integration f; do4, one obtains e-pole contributions

that can be combined with those in doV, thus cancelling all the divergences.

The remainder is finite in the limit ¢ — 0 and thus defines the integrand of
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a cross section contribution eNO {"} with m-parton kinematics that can be
integrated numerically in four dimensions.
The final structure of the NLO calculation is as follows

O,NLO — O_NLO {m+1} + GNLO{m} , (9)
and can be easily implemented in a ‘partonic Monte Carlo’ program, which
generates appropriately weighted events with m-+1 and m final state partons.

Note that, using the subtraction method, no approximation is actually
performed in the evaluation of the NLO cross section. Rather than approx-
imating the cross section, the subtracted contribution do# defines a fake
cross section that has the same dynamical singularities as the real one and
whose kinematics are sufficiently simple to permit its analytic integration.

The real cross section contribution do®® has the following general struc-
ture

do® = d@™ V| Mo ({pe )P F T ({me}) (10)

where d$(™+1) and | M. 411% depend on the process and F_gmH) depends on
the quantity we want to compute. Obviously, for any given do B one can
try to construct a corresponding do* by properly approximating dptm+1),
[M41]? and F}m+l). It is less obvious that one can use the subtraction
method to compute arbitrary quantities in a given process, because one
needs a fake cross section do? that depends only on the process and, hence.
is independent of the actual definition of the jet funetion F}mﬂ ' Tt is still
less obvious that one can use the subtraction method to construct a universal
algorithm for computing arbitrary quantities in arbitrary processes. To this
purpose the fake cross section do# also has to be somehow independent of
M m+1-

Our method to achieve this generality is based on the dipele formalism.

4. Dipole formalism and universal subtraction term
4.1. Seft and collinear limits

The starting point of the dipole formalism are the soft and collinear fac-
torization theorems for the QCD matrix elements. According to these the-
orems, the singular behaviour in d dimensions of a generic tree-level matrix
element M,,11(p1, - - -, Pm+1) With m+1 final state partons can be obtained
by means of factorized limiting formulae that, respectively in the soft (when
the parton momentum p; vanishes) and collinear (when the parton momenta
pi and p; become parallel) regions, have the following structure

'Mm+1(pl? ceey Piae s wpm-{-!)‘z - !Mm(pla .. -’pm+l)l2®c‘f2(pj) s (11)
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IMm'i‘l(plv ce 1 PjaPis - - -apm+l)|2 — IMm(pla <oy Pt - -7pm+1)|2®h(‘fi2j)‘
The notation in Egs (11), (12) is symbolic (see Ref. [10] for more details)
but sufficient to recall their main features.

The contributions M,, on the right-hand sides are the tree-level matrix
elements to produce m partons and are respectively obtained from the origi-
nal m+1-parton matrix element by removing the soft parton p; or combining
the two collinear partons p; and p; into a single-parton momentum.

The other contributions on the right-hand sides are responsible for the
soft and collinear divergences. The factor J%(p;) in Eq. (11) is the eikonal
current for the emission of the soft gluon p;, and P;; is the Altarelli-Parisi
splitting function. These factors are universal: they do not depend on the
process but only on the momenta and quantum numbers of the QCD partons
in M,,. In particular, J?(p;) depends on the colour charges of the partons
in M,,, and P;; depends on their helicities. Because of these colour and
helicity correlations (symbolically denoted by ®. and ®;), Egs (11), (12)
are not real factorized expressions. Moreover, there is another important
reason, due to kinematics, why Eqgs (11), (12) cannot be regarded as true
factorization formulae but rather as limiting formulae. Indeed, the tree-level
matrix elements in Egs (11), (12) are unambiguously defined only when mo-
mentum conservation is fulfilled exactly. Since, in general, the m + 1- parton
phase space does not factorize into an m-parton times a single-parton phase
space, the right-hand sides of these equations are unequivocally defined only
in the strict soft and collinear limits.

Owing to their universality, the limiting formulae (11), (12) can be used
to approximate the matrix element |M,,1|? in Eq. (10} and thus to find
a fake cross section do/ that matches the real cross section do? in all the
singular regions of phase space. However, the implementation of Egs (11),
(12) in the calculation of QCD cross sections requires a careful treatment of
momentum conservation away from the soft and collinear limits. Care also
has to be taken to avoid double counting the soft and collinear divergences
in their overlapping region (e.g. when p; is both soft and collinear to p;).
The use of the dipole factorization theorem introduced in Ref. [24] allows
one to overcome these difficulties in a straightforward way.

4.2. Dipole formulae
The dipole factorization formulae have the following symbolic structure

IMm+l(ph~ . -’Pm+1)lz = IMm(ﬁh-- ’ﬁm)lzg’ Vij + ... (13)

The dots on the right-hand side stand for contributions that are not singular
when p; - p; = 0. The dipole splitting functions V';; are universal (process-
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independent) singular factors that depend on the momenta and quantum
numbers of the m partons in the tree-level matrix element {M,,|2. Colour
and helicity correlations are denoted by the symbol @. The set py,...,pm
of modified momenta on the right-hand side of Eq. (13) is defined starting
from the original m + 1 parton momenta in such a way that the m partons
in [M,,|? are physical, that is, they are on-shell and energy-momentum
conservation is implemented exactly:

PE=0, Pi+...+Pm=p1+. ..+ Pmt1- (14)

The detailed expressions for these parton momenta and for the dipole split-
ting functions are given in Ref. [10].

Apart from the presence of colour and helicity correlations, Eq. (13)
can be considered as a true factorization formula because its left-hand and
right-hand sides live on the same phase-space manifold. Equation (14) in-
deed guarantees that exact kinematics are retained in the definition of the
m-parton configuration {pi,...,Pm}. These m parton momenta depend on
pi and p; in such a way that in the soft and collinear regions the m-parton
configuration become indistinguishable from the original m + 1-parton con-
figuration. Correspondingly, the dipole splitting function V;; is defined in
order to coincide with the eikonal current and with the Altarelli-Parisi split-
ting function respectively in the soft and collinear limits.

It follows that Eq. (13) provides a single formula that approximates the
real matrix element |M,,;|? for an arbitrary process, in all of its singular
limits. These limits are approached smoothly, thus avoiding double counting
of overlapping soft and collinear singularities. The exact implementation
of momentum conservation makes possible this smooth transition and the
extrapolation of the limiting formulae (11), (12) away from the soft and
collinear regions.

4.3. Unwersal subtraction term

These main features of the dipole formulae allow us to construct a uni-
versal subtraction term with the following form

do* = o™ 3| M (B © Vi Fy™ () (15)

i
Note that the only dependence on the jet observable is in the jet-defining
function F}m) and the only dependence on the process is in the tree-level
matrix element |M,,|%. These are the same m-parton functions as enter

in the calculation of the Born-level cross section of Eq. (3). The only other
ingredients needed to construct do” are the dipole splitting functions, which
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are completely process-independent and given once and for all [10]. This
specifies the universal character of Eq. (15): the fake cross section do# used
for the NLO calculation is straightforwardly obtained in terms of the sole
(process-dependent) information that is necessary for the corresponding LO
calculation.

Having the subtraction term in the explicit form (15), we can discuss how
it fulfils the properties 7) and i) listed in Sect. 3. As for the property i), we
note that there are several dipole terms on the right-hand side of Eq. (15).
Fach of them mimics one of the m + 1-parton configurations in do™ that
are kinematically degenerate with a given m-parton state. Any time the
m + 1-parton state in do®® approaches a soft and/or collinear region, there is
a corresponding dipole factor in do# that approaches the same region with
exactly the same probability as in do'. The equality of the two probabilities
directly follows from (15) and from the limiting behaviour in Eqs (4), (11),
(12) of the cross section factors on the right-hand side of Eq. (10). In this
manner do* acts as a local counterterm for do’. Note, in particular, that
the cancellation mechanism is completely independent of the actual form
of the jet-defining function and works for any jet observable (i.e. for any
quantity that fulfils Eq. (4)).

As for the property ii), we start by noting that do* (likewise dof?)
depends on the m + 1 parton momenta p;,..., pm4+1. However, having in-
troduced the modified momenta py, ..., P, for each dipole term in Eq. (15)
we can define a one-to-one mapping

{pla---,pm-}-l}H{ﬁl7"-aﬁ7n’pi+pj}' (16)

The key feature of this mapping is that the m modified momenta can be
chosen in such a way that they obey ezact phase-space factorization as fol-
lows

A (py, . pngr) = O (B B )y (P ). (1)

where dy is a single-particle subspace that, for fixed p1,....p,, depends
only on the dipole momenta p; and p; [10]. Owing to the exact phase-
space factorization and to the fact that the fake cross section in Eq. (15)
is proportional to the jet quantity calculated from the modified m-parton
configuration, the integration of the singular dipole contributions can be
completely factorized (modulo colour and helicity correlations) with respect
to a term that exactly reproduces the Born-level cross section:

| et = [ @ (G M DI F ()

m+1 m

o Y [degan i+ pIVi = [dP S I0RY. (8
(X | m
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The last factor on the right-hand side of Eq. (18) is defined by
I() = X [ dogg i+ 2)Vas: (19)
i g

and contains all the soft and collinear singularities that are necessary to
compensate those in the virtual cross section do¥’. Owing to the convenient
definition of the dipole splitting function V', it is possible to carry out
analytically the integration in Eq. (19),over the dipole phase space in d
dimensions. This leads to an explicit and universal expression [10] for the
factor I, whose £-poles cancel those in the one-loop matrix element.

5. Final results and numerical implementation

The discussion in the previous section shows that, by using the subtrac-
tion method and the dipole formulae, one can extract and treat analytically
the singular parts of any NLO cross section in a way that is independent of
the exact details of the observable and of the process. This leaves a remain-
der that depends on the full complications of the jet quantity, but which is
finite so that it can be treated either numerically or analytically (whenever
possible).

In general, the use of numerical integration techniques (typically, Monte
Carlo methods) is certainly more convenient. First of all, the numerical
approach allows one to calculate any number and any type of observable
simultaneously by simply histogramming the appropriate quantities, rather
than having to make a separate analytic calculation for each observable.
Furthermore, using the numerical approach, it is easy to implement different
experimental conditions, for example detector acceptances and experimental
cuts.

In order to summarize the final results of our algorithm and to describe
their numerical implementation, we start by recalling how the LO cross sec-
tion in Eq. (2) is evaluated by using a Monte Carlo program. One first
generates an m-parton event in the phase-space region d®(™) and gives it
the weight |[M,,|2. Then this weighted event is analysed by a user rou-

tine according to the actual definition of the phase-space function I'j(lm) and
inserted into a corresponding histogram bin.

Following the decomposition in Eq. (9), the NLO cross section is obtained
by adding two contributions (which are not necessarily positive definite)
with m-parton (as in the LO calculation) and m + 1-parton kinematics,
respectively. Unlike the original real and virtual contributions, these two
terms are separately finite and can directly be integrated in four space-time
dimensions.
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5.1. The term with m-parton kinematics

The first contribution is obtained by inserting Eq. (18) into Eq. (8) and
can be written as follows

N0 = [ ap™ F™) ({pi}) Fn (01)). (20)

where the master function F,,({p}) is explicitly given by

Fa{pi) = { Moo By + MalmDP @ I0pD} - 21)
The first term in the curly bracket is the one-loop renormalized matrix
element for producing m final state partons. The second term is obtained
by combining the tree-level matrix element to produce m partons and the
universal factor I in Eq. (19). These two terms are defined in d = 4 — 2¢
dimensions. Owing to the progress made in recent years in the analytical
techniques for evaluating one-loop amplitudes [6], many of them have been
calculated. The explicit expression of the universal factor I is provided by
our algorithm. Thus, one has to carry out the expansion in e-poles of the
two terms in the curly bracket, cancel analytically (by trivial addition) the
poles and perform the limit ¢ — 0. This simple algebraic manipulation is
sufficient to construct an effective m-parton weight, the master function F,
that is finite. As a result, Eq. (20) can be handled by the Monte Carlo
program exactly in the same way as the LO cross section.

Note that the two terms on the right-hand side of Eq. (21) separately de-
pend on the regularization prescription of the soft and collinear divergences,
namely dimensional regularization. Since different versions of dimensional
regularization can be used to compute the one-loop matrix element, the sec-
ond term in the curly bracket has to be evaluated accordingly. Alternatively,
one can fix the latter and use the transition rules derived in Ref. [27] to relate
the one-loop amplitudes in different dimensional-regularization schemes.

The necessity to consistently regularize the separately divergent com-
ponents of the cross section is a common feature of any NLO calculation,
independently of the method that is actually used in the computation. Fail-
ure in the consistent implementation of the regularization procedure leads
to violation of unitarity and, ultimately, to an incorrect (although possibly
finite) final result. The dipole formalism is extremely efficient to guarantee
unitarity because all the divergences are isolated in the right-hand side of
Eq. (21). As explained in Ref. [28], for any regularization prescription that
is unambiguously defined at the level of one-loop matrix elements, one can
compute in a simple and consistent way the universal factor I that provides
the finite and unitary master function F.
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5.2. The term with m + 1-parton kinematics

The NLO contribution with m + 1-parton kinematics, which is obtained
by subtracting the fake cross section in Eq. (15) from the real cross section
in Eq. (10), has the following explicit expression:

oNLO{m+1} _ / dplm 1)

m+1
X { M

et (P DPES ({e}) -

The terms in the curly bracket define an effective matrix element that is
integrable in four space-time dimensions. [t follows that the NLO matrix
element M,,,;, with m + 1 final state partons, can be directly evaluated in
d = 4 dimensions, thus leading to an extreme simplification of the Lorentz
algebra. Knowing the tree-level matrix elements and the dipole splitting
functions, the Monte Carlo integration of Eq. (22) is straightforward. One
simply generates an m+ l-parton configuration and uses it to define an event
with positive weight +|M,41|? and several counter-events, each of them
with the negative weight —|M,,|2 ® V;;. Then these event and counter-
events are analysed by the user routine. The role of the two different jet
functions F}mH) and F}m) is that of binning the weighted event and counter-
events into different bins of the jet observable. Any time that the generated
m + 1-parton configuration approaches a singular region, the event and one
counter-event fall into the same bin and the cancellation of the large positive
and negative weights takes place.

@ VUF] {PL} }

(22)

6. Monte Carlo programs

Generalizing the procedure for constructing NLO Monte Carlo programs
for arbitrary quantities has several advantages. These are principally due
to the reduction in the number and complexity of ingredients that have to
be calculated for each new process, and because the d-dimensional integrals
only need be done once and can be easily checked independently, rather than
being buried inside a specific calculation.

Using the general algorithm described in this contribution, we have al-
ready constructed two Monte Carlo programs (they can be obtained from
http://suryall.cern.ch/users/seymour/nlo/), EVENT2 and DISENT.

EVENT?2 [24] computes three-jet observables in ete~ annihilation. In
the case of un-oriented three-jet events, this program is comparable and in
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agreement with the program EVENT [29], which is based on the subtraction
procedure of Ref. [14] and has been used for most of the QCD analyses at
LEP and SLC [2,3]. As an example we show the NLO coefficients for the
thrust and C-parameter distributions in Fig. 1. We find that, in general,
the numerical convergence of EVENT? is similar to the program of Ref. [29],
except close to the two-jet region in which ours becomes progressively bet-
ter. In the case of oriented events [30], EVENT2 should be compared with
a corresponding program, EERAD [16], based on the phase-space slicing
method.

THRUST
400 T

300

B(T)

200

500
400

300

B(C)

200

100

o bedew owey

Fig. 1. Coeflicient of (ag/27)* for the thrust and C-parameter distributions. The
dotted histograms show the size of the statistical errors.

DISENT [10,31] is a NLO program for 2 4 1-jet observables in DIS. The
program uses the matrix elements evaluated by the Leiden group [32]. In
Fig. 2a we show as an example the differential jet rate as a function of jet
resolution parameter f.,, using the k; jet algorithm [33] at HERA ener-
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gies [34]. We see that the NLO corrections are generally small and positive,
except at very small f.,; (where large logarithmic terms, —a; log? fu,:. arise
at each higher order). In Fig. 2b, we show the variation of the jet rate
at a fixed f.,; with factorization and renormalization scales. The scale de-
pendence is considerably smaller at NLO. DISENT can be compared with
the Monte Carlo MEPJET [35] that uses the phase-space slicing algorithm
of Ref. [17].

% T - A s A AR SRS A A B -

N x=0.01
by Q%=100 GeV?

1/0(3 fcut. da(zn)/dfcut

1/0'0 T2+ !)(fcutzo-zs)

Fig. 2. Jet cross sections in ep collisions at HERA energies (/s = 300 GeV).
{a) The distribution of resolution parameter f.,; at which DIS events are resolved
into (2 + 1) jets according to the k. jet algorithm. Curves are LO (dashed) and
NLO (solid) using factorization and renormalization scales equal to @?, and the
MRSD’_ distribution functions. Both curves are normalized to the LO cross section.
{b) The rate of events with exactly {2 + 1) jets at fou. = 0.25 with variation of
renormalization (solid) and factorization {dashed) scales. Normalization is again
the LO cross section with fixed factorization scale.
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The results of the algorithm based on the dipole formalism have also been
implemented in a program [36] for the calculation of NLO QCD corrections
to four-fermion final states in ete™ annihilation.

7. Summary and outlook

The calculation of jet cross sections in perturbative QCD requires the
integration of multiparton matrix elements over complicated phase-space
regions that depend on the actual definition of the jet observables and on
the experimental cuts. In general, these phase-space integrations can be
carried out only by using numerical methods. Beyond LO, however, numer-
ical techniques cannot straightforwardly be applied because real-emission
contributions and virtual contributions are separately divergent. These di-
vergences have to be first regularized, then evaluated analytically, combined
together and cancelled before any numerical calculation can be attempted.

General methods are now available to overcome all the analytical dif-
ficulties related to the treatment of soft and collinear divergences in NLO
calculations. In this contribution we have mainly described one of these
general formalisms, which has been used to set up an explicit algorithm to
compute NLO jet cross sections.

The algorithm combines the subtraction method and the dipole formu-
lae to carry out all the analytical work that is necessary to evaluate and
cancel the singularities. The final output of the algorithm is given in terms
of effective matrix elements that can be automatically constructed start-
ing from the original (process-dependent) matrix elements and universal
(process-independent) dipole factors. The effective matrix elements can be
integrated numerically or analytically (whenever possible) over the available
phase space in four dimensions to compute the actual value of the NLO
cross section. If the numerical approach is chosen, Monte Carlo integration
techniques can be easily implemented to provide a general-purpose Monte
Carlo program for carrying out NLO QCD calculations in any given process.

The simplified discussion of the algorithm presented in this contribution
directly applies to processes, like eTe™ — n jets, in which there are neither
initial-state hadrons nor identified hadrons in the final state. However, the
formalism and the algorithin are completely general in the sense that they
apply to any jet observable in a given scattering process as well as to any
hard-scattering process. Full details and explicit results for lepton-hadron
and hadron-hadron collisions and for fragmentation processes are given in
Ref. [10].

At present, next-to-next-to-leading order (NNLO) QCD calculations are
feasible only for some fully inclusive quantities [37]. In these cases one con-
siders all possible final states and integrates the QCD matrix elements over
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the whole final state phase space. Thus one can add real and virtual con-
tributions before performing the relevant momentum integrations in such
a way that only ultraviolet singularities appear at the intermediate steps
of the calculation. In the case of less inclusive jet observables, one cannot
take advantage of the cancellation of soft and collinear divergences at the
integrand level and, at present, no systematic method is available to han-
dle these divergences at NNLO. Even once the necessary two-loop matrix
elements for several processes are calculated, the amount of work needed to
provide a numerical implementation will be enormous. The main features
of the dipole formalism, which permit a universal treatment of soft and
collinear singularities at NLO, seem particularly suited to set up a general
method for carrying out NNLO QCD calculations.
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