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Automated systems are reviewed focusing on their general structure and
requirement specific to the calculation of radiative corrections. Detailed
description of the system and its performance is presented taking GRACE as
a concrete example.
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1. Introduction

The development of high energy accelerator and experimental technol-
ogy urges theorists to make large scale computation for a precise comparison
between the experimental data and the theory. In high energy collisions we
observe multi-particle channels and good experiments provide us with data
of high accuracy. This means that the cross sections for complex processes
must be calculated including higher-order corrections. Such a huge compu-
tation sometimes exceeds limit of desk work by theorists. Since perturbative
calculation of quantum field theory is a well established algorithm, it is natu-
ral to expect automated systems on computer are able to solve the problem.

An example of such large scale computation is the.four-fermion produc-
tion in ete™ collision summarized in the LEP-II report [1]. It has been
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demonstrated that automated systems are quite efficient for the purpose
among many codes contributed to this calculation. In this case one should
have generated all the 76 channels of four-fermion final states and the max-
imum number of Feynman diagrams reaches 144 for two electron pairs ®.
Automated systems, for example grc4f [2] spawned from GRACE [5], make
such a computation possible even keeping the fermion masses non-zero.

In its first stage the automated systems are developed for the compu-
tation of tree processes. Then they should be extended to the radiative
corrections in one-loop and beyond, because one meets also large scale com-
putation. Such a sample is the one-loop corrections to vy — W+W=. This
requires the computation of ~500 Feynman diagrams [3, 4].

In this report we review the general structure of the automated system
by taking GRACE[5] as an concrete example. This system is designed to be
used as an event generators for processes of tree level. One-loop calculation
is possible, though restricted to 2-body processes at the moment.

Besides GRACE system, several automated systems have been developed
in the world. We only quote some major systems below:

(1) FeynArts/FeynCalc [6] is constructed on Mathematica and can calcu-
late one-loop amplitudes. Results for radiative corrections to ete™ —
HZ, vy — tt, vy = WTW ™ have been published. Extension to higher
loops is under study.

(2) CompHEP system [7] provides an interactive interface to the user. It
can generate events and has been applied to many physical processes.
Though restricted to the tree-level at present the extension to the one-
loop is in progress.

(3) MadGraph [8] is also for the tree calculation where the amplitude is
evaluated by HELAS [9] library.

(4) ALPHA [10] systemn is for the tree calculation. It is unique in the
sense that it does not use the perturbation by Feynman diagrams. The
method is based on the fact that only discrete number of momenta
defined by external particles appear in the intermediate states for tree
level. The field operators are expanded by these discrete modes and the
scattering amplitude is directly calculable by the generating functional.
This method has shown to be efficient to save the computation time
for the amplitude calculation.

() Wang’s system [11] is written in RLISP+-REDUCE. 1t also aims the
one-loop automatic computation.

! The number of diagrams depends on the choice of gauge.
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2. Structure of automatic system

In this report we confine the discussion to the automation for the radia-
tive corrections in the electro-weak (EW) theory but not those in QCD. The
reason is that in higher order calculations the most adequate way of compu-
tation and necessary technology usually differ between these two theories.
So many types of particles and vertices in the EW theory force us to develop
an automated system. QCD is, however, much simpler even in the one-loop
level.

Here we give some basic assumptions for the following discussions. (1)
As we have seen it is possible to construct an automatic system without
recourse to Feynman diagrams. However we skip the discussion for this
direction since at present the radiatiove correction is only calculated by the
conservative method based on the perturbation using Feynman diagram.
(2) Feynman rules to generate diagrams are usually implemented in a code
by hand. Recently a system [12] has been proposed which is designed for
automatic generation of Feynman rules from a given Lagrangian. Though
this will be certainly powerful for more complicated theories such as SUSY
and extended models, the discussion is skipped in this report. (3) Also we
skip all the discussion on kinematics, integration method and the way of
event generation, against their importance. It should be stressed that these
items are never trivial but only deep consideration and experience would be
able to construct a realistic system.

Now we list the required ingredients of the automated system for
one-loop.

e Diagram generation. Diagrams to be calculated are generated accord-
ing to the input which specifies the external particles and other control
parameters. The diagrams are recorded in a structured format defined
in the system.

e Viewer/Drawer of diagrams. Normally, as a service package,
viewer/drawer to display generated diagrams is included in the system.
This is necessary for the check and for the preparation of publication,
though in a complicated process it is no more practical to inspect all
diagrams by eyes.

e Amplitude generation. For each diagram codes are generated to eval-
uate the amplitudes. Intermediate expression is usually written in a
symbolic manipulation language. Final object must be a code for nu-
merical computation.

" o Library for amplitude handling and computation. The structure of
the library depends on the system. For example a set of functions
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corresponding to parts, of which helicity amplitude is composed, should
be included when the system is based on the helicity formalism.

Library for loop integrals. A library is required to evaluate loop inte-
grals for a given set of external momenta and internal masses.

Monte Carlo integration and event generation.

The phase space integration is to be done under various cuts required
by experiments. Generally the Monte Carlo integration is the most
convenient one for this purpose. Another important point, particularly
from the experimental side, is to construct event generators which is
able to produce events with weight one.

Facility for calibration.

In contrast to the manual calculation the automatic calculation pro-
ceeds in a sequence of operations on a computer terminal. The most
serious problem is to confirm that the result is really correct. Hence
any system should have some functions which allow the self-test. A few
standard checks are the following.

1. Renormalization. This implies to keep 1/¢ as a variable in the
program and to check whether the result is independent of this
variable.

2. Infra-red divergence. Infra-red divergence can be controlled by 1/¢
(dimensional regularization), or by In A (the fictitious mass of a
photon). This variable is also retained in the program and it is
checked whether the dependence is canceled by the contribution
from the soft radiation.

3. Gauge invariance. A severe test will be done if the cross section
is computed in different gauges. Usually one-loop computation
is easy in ’tHooft-Feynman gauge due to its simple numerator,
(—g*). In the unitary gauge (—g"* + p#p*/M?), axial gauge and
so on, the loop integration would become more complicate and
tedious. A good candidate of gauge for the diagnostics is the non-
linear gauge [13].

4. Other (process dependent) checks. Other checks must be possible,
though dependent on the process at hand. They include test of
some symmetry, Furry’s theorem, partial cancelation of divergence
for a class of diagrams and so forth.

5. Comparison with analytic result. This is a trivial idea but if an-
alytic results, if any, are available even for some special cases or
with some approximation, it is quite useful for a comparison.

6. Comparison between systems. Ultimate comparison must be done
between independent computations. For this it is indispensable
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to have groups (at least two) competing in the development of
automated systems.

e Acceleration. Generally the code generated by automated systems is
less efficient than that written by hand and needs to accelerate the
computation.

~ Theoretical aspect. One direction is, like ALPHA, to find other
methods to compute matrix element than the conventional Feyn-
man diagram. It might be possible to combine a set of graphs
in a simpler form by using basic nature of the gauge theory [14].
Choosing an efficient gauge and development of efficient loop inte-
gral formula would be a possible improvement.

— Software aspect. If one can factor out a common pattern among
diagrams and/or generated codes, one can save the computational
time [15]. It would not be an easy problem to find the best opti-
mized factorization. However, some partial factorization is enough
from practical point of view. Parallel computing is easier way for
acceleration, assuming that the system is designed so as to suit
the parallel computation. In fact a trial for PVM of GRACE was
reported to be successful [16].

— Hardware aspect. The solution is simple: The fastest computer is
the best. Parallel computing technology is also favorable.

3. Example of application

In the following we present the function of GRACE as an example among
existing automated systems. In the one-loop level this system has been
tested for the following processes [17]: 1) ete™ — HZ, 2) ete™ — qgy
(QCD correction), 3) ete™ — tf, 4) vy = tt, 5) vy —» WHW .

The system is based on the helicity formalism and computes amplitude
for a given set of external helicity states. In addition the system includes the
option to compute the matrix element (product of tree and one-loop ampli-
tudes with spin summation) by symbolic manipulation which can be used
for the self-check. We adopt the on-shell scheme given by Kyoto group [19].

The operation of GRACE is done as follows. Since it is a full automatic
system, what the user has to do is almost to type a few commands at a
terminal.

1. The user creates a file to specify the process. An example of input file
is shown in Fig. 1.

2. The user invokes the command grc to generate Feynman diagrams.
Efficient algorithm is exploited here for graph generation as explained
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in subsection 3.1. A data file to describe the structure of diagrams is
created.

. The user can view generated diagrams on the display by gracefig

command. [18] This also creates postscript files when the user needs
printed diagrams.

. By grcop command REDUCE source code for the helicity amplitude

is generated for each diagram. The description in this code is ex-
plained in detail in subsection 3.2. After the execution of REDUCE,
the source code for numerical computation is obtained. In the gener-
ated FORTRAN code extended CRANEL library and loop integral library
are called. Multiplication of tree amplitudes and those in one-loop is
done numerically in the FORTRAN code.

. Peripheral codes are also generated including the definition of masses,

couplings and the renormalization constants, interface to Monte Carlo
integration and so forth. Concerning the process at hand. the user can
specify an appropriate definition of kinematics among the library of
kinematics.

. Some manual editing is required here for the specification of /s and

other parameters and inclusion of codes for special checks or codes for
experimental cuts and so on.

. After typing make all the object files are ready. By invoking command

integ, the cross section will be calculated by calling adaptive Monte
Carlo integration package BASES |20]. It also generates a parameter file
to store the distribution of the integrand. The parameter file can be
used by SPRING which generates events with weight one [20].

VAN AN AN AN AN SN YA SN AN AN AN AN
Model="canon.mdl";
YANAA YA NN AN NN NAA Y AN AN A YA A SA
Process;
ELWK={4,2};
Initial={photon, photon};
Final ={W-plus,W-minus};
Expand=Yes;
OPI=No;
Block=No;
Extself=No;
Tadpole=No;
Pend;

Fig. 1. An example of input file for vy = WHW~.
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3.1. Graph generation

GRACE can generate Feynman diagrams to any order in an efficient way
based on the orderly algorithm [21].

First it generates topology and removes identical graphs. For instance
we consider the two-loop graph in Fig. 2.

5 7
Fig. 2. Example of a graph.

The graph can be represented by the following matrix which expresses
the connection of edges (external particles and vertices).

001 00O0O0TO
00 00O0O0TUO0 1
10011000
00100110
00100110
00011001
00011001
01 0001710

This allows a mapping of a graph to a number by regarding this matrix as
a sequence of binary number.

F(G) = 001000000000000110011000... . .

Then we have to eliminate graphs with duplicate topology. We perform
all permutations for vertices.

F(G) = max f(pG) (p = permutation of vertices) .
)

If F(G) > f(G), we discard the graph.

This is simple but the operation is O(N!) where N is the number of
vertices. We introduce the orderly algorithm with vertex classification.
Then vertices are divided into groups, so that the number is not O(N!)
but O(N{!Ny!--), Ny 4+ Ny +--- = N. Also a special trick eliminates the
duplicated graphs at the intermediate stage of graph generation.

For each generated skeleton graph, we assign particles by the list of
vertices (Feynman rules). Duplication is again checked by a similar method.
The symmetry factor of the graph is also determined at this step.
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3.2. Procedure to produce amplitude

In GRACE the helicity amplitude is calculated. The ultra-violet divergence

is kept by a special variable assigned to Cy, = 1/ —yg +logdn, n = 4 — 2¢.
The infra-red divergence is regulated by the fictitious mass A. As is described
before we have a symbolic code for each Feynman diagram. A sequence of
procedures is necessary to produce FORTRAN source code. We present
below the operations applied in the symbolic code.

1.
2.
3.

10.

11.

The numerator structure is generated symbolically.
Indices inside loop are contracted in n dimension.

If there is a fermion loop, trace is taken. The cyclicity of v matrix is
not used to avoid the anomaly from v5. The ordering of 4’s is common
to a set of graphs with same topology.

. Shift momentum is determined by inspecting the denominator struc-

ture after combining propagators by Feynman parameters. Then loop
momentum, £, is shifted.

Terms in odd power of £ are dropped.

. The following replacement of even 7 is done:

2
oYy g
n

(£%)?
i el d wy  po Hp LU0 BT 4PV
—>n(n+2)(g 9%° + g*Pg"7 + ¢*7g*")

. Numerator becomes polynomials in Feynman parameters. The set of

coefficient of polynomial are extracted. Following is an example of a
vertex integral.

np(9(,y) + 201 (2, y)C+ flz, y)
/ dedyl'(3) / dne B

. Here f{z,y), g(z,y), ... are products of coupling constants, invariants,

gamma matrices and wave functions of external particles.

Each fermionic string is replaced by a symbolic expression with ap-
propriate arguments. This expression is computed numerically by ex-
tended CHANEL library, where CHANEL [22] is used in GRACE for tree
diagrams.

Summation is done for coefficients over all combination of internal he-
licity freedom for a given set of external helicities.

Loop library is called to compute loop integral with (numerical) poly-
nomials in the numerator.
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3.3. Numerical loop integration

For the loop integration GRACE system uses a numerical method in the
Feynman parameter space [23]. One algorithm is to use the symmetrization
to regulate singularity. Another one is a kind of hybrid method in which the
singularity is integrated up to logarithms:

b
1
/dw—,:log(m—c-ia) [Z
T—c—ic

We can integrate the loop integral with a numerator in Feynman parameter
space directly without reductions.

For the large scale problem we found that Monte Carlo method is quite
efficient to integrate both the phase space variables and the Feynman pa-
rameters at the same time. This technique can be extended to two-loop and
higher loops. It should be noted that the integrand is exact (including that
of loop) and the result is obtained within the error given by Monte Carlo
method. When the final state is multi-body there is no need to have precise
value of the loop integrals, because the phase space integral destroys the
precision after all as long as the Monte Carlo method is employed.

3.4. Results for vy — WTW—

As an example of the performance of GRACE we present the results for
the radiative correction to vy — W¥W~. The checks of the result are made
in the following way: First, Cy, independence and A independence were
confirmed. Partial check for t—u symmetry, C,, independence for vertex,

Furry’s theorem, finiteness of Higgs vertex were done successfully.
TABLE 1

Values of correction, dag=o.1g. Comparison with Ref. {3]

W (GeV) 0(deg) Ref. [3](%) GRACE(%)

500 5 0.02 0.016
500 20 —2.68 —2.710
500 90 -10.79 —10.790
1000 5 —2.06 —2.063
1000 20 —10.90 —-11.900
1000 90 —31.68 —31.644
2000 5 —7.14 —7.132
2000 20 —30.31 —30.312

2000 90 —59.59 —59.573
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For physical parameters we use Mz = 91.187 GeV, Mw — 80.333 GeV,
My = 250 GeV, my = 170 GeV, ky, = 0.1 Epeam to compare with Ref. [3]
in Table I, and we use My = 91.187 GeV, Mw = 80.333 GeV, My = 300
GeV, my = 174 GeV, kqye = 0.1 GeV to compare with Ref. [4] in Tables II
and III.

TABLE II
Values of correction, §*°* — §hard. Comparison with Ref. [4]
W (GeV) 6(deg) Ref. [4}(%) GRACE(%)
500 10 -7.27 —-7.27
500 20 -9.38 -9.39
500 60 -16.12 ~16.15
500 90 —~17.42 —-17.45
1000 10 -16.9 -16.89
1000 20 -23.6 —-23.55
1000 60 —40.4 -40.42
1000 90 —43.2 —-43.25
2000 10 -33.4 -33.37
2000 20 ~47.7 —~47.72
2000 60 -~73.1 -73.13
2000 S0 ~77.0 —-76.95
TABLE II1

Table of radiative correction for various helicity amplitudes. Columns denoted
by J and G are results in Ref. [4] and that by GRACE, respectively. Values of

170°
8 = soft + Sbose + Oferm; is shown in %. Here § = 0/oB°™ —~1 and o = / g—g—dﬁ.

100
W =500 GeV W = 1000 GeV W = 2000 GeV
unpol G -10.9 —23.8 —44.6
J —11.0 —23.9 —44.5
++TT | G -10.7 —24.5 —45.5
J —10.9 —24.5 —45.6
++TL | G 0 0 0]
J 0 O 0
++4+LL | G —-10.3 —22.1 —49.1
J -10.3 —22.0 —48.6
+—-TT | G —-11.0 —23.0 —43.3
J -~11.0 —23.1 —43.4
+-TL | G -13.5 —29.4 —48.3
J —13.4 —29.3 —48.2
+-LL | G —-9.9 —24.0 —43.9
J —9.8 —24.4 —44.1
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Ref. [4] also calculated the total cross section of the process vy — W+TW =y
to make completion of the O(«) corrections. Since it is an easy task for
GRACE to calculate a tree process, we also show the radiative correction due
to the hard photon emission in Table IV. These tables demonstrate that

GRACE produces the consistent results with other calculations.
TABLE IV

Table of hard photon contribution for various helicity amplitudes. Columns denoted
by J and G are results in Ref. [4] and that by GRACE, respectively. Values of § = dnarg
is shown in %.

W =500 GeV W = 1000 GeV 7 = 2000 GeV

unpol G 7.87 13.4 20.0
J 7.94 13.4 20.1

++ 71T ] 7.91 13.4 19.1
J 7.94 13.5 20.1

+4+7TL | G 0 0 0
J 0 0 0

++LL | G 13.5 65.2 759
J 13.7 64.2 748

+-TT | G 7.63 13.1 19.5
J 7.69 13.1 19.6

+-TL | G 10.3 40.8 252
J 10.2 40.6 248

+—-LL | G 8.22 14.3 21.0
J 8.22 14.2 21.0

4. Toward two-loop and beyond

We have discussed the automatic calculation of radiative correction in
one-loop. Eventually this will have to be extended to higher loops.

For the graph generation there is no problem. GRACE graph generator is
general enough to any order in the standard model. Next task is to process
tensor structure in the numerator in general manner. This is realized up to
now in a few systems, e.g., TwoCalc [24] and XLOOPS [25].

Also two-loop integral library should be ready for general combination of
external momenta and internal masses. It seems hopeless to obtain compact
analytic formula except for a few lucky cases. Many methods are proposed
for this target. They are (i) analytical methods [26], (i7) asymptotic ex-
pansion, up to box [27], (i) recurrence relations [28], (iv) integration by
parts [29], (v) momentum space integration [30], (vi) momentum expansion
with Padé approximation [31], (vii) analytical/numerical method [32], (vii1)
Feynman parameter numerical integration [33]. Though some progress and
applications are found in literature, the automatic system is not yet com-
pleted.
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5. Summary

It is now recognized that automated system for the perturbative calcu-
lation of QFT is indispensable for high-energy physics.

Many systems have been used for the calculation of tree processes and
some of them can handle up to 2-body — 5-body and more complicated
reactions?. For the tree processes it can be concluded that the automation
has substantialy reduced man-power requirements.

A few system are available for the one-loop. At least any 2 to 2 processes
can be automated. It seems to reach the level of man-power.

A few advent toward higher loop automation is in progress. More work
s needed to exceed man-power.

In the development of the automated system it is important to reduce in-
tervention by man-hand, since a human makes error at random. Automated
system is a complex of symbolic manipulation and numeric computation.
One starts with Lagrangian and Feynman rules which are symbolic objects
and ends numerical stuffs, cross sections and generated events. Their inter-
play is a key for the design of system.

Important issues include the calibration of the system which can be done
best by comparison between independent systems. This will motivate the
standardization of the inputs and outputs of various systems. Also we should
expect a new technology for acceleration of computing time for practical
application.

This work has been done as the GRACE project in Minami—Tateya collabo-
ration. The authors would like to thank especially S. Kawabata, Y. Kurihara
and H. Tanaka for their contribution. They also would like to acknowl-
edge the local organizing committee of CRAD96 for a stimulating work-
shop and their nice organization. This work was supported in part by the
Grant-in-Aid (No.07044097) of Monbu-sho, Japan.
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