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THE ELECTRON (g. — 2) AND THE VALUE OF a:
A CHECK OF QED AT 1ppb *

S. LAporTA AND E. REMIDDI™™

INFN, Sezione di Bologna, Via Irnerio 46
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The current experimental error in the electron (g.-2), 4 ppb, is now
bigger than corresponding theoretical error, which is 1 ppb. We review
shortly the latest theoretical results, concentrating mainly in the analytical
calculation of the QED 3-loop contributions, and then we discuss the pos-
sibility of a 1% numerical calculation of the 4-loop contributions, aiming
at a final theoretical error less than 1ppb.

PACS numbers: 13.40. Em, 14.60. Cd

1. The current best experimental value of the electron (g.-2) is [1]
ac(exp) = 1 159 652 188.4 (4.3) x 1072 (4ppb). (1)

Two new experiments are in progress and wishing the best success to our
experimentalist colleagues we expect that new and very accurate values,
with an absolute error below 10712, i.e. a relative error below 1 ppb (1 part
in a billion), will be soon available.

As it will be shown in a moment, for a meaningful check of the QED theo-
retical prediction for the electron (g.-2) one needs also an equally accurate
value of the fine structure constant «. The best current solid-state, ‘non
QED’ value is [2]

a~}(NIST) = 137.036 0037(33) (24ppb) , (2)

with an error which is still more than an order of magnitude higher than
the aimed precision. Other ‘non solid-state’ measurements are in progress
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[3], we can just hope that in due time they will also provide us with a 1ppb
value of a.

Section 2. Let us write the theoretical value of the electron anomaly as

r=a(e) o +o(2)
4
+ a;(%) + ...+ Aac(th) , 3

where the first line is the perturbative expansion in a/m of the QED contri-
butions involving only the electron in the intermediate states, all the other
contributions being contained in Aa.(th). We write in turn Aa.(th) in the
form

Adac(th) = ac(p) + ac(7) + ac(w) + ae(h) (4)

where a.(u), a.(7) are the QED contributions due to internal z and 7-lepton
loops, a.(w) is the contribution of the weak interactions and a.(h) the
hadronic contribution. a.(p) is small; even at 1ppb level it is sufficient
to consider only the leading term in a and m2/m?2 [4],

2
1 mi

2

[} —

ac(p) = 5 (;> ~2.80 x 10712, (5)
3

As, in general, any contribution due to a large internal mass behaves as the
ratio of the squares of the electron mass and of the large mass, a.(7) and
a.(w), which can be both evaluated within the standard electroweak model,
are negligibly small at this level. a.(h), on the contrary, can be evaluated
only phenomenologically, by using the experimental ete™ annihilation data;
at present, its best value is (from Ref.[5]; systematical error only)

a.(h) = (1.8847 4 0.0375) x 107'%, (6)

again a small value, but significant at 1ppb level. It may be important to
stress that the error in the prediction of the hadronic contribution will be
the ultimate error in the theoretical prediction of the electron (g.-2); that
error (less than 0.04 ppb!) is however much smaller than the experimental
and theoretical precision attainable in the foreseeable future. (The situation
is different in the case of the (g-2) of the p, were the hadronic error is the
main source of error in the theoretical prediction.)
Summarizing, we can say that Aa.(th) is known,

Aa(th) = 4.7 x 10712, (7)
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with an error less than 0.1 x 107!2, i.e. safely below the aimed 1ppb level.
Coming back to “electron-only-QED" part, the leading contribution in «

is the Schwinger [6] term
1{a .
3(5)- ¥

The leading term induces in the final value of a.(th) the error corresponding
to the experimental error in « (as « is small, @ ~ 1/137, the experimental
error in o does not show up in the higher powers of «); hence the already
mentioned need for an independent, non-QED experimental value of a with
a 1ppb (or less) relative error.

Also ¢y is known exactly since a long time [7]

197 1 4, 1, 3
cy = Tia + 127r 271' In2+ 4C(3)
= —0.328 478 965 579 ..., (9)

where ((3) = 1.202 056 903 159 59... is the p = 3 value of the Riemann
{-function

}: . (10)

(For even p the constants ((p) can be expressed as powers of m, such as
¢(2) =7?/6, ((4) ==*/90.)

We have recently completed [8] (for previous results, see [9-11])the ana-
lytical calculation of ¢3, obtaining

e = ) - S20)
+ "1%9 [(04 + 2—14-1n4 ‘2) - %7721112 2]
- ;1'36—907(4 %—9 (3)
= 1.181 241456 ..., (11)

where ((5) = 1.036 927 755 143 37... and a4 = 0.517 479 061 673 899 ...
is the p = 4 value of

ap = Z STl (12)
=1



962 S. LarorTa. E. REMIDDI

Thanks to Eq. (11) the first 3 coefficients of the expansion in a of Eq. (3)
are by now all exactly known; the theoretical error is due to the next coef-
ficient, c¢4. of which only an approximate numerical value exists, thanks to
the tireless work of Kinoshita. The latest value for the 4-loop contribution
is [12]

' ¢y = —1.4092(384) ,

with a twofold precision improvement with the respect to the previous value

(13]
s = —1.557 (70) . (13)

By inserting the above results and the value of « given by Eq. (2) into Eq. (3)
one finds

ac(th) = 1159652 156.7 (1.1) (28) x 107'?, (14)

where the first error, (1.1), is due to the error in ¢4 Eq. (13), while the
second (and by far dominant) error comes from the experimental error in a,
Eq. (2). The difference between the theoretical and experimental values is

ae(th) — a.(exp) = 32 (28) x 1071%; (15)

the agreement is reasonably good — but is absolutely obvious that a more
precise value of a would give a much more stringent test.

Let us (optimistically) assume that the experiments will soon reach —
and overcome — the 1 ppb wall; how much work will then be needed on the
theoretical side to catch up? As (fortunately) the 5-loop (%)5 contribution
is still negligible, even at that level, one is confronted with the problem of
reducing by a factor 5-10 the error in ¢4, down to, say, an 1% relative error. A
fully analytical calculation is at the moment out of question; the numerical
approach will surely be continued to give better and better results, but
the difficulties cannot be underestimated (one has to deal with ill-behaved
integrals in many dimensions, the proper numerical treatment of spikes and
end-point singularities of the integrands is very delicate), and in any case
the problem of an independent calculation. to provide with a cross check,
would remain.

In the next section we will shortly review the techniques which lead to
the completion of the 3-loop analytical calculation; in Section 4 we will argue
that some of those techniques might be hopefully extended to give a good
numerical value for the 4-loop contribution as well.
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3. The value of ¢3, Eq. (11), was obtained by a suitable combination of
analytical and algebraic methods. We can just sketch here the main steps of
the analytical method (some more details can be found in [8], [14]; see also
section 6.5 of [11]): given any scalar 3-loop integral contributing to (ge-2),
we use a suitable combination of hyperspherical variables for the ‘outer’
loop (or loops) and of a dispersive representation for the ’inner’ loops (or
loop), obtaining a ’standard integral’ in just 4 variables, whose integrand
is a logarithm: by judiciously reshuffling the square roots of the integrand
and properly ordering the integration variables, the whole expression is seen
to consist of integrals over Nielsen polylogarithms, to be processed with by
now well established methods. Those techniques apply, at least in principle,
to any of the scalar integrals which are present in the contributions of the
various Feynman graphs; the direct analytical calculation, one by one, of all
the scalar integrals is doable in practice (and in fact all the 3-loop graphs,
with the exceptions of the very last, the triple-cross graphs, were evaluated
in that way), but turns out to be extremely long and laborious. There are in
fact several hundred scalar integrals for each graph and, what is worse, the
many scalar integrals with polynomials of the momenta in the numerator
give rise to an enormous number of intermediate terms, whose processing
requires a substantial amount of (human) direct inspection - besides a lot of
more mechanical algebraic elaboration (carried out of course by a computer
program; we take here the occasion of acknowledging M. Veltman, M.J.
Levine and J. Vermaseren for kindly helping us, through the years, in using
their programs SCHOONSCHIP[15], ASHMEDAI|16] and FORM[17];

The last class of 3-loop graphs, the triple-cross graphs, has been completed
by a different technique, i.e. by heavily using the by now well known in-
tegration by parts method [18]. The method, in its essence, generates a
very large number of identities between the scalar amplitudes occurring in
the Feynman graphs — or rather between their extension from 4 to contin-
uous n dimension. It is extremely long and machine-time consuming, but
in principle straightforward, to use those identities for expressing the *most
complicated” integral of each identity in terms of the simpler ones occurring
in the same identity. There are many integrals (up to a thousand) and even
more identities (several thousand) to work out; the systematical exploitation
of all the identities permits to express all the occurring scalar integrals as
linear combinations of a surprisingly small number of basic (or master) inte-
grals, whose coefficients are ratios of polynomials in n. As one is ultimately
interested in the n = 4 values of the integrals, we found it convenient to
expand everything in powers of n — 4, but even the proper bookkeeping of
the expansion in n — 4 turns out to be rather delicate, and cannot be carried
without some care.

The actual choice of the master integrals is to a large extent arbitrary; for
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classification purposes, it may be convenient to consider as simpler the 3-
loop integrals having less denominators, smaller powers in the denominator
and finally smaller powers in the numerator. Following that criterion, we
found that all the integrals occurring in the contribution of the triple-cross
graphs can be expressed in terms of 17 basic (or master) integrals only;
they are listed below, each integral being preceded by an icon describing its
topology:

/\ — ( —t ) / n n 2 D k‘z

L‘-._/\’(f i 2 "k d"kad"ks DyDy;D3D4DsDgD-Dg ’

? J—( ’)/dnkd”kdnk L

“ “111% 2= T2 ! 2 3 Dy DyD3 Dy D7Dy ’
J—( ’)/dnkdﬂkdnk 1

k -, 3= g2 1 2 3 D DyD4yDsDgDg ’

2, (= ) [ .

\H"u// fT 2 ? ? DyD3D4DgD7Ds ’
g = (= / A"y d ko d™k L

‘VHLH 7 T2 ! 2 3 DyD3D4sDsD7Dg ’
Jo = ! ) ey d kyd™ !

¢~ (nn 2 / *® ™ D\D3DsDsD7Ds
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1

N = _
</ 14 D;D3D.Ds |

L= (7)) [rnrhtt s

—1

7'{'"_2

3
/ﬁhﬁh&@

. —i\3 1
2o Jig = d"kyd kod kg ——o—— |
%:% 16 s / 14 K67 k3 DaDeD7Ds
9 ( —1 3/‘ 1 .
Jir = d"kyd"kyd by ——— . 16
O\<j 17 P 14" kaa k3 D1 DsDs (16)
where, in m, = 1 units,

(p k‘.l)2+1—’i€, Dg:(p—k]—kg)z-f-l—if,
D3-(P ky —ky —k3)>+1—de, Dy=(p—ka—ks)®+1—ic,
Ds = (p—k3)*+1—ie, Dg = k? —ic,

D7:k‘%—i€, Dg:k‘%—'i’(.

In [8] we gave a similar table, containing however 18 basic integrals; in the
meanwhile we found indeed that the 11-th integral, I;; of [8] was in fact a
linear combination of the integrals I14 and I;g of [8]

3 1 ' 1
Iy = 1y [—- - (w +?+ Bt Wt Wb +O(w7))1 —=Iig . (17)
4 4 4

The integral I; of [8] has therefore been dropped, obtaining the 17 integrals
of Eq. (16); more precisely, the first 10 integrals, Ji, ..., Jio correspond to
I, ..., Io, while Jyy, ..., Ji7 of the present paper correspond te Iz, ..., 15 of
[8].

As an example of the use of the basic integrals, let us consider the “triple
cross” graph of Fig. 1

Fig. 1. A triple-cross vertex graph
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Its contribution to the electron (g.-2) in terms of the above 17 basic
integrals reads

ac(triple — cross) = lim [ + é']l

w—0
+ J, (—i+5§’-—3935w)

w T T
. <~ 13 253 823 102707 , 979525 3>
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s ( R +6229+ 1_§_7_w+ 1934333 , 1580447w3)
dw? | 36w | 432 27 3888 11664
+ i ( 111075 8179 10925w+ 2919977
96w? 576w ' 864 192 7776
49397413 .
23328 )
+ I (_ 17 1420 12223 146749 15117413“)2>
24w? | 144w 216 132 7776

11 1379 1025 103331 28067
T5120° | 1536w? 768w | 2304 512 -
63877391 , 73084675 |,

41472 © 7 731104 )]

+ J17<

(18)

It is important to stress that the 17 basic integrals are sufficient to express
the (ge-2) contribution not only of the other “triple cross” graphs considered
in [8], but also of graphs of different topology, such as for instance the “corner
ladder” graph of Fig. 2, for which we find

Fig. 2. A corner-ladder vertex graph

a¢(corner — ladder) = lim
w0
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Note that .J;, which is requested for expressing the {g.-2) contribution due to
the “triple cross” graph of Eq. (18) does not appear in Eq. (19), corresponding
to a topologically simpler “corner ladder” graph.

At this point, the analytical value of the integrals J; is needed. Some of
them are almost trivial; Jy7, for instance, is just equal to the cube of the
elementary integral J = i [ d"q/(¢* + 1 — i€), Ji4, J15 are the product of J
and of a two-loop integral, Jy,,J13 are vacuum-vacuum terms, the others
are increasingly more difficult to deal with, up to J; which contains the full
structure of the “triple-cross" topology. As it is apparent from Eq. (19) and
Eq. (18), the expansion in w = (4 — n)/2 of almost all those integrals is
needed. If C'(w), defined as

Cw)=(r"Tl+w))® n=4-2w,

is an overall normalization factor, whose limiting value at w = 0 (n = 4) is
1, the actual analytical values of the integrals are

{X\ Ji = Cw) [54(5) - %r2<(3)+0(w)] :

ez :
) = e 2592 B L ioggsy (B

w 90 3 2
—8—;-7r2§(3) — ~1—‘5-7r4 - 82¢(3) — 47*In2 4+ 167% — 2C,

+6C2) + O(w2)] :

1 7 31 2 4 103
P il T 31 2 4 4 103
STt (“’)[&ﬁ teatn T 30+

25 1, 184 \
-2 — =t = Z22¢(3) - 8n2
+w(95((5) 37 ¢(3) 57 3 ¢(3) ~ 8n°In2
4, %
+3w2+ %+4C2> +O(w2)] )
%@ ¢@3) 7 1 385
G — . _ L (: —7? 5
5= @t - Grtrac + gt o(Bs)
85 2,0 7 4 2 2 ‘
5" ((3)—13# —82¢(3) — 47*In2 + 167° — 2C,

+4C2) + O(‘*’?)] .
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1 3 11255)4414,
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7 2
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where C;, C5 are the coefficients of the w term in the expansion of the
integrals

M, = ( —1 )3 dnkldnk‘ankg (pkl)
L =2 D1D3D4D5D6D7D8
2
=CW4—£“+Q$+wG+OWﬂ,
M, = ( —1 >3 d’kid"kqod ks (p.k3)
2T \gn? D3D3D4D5Dg D7Dy
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The value of C is not needed (see below); for C'; we have

173 53 .

C, :__(( )+ 2 4+ 18¢(3) 4+ 27%In2 — 372

"3 - o

Due to an unfortunate misprint, in Ref.[8] the terms containing the constants
Ch, C; are missing in the r.h.s. of the integrals I3, I3, Iy, I5s, Is, Iz and
Ii1: all the results which follow are however correct, as C;, ('3 cancel out
systematically in all the (g.-2) results of [8] (which are therefore correct
despite the misprint!). By substituting the values of the J; Eq. (20) into
Eq. (18) and Eq. (19) the constant C cancels out again, and one obtains

ac(triple — cross) =

—({5H 3 xd ( 1 42>
2¢0) — g CB) - 1030 + 3 (@ + 5in
32 9 i3y 4 20 2 1043 , 1
9 ; - T 21
+ 5" In2 + 2Q(3) ' In?2 = (21)
a.{corner — ladder) =
215 . 95 2 41 4 137 5 160
B RO ~ 2 2 m22 4 —
.24@(5)+ R2((3) + omt = — it In?2 4
20 69 101 , 2401 2 3017
? 2+ , 22
+27 C( )= 13 7“In 2592 61 (22)

in agreement with Eq. (3) of [8] and Eq. (5) of [9].

Note that all the integrals J; but J; are divergent for n — 4; although
for an analytical calculation that fact is not a particular problem (divergent
integrals usually have less denominators, a fact which makes the analytical
integration simpler), it prevents their direct numerical calculation and makes
numerical checks harder. To that aim, it is convenient to express Eq. (18)
and Eq. (19) as combination of a different set of other basic integrals NV, all
finite in the n = 4 limit, and of as few as possible divergent integrals. It turns
out in fact that any scalar integral can be written as a linear combination
of the basic integrals, so it is just matter of patience to take a list of finite
scalar integrals, to write the equations which express them as a combination
of the basic integrals and then solve the equations for the basic integrals in
terms of the finite integrals (as matter of fact, some entries of Eq. (20) have
been established in that way, by exploiting the analytical results obtained
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in previous works [8, 9, 14] for many of the scalar amplitudes). In so doing
one obtains the formulae

a.(triple — cross) =

449 85 3 1 1
= —2Ny+ —Ng— 2Ns+ =Ng+ ~-N»
T AT R I R S 12N5+216+4
5225 5081 2 11573 43
o — N - —Ny, - 2N
561 '8~ Trag Vo + 3 N0~ g Nu - g
2809 5657 9797
132 - 13-{- 361 N14'— 139 ‘N15+————hm l:u) J17} (23)
and
a.{corner — ladder) =
817 43 3 1 7 29233
- Ni = T2N3 + SN = 2Ny + oNo — ===
31561 T 1s- 2t giVe T gNat gl oo Ns
32881 20527 77 4657
— N N A
3456 9+ Nl” 76 it g e s
23281 16175 ] 3017 . [ 4 ‘
= T8 Nis+ 538 Nis — Nig + §L1 + 364 Jl)lglo[uf Jll} (24)

where Jy7, defined in Eq. (16,20), is in fact the only divergent integral, while
the N; are the following triple-cross integrals, finite at n = 4,

% = 55 Boippeneap =X ;m ,
% = 55 | Db~ e
% = 55| bbb - e
%= 55 | b = S .
Ns = }FLE Dlgzgﬁﬁ:ﬁm =25¢(5) - %”2“3) ’
o= o | Dm0
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and L; is the scalar integral of the corner-ladder graphs [9]

? dikd*kodiks
L1 = _6/

T

29

DyD;D3 Dy DsDegD7Dg

11 .
1—4;#" - ?71'2 n%2+ % n%2 + 4ay ,
with

Dsa = (p— ky — kg)2 + 1 — ie

Needless to say, by inserting the formulae of Eq. (25) into Eq. (23) and
Eq. (24), Eq. (21) and Eq. (22) are recovered.

It is to be noted that Eq. (23), Eq. (24) and the table (25) are much more
compact than the formulae of the corresponding Eq. (18), Eq. (19) and (20).
The important difference to emphasize is that the integrals V; are finite at
n = 4 and simple enough to be calculated numerically without particular
problems. Their evaluation is in any case much simpler than the direct
numerical evaluation of the whole contribution from the concerned graphs
to the electron (g.-2) expressed in terms of the usual Feynman parameters
or the like.

4. In the previous sections we have recalled the need for an independent
evaluation of the 4-loop contribution ¢y, first of all to provide an independent
check of the result of {12] but also, when possible, to reduce the relative
numerical error in ¢4 below the 1% level, in order to achieve a final theoretical
precision in the electron (g.-2) better than 1ppb. We want to conclude this
paper by suggesting that the techniques described in the latter part of the
above section, devoted to the analytical evaluation of c¢3, might be properly
extended to the precise numerical evaluation of ¢4 as well.

More in details, the proposal is to work out all the integration by part
identities relevant in the 4-loop case, with the aim of expressing all the
occurring scalar integrals and the contributions of the various 4-loop graphs
to the electron (g.-2) in terms of a limited number of basic integrals, in
close analogy with the results of Eqs (18)-(20); as a guess, we expect a
million of identities or more, and hope in a few hundreds basic integrals.
As the analytical integration will be possible only for a very small number
of basic integrals, we will try to express all the other basic integrals in
terms of simple, finite and well behaved 4-loop integrals, easy to evaluate
numerically, and then we will express the (g.-2) contributions in terms of
those simple and finite integrals, so obtaining the 4-loop analog of Eqgs (23)-
(25). Those formulae for the (g.-2) could be obtained by pure algebraic
methods; once the algebraic formulae are established, we can tackle as a
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second and independent step the problem of the precise numerical evaluation
of the occurring “simple and finite” integrals. An appealing feature of the
proposed method is indeed the factorization, so to speak, of the calculation
in a preliminary algebraic elaboration, to be carried out once for ever —
working out the analog of Egs (23)-(25) — and in an independent numerical
integration, to be repeated as many times as needed with increasing precision
for obtaining more and more precise values for ¢;.

REFERENCES

(1] R.S. Van Dick, Jr., P.B. Schwinberg, H.G. Dehmelt, Phys. Rev. Lett. 59, 26
(1987).

[2] A. Jeffrey, R.E. Elmquist, L.H. Lee, J.Q. Shields, R.F. Dziuba, NIST; presented
at the 1996 Conference on Precision Electromagnetic Measurements, 17-20 June
1996, Braunschweig Germany, and B.N. Taylor. private communication.

[3] M. Weitz, B.C. Young, S. Chu, Phys. Rer. Leit. 70. 2706 (1993).

[{4] G.W. Erickson, H.H.T. Liu, report UCD-C'\[L-x1 (1968); B.E.  Lautrup,
E. de Rafael, Phys. Rev. 174, 1835 (1968).

{5] F. Jegeriehner, Nucl. Phys. suppl. Proc. 51C, 130 (1996).

[6] J. Schwinger, Phys. Rev. 73, 416 (1948); Phys. Rev. 76, 790 {1949).

[7] A. Petermann, Helv. Phys. Acta 30, 407 (1957); C.M. Sommerfeld, Ann. Phys.
(N.Y.) 5, 26 (1958)

[8] S. Laporta, E. Remiddi, Phys. Lett. B379, 283 (1996).

[9] S. Laporta, Phys. Leit. B343, 421 (1995).

[10] S. Laporta, E. Remiddi, Phys. Lett. B265, 181 (1991).

[11] M.J. Levine, E. Remiddi, R. Roskies, in Quantum Electrodynamics, edited by
T. Kinoshita. Advanced series on Directions in High Energy Physics, Vol. 7,
World Scientific, Singapore 1990, 162, p.214-216.

[12] T. Kinoshita, CLNS96/1418 preprint, presented at the 1996 Conference on
Precision Electromagnetic Measurements, 17-20 June 1996, Braunschweig Ger-
many.

[13] T. Kinoshita, IEEE Trans. Instrum. Meas. 44, 498 (1995).

[14] S. Laporta, E. Remiddi, Phys. Lett. B356, 390 (1995).

[15] M. Veltman, SCHOONSCHIP a CDC 6600 Program for Symbolic Evaluation
of Algebraic Expressions, CERN report (1967) unpublished;

M.J.G. Veltman, D.N. Williams, Univ. Michigan preprint UM-TH-91-18
{1991).

[{16] M.J. Levine, U.S. AEC Report No. CAR-882-25 (1971}, unpublished.

[17] J.A.M. Vermaseren, Symbolic Manipulation with FORM, Computer Algebra
Nederland, Amsterdam 1991.

[18] K.G. Chetyrkin, F.V. Tkachov, Nucl. Phys. B192, 159 (1981});

F.V. Tkachov, Phys. Lett. B100, 65 (1981).



