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Sparse Gaussian Random Symmetrical Ensemble has been introduced.
Its statistical properties have been investigated. Transition from chaotic
sub-ensemble to integrable one versus fraction of the matrix elements not
equal to zero has been found. Jump of cumulative distribution function at
energy F = 0 has been interpreted as an order parameter which differenti-
ates between chaotic and integrable ensembles.

PACS numbers: 05.30. Ch, 02.10. Sp, 05.45. +b, 05.70. Fh

1. Introduction

Most models of solid state physics take into account a finite number of
interaction zones. This is the reason for growing interest in the statistical
properties of random bounded matrices [1]. There are systems, for instance:
spin glasses, diluted spin systems [2], disordered conductors [3] and quantum
percolation models [4], corresponding to models with randomly distributed
interactions for which the number of interacting atoms with the fixed one is
much less than the total number of atoms of that system. These simplifi-
cations of reality lead to the Schrodinger’s equations represented by sparse
Hermitian matrices. Also the quantum mechanical aspect of chaos should
be mentioned as an example in this respect [5]. Considerations of general
properties of the matrix ensembles having given dimension and symmetry
lead to the problem of the statistical properties of the random matrices.
The above approach suggests to investigate the statistical properties of the
Sparse Random Matrix Ensemble — SRME [6-9]. Going to the sparse ran-
dom matrix ensemble by diluting the A-dimensional Gaussian orthogonal
ensemble GOE(N) one obtains the SRME(p, ) which is characterized by a
finite mean number p of randomly placed nonzero elements per matrix row
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[8, 9]. A simpler ensemble than SRME, the A" x A (A — oo) real symmetric
random matrices with elements 0, 1 and with mean number p of nonzero
elements per row, has been studied in [10]. The density of states (DOS) p for
such an ensemble was investigated by means of replica trick, and the integral
equation was derived (compare equation (18) in [10]) giving the possibility
of calculating density of states. Iteration of this integral equation gave a per-
turbative expansion of the density of states in powers of 1/p, with leading
term reproducing Wigner’s semicircular law for p — oo (compare equation
(30) in [10]). For finite p. the leading nonperturbative contribution to the
density of states was computed via the saddle point method. The density of
states covers the entire interval (—oc.00) and it has tails extending beyond
the semicircle p(u) = (%133)“2. for i — oc. The statistical properties of sparse
random matrices ensembles were investigated by means of supersymmetric
approach [7]. The studied matrix is real, symmetric A" XA (A" — oc). whose
elements are independent, identically distributed random variables with cer-
tain probability distribution function f(z) = (1—a)d(z)+ah(z), 0 <a < 1, h
has no & singularity at z = 0, a [ h(z)z2dz ~ A1, The supersymmetric ap-
proach was found to be equivalent to the replica trick method. In [1] Wigner
random banded matrices with sparse structure were studied with given band
parameter and sparsity. The mean value of the diagonal matrix elements is
linearly increasing and the mean value of the off-diagonal elements is zero
(compare equation (4) in [1]). The local density of states LDOS (or the
strength function) instead of density of states was investigated. The inte-
gral equation for the local density of states was obtained (compare equation
(5) in [1]). The numerical computation showing the transition between semi-
circle regime and Breit Wigner regime was done. We extend the work in {1,
7. 10] by defining the new SGRSE(z.A'). In our approach we characterize
diluted GOE(N) by fraction @ of matrix elements not equal to zero. The
2AN? matrix elements are zero-centred Gaussian distributed with variance
equal to a?. while the remaining elements are equal identically to zero, dis-
tributed everywhere randomly (including the diagonal). The elements are
independent random variables.

In order to characterize the properties of investigated ensemble we cal-
culate the distributions of finite elements instead of the density of states or
local density of states which is a new approach.

Each pair of two numbers (2,.\), where 0 < # < 1 and A is a nat-
ural number, corresponds to an ensemble. Thus variation of z leads to a
continuum of A dimensional ensembles. The matrix elements equal to zero
are constant random variables, thus SGRSE(xz,A) is an extension of the
GOE(N) and SGRSE(1, A)=GOE(A). In this paper we investigate the
universal properties of SGRSE(z.A’}. On the base of the numerical calcu-
lations for SGRSE (2. V) and their comparison to the analytic exact results
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for GOE(2) and GOE(3) we show a continuous transition from the ensem-
bles possessing sparse matrix properties to the ensembles possessing dense
matrix properties. The transition occurs at z.. Then we show how well the
statistical properties of the SGRSE(x, ) are approximated by the GOE(2)
and GOE(3) properties, for 2 > x.. There is a number of statistical proper-
ties of the eigenvalues of random matrices which are used in analysis of the
spectral properties of systems. For the purpose of this paper we select the
following statistical characters: i) the nearest neighbor spacing distribution
[11-14]. i) the second difference distribution [15], éiz) the three point first
finite elements distributions [15].

The aim of this paper is to investigate statistical properties of SGRSE
(x,N) by numerical simulations and their comparison to the theoretical
results for the distributions of the above finite elements.

The paper is organized as follows: Section 2 provides the distribution
of the spacing, asymmetrical three point first finite element, symmetrical
three point first finite element, and second difference for the GOE and for
the three level quantum integrable system (Poisson ensemble). Section 3
presents results of numerical calculations and their comparison to the ana-
lytical distributions. Section 4 discusses the obtained results.

2. The distributions of the finite elements
for the GOE and Poisson ensemble

In this section we approach four statistical characteristics used to inves-
tigate the problem defined in the Introduction.

The basic quantity of investigations in quantum chaos in many level
system is the nearest neighbor spacing, that is the first difference between

the two adjacent levels E;, E;y,. The i*? spacing s; reads

s; =A'E; = Eip, - E;. (1)

It is seen from structure of spacing that s; is a local quantity and it can
describe neither homogeneity of level distribution nor the correlation be-
tween non-adjacent levels. The information about the nonlocal properties
of the level system are built into the distributions of the higher order fi-
nite elements. In order to complete statistical description of the quantum
level system we have derived analytic formulas for the distributions of some
higher finite elements [15]. We studied the i second difference of the three
adjacent energy levels F;. Fiyq1. F;19 in the level system defined as follows:

A B =AEi - A B =FEi 4+ Eipg — 24, (2)

The probability density function of the second difference was computed an-
alytically for the following ensembles GOE(3) as well as for the quantum
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integrable three level system. This probability density function was proved
to describe the tendency of the both chaotic and integrable system towards
homogeneity of the level distribution. Moreover, we also studied a series of
experimental nuclear spectra, and we observed that the levels of these spec-
tra also tend to be distributed homogeneously. We also studied the three
energy level quantum system and we derived the probability density func-
tions of the three point finite elements of energy levels for the GOE(3) and
for the quantum integrable system. We studied the following three point
finite elements:
1

A} snEi = ——_'2(i T1-9) (=3E; +4Ei11 — Eiya). (3)

h

(see [16]. we named A;_ﬁnEg the i"" asymmetrical three point first finite

element) and

1
Al Bne —r (E. B 1
s.ﬁnE+1 2(2+] — 7)( +2 E) ( )

(see [16], we called Al F;.; the i*h symmetrical three point first finite el-
ement). We derived analytically the probability density functions of these
finite elements for the GOE(3) as well as for the sequence of the three ad-
Jacent randomly distributed energy levels. The distribution of the quantity
named first order spacing (or the next-nearest neighbor spacing) for the or-
dered sequence of the levels randomly distributed is given in [17], formula
(3). The explicit formulas for its distributions were derived in [18], for-
mula (6) for the GOE(3) and in [19], formula (89) for the three-dimensional
Gaussian unitary ensemble GUE(3). The distributions of the symmetrical
three point first finite element and of the first order spacing are consistent
with each other. The analytic formulas for the above distributions for the
GOE(3) and for the integrable system are given below.

In order to compare the analytical distributions with their numerical
simulations we divide the above mentioned four quantities by mean spacing,
making them dimensionless.

We assume the GOE(2). The mean spacing for the GOE(2) reads (com-
pare [20], formula (6.6.10)):

SGOEQ2) = /27 g, (5)

where 02 is the variance of the off-diagonal elements of the GOE(2) matrix.
We make the spacing dimensionless by dividing it by the mean spacing
SGOE(2).

TGOE(2) _ s1/SGOER), (6)
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The probability density function of TS“E(2) is (compare [20], formula (6.6.11)):

T ma?
frooewm (2) = O(2) 5 @ exp (~—

)s (7)
where © is Heaviside function:

1 forz>0
Ofx) = { 0 forz <O.

Now, we assume the GOE(3). The mean spacing for the GOE(3) reads
(compare [18], formula. (5)):

SGoRm = 3V39, (5
V2r

where o2 is the variance of the off-diagonal elements of the GOE(3) matrix.
We make the asymmetrical three point finite element dimensionless by

dividing it by the mean spacing SGOE®):

XCOEC) = AL g 1/ SGOBE). (9)
The probability density function of X S9E®) reads [15]:

81
fyoore (2) = 398488 7 2 (910V13 72z — 315+ 1322
25 z?

+( 163822 4 2704 70 ) exp (——
52w

7 2

)

) forz >0, (10)

. 5z
+V132(3152% - 9107 ) exf -
( T T—)el (2\/13—ﬂ_))exp(

81 3
fycore (2) = T 398488 72 (-910v137m 2 +315vV13z
< 441 22
+(390 2% - 2704 7 ) exp (—— * )
2n
27 22

+ V132 (31522 = 9107 ) erf ( ) forz <0,

21z )) (
avise ! CPU R

where the error function is

erf(z /(lt exp(—t?).
\/—
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We make the symmetrical three point finite element dimensionless by
defining the following dimensionless random variable for the GOE(3)

yGOE®) — Al [z, /GGOE(3), (11)

s.fin

The probability density function of ¥ SOEG) is [15]:

R1: 92
fyGUE(a)(l‘) = e (()1 exp (—L)
4 T
) 2722 3
+ (927 = 27) exp (——_1—;-) erf (;ﬁ)) . (12)

Note, that the statistics of spacing between every second eigenvalue Y GOEA)

is exactly the same as the statistics of nearest neighbour spacing for GGaussian
symplectic ensemble GSE, specially in the limit of large matrices A" — oc
[21].

In order to make the second difference dimensionless we divide it by the
mean spacing SGOE() and we define the new dimensionless random variable
for the GOE(3)

ZGOE(3) _ AZEI/W (13)

The probability density function of Z99F() reads [15]:
3 92? .
fz(,‘OE(z; (37) = '2—;‘ exp (—Z;') . (14)

We assume now the quantum integrable svstem. The mean spacing
throughout the level sequence is equal to D [17]. We make the spacing
dimensionless by dividing it by the mean spacing D. We define the new
dimensionless spacing for the quantum integrable system

“
7=, 15)
. (15)

The probability density function of T!is (compare [17]. formula (3)):
fri(x) = O(x) exp(—z). {16)

We make the asymmetrical three point first finite element dimensionless
by dividing it by the mean spacing D. We define the new dimensionless
random variable for the quantum integrable system

Al Fl
‘X»] a. ﬁn -
- (17)
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The probability density function of X1 is [15]:
e\p(—%) forz >0 (18)
o) R

fxi(z) = { oxp (2 forz < 0

B it |

We make the symmetrical three point finite element dimensionless by
defining the following dimensionless random variable for the quantum inte-
grable system

Al
le - bﬁn (19)

D
The probability density function of Y1 reads [15]
fri(a) =0(x)dx exp(—22). (20)

In order to make the second difference dimensionless we divide it by the
mean spacing D and we define the new dimensionless random variable for
the quantum integrable system

A%E,) i
7' = . 21
5 (21)
The probability density function of Z!is [15]
fpr(e) = & exp (~Jal). (22)

3. Simulations of the distributions of the finite elements
for the sparse Gaussian real symmetrical random
matrix ensemble

We generate a symmetrical matrix of a given dimension and density.
nonzero elements of which are Gaussian distributed (procedure SPRANDSYM
of package MATLAB. version 4.2c). We diagonalize this matrix with pro-
Cedure EIG. The cumulative distribution function N (E) that represents the
spectra of the matrix 2000 x 2000 for the densities =0.0005, 0.05 is plotted
in Fig. la. and Fig. 1b, respectively. Near a certain value x = wx. there
is a change of character of function N(F) (for instance for N = 400, 2. =
0.0135). For 2 < 2., N(E) is a discontinuous function at the point £ = 0.
For the growing @ the jump of function AN(0) = N(+0) — N(-0) is con-
tinuously decreasing to zero at x.. On this basis one may say, that the
matrix ensembles for + < x. differ qualitatively from the matrix ensembles
for x > z.. The observed effect may be interpreted as phase transition in the
matrix ensemble SGRSE(z, ). AN is an order parameter. The value of
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z. is a function of matrix dimension. It seems that there exist two different
types of SGRSE(z,N): for 2 < 2. and for > z.. The critical value z. is
defined by the following limit:

xii;?—o AN =0. {23}
2000 T — 2000 1
1800 1 e
1600 1600
1400 1400
1200 1200
NE) NE) 1
800 6800
600 600
400 o
200 200
0 I n i i i N 0 i i i Iy i i i i
4 3 2 4 0 1 2 8 4 2045105 0 5 1015 202
E E
(a) (b)

Fig. 1. {a) — The cumulative distribution function N{E) for £ = 0.0005, N" = 2000.
{b)} — The cumulative distribution function N(F) for z = 0.05, A" = 2000.

The question what are statistical properties of these two sub-ensembles
is natural in this place. Thus we calculate statistical measures described in
Section 2 for both regions of z. Results for the region 2 > z, represented by
r = 0.05 and A" = 2000 are presented in the Figs 2a-d. Results for z < z.
represented by = 0.0005 and A = 2000 and by z = 0.001 and A" = 2000
are presented in the Figs 3a—d and Figs 4a—d, respectively.

All statistical measures have been collected from 50 random matrices,
therefore each statistics is calculated from around 10° levels. Figures labeled
by a, b, ¢, d present the distributions of the following finite elements: spacing
$;, asymmetrical three point first finite element A}l’ﬁnE}-, symmetrical three
point first finite element A;ﬁnEi_H and second difference A%E;, respectively.
Histograms represent the computer simulations, the solid lines and dashed
ones correspond to the theoretical results for GOE and for integrable system,
respectively. It is evident that for x > x, the theoretical results of GOE fit
much better histograms than the theoretical results of the integrable system
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Fig. 2. (a)} — The probability density function of the dimensionless spacing for the
GOE(2) (solid line), for the integrable system (dashed line) and for = 0.05 (his-
togram). {b} — The probability density function of the dimensionless asymmetrical
three point first finite element for the GOE(3) (solid line), for the integrable system
{dashed line) and for & = 0.05 (histogram). (c) — The probability density function
of the dimensionless symmetrical three point first finite element for the GOE(3)
{solid line), for the integrable system (dashed line) and for = 0.05 (histogram).
(d} — The probability density function of the dimensionless second difference for
the GOE(3) (solid line), for the integrable system (dashed line) and for 2 = 0.05
(histogram).
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Fig. 3. (a) — The probability density function of the dimensionless spacing for

the GOE(2} (solid line). for the integrable system {dashed line) and for z = 0.0005
{histogram). (b} — The probability density function of the dimensionless asymmet-
rical three point first finite element for the GOE(3) (solid line), for the integrable
system (dashed line) and for # = 0.0005 (histogram). (3c) — The probability den-
sity function of the dimensionless symmetrical three point first finite element for
the GOE(3) (solid line), for the integrable system (dashed line) and for x = 0.C005
(histogram). (d) — The probability density function of the dimensionless second
difference for the GOE(3) (solid line), for the integrable system (dashed line) and
for & = 0.0005 (histogram).
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Fig. 4. (a) — The probability density function of the dimensionless spacing for

the GOE{2) {(solid line), for the integrable system (dashed line) and for » = 0.001
(histogram}. (b} — The probability density function of the dimensionless asymmet-
rical three point first finite element for the GOE(3) (solid line), for the integrable
system (dashed line) and for @ = 0.001 (histogram). (c¢) — The probability den-
sity function of the dimensionless symmetrical three point first finite element for
the GOE(3) (solid line), for the integrable system {dashed line) and for x = 0.001
{(histogram). {d) — The probability density function of the dimensionless second
difference for the GOE(3) (solid line), for the integrable system (dashed line} and
for r = 0.001 (histogram).
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do. Whereas, for * < z. the situation is opposite. The results of the
integrable system fit the histograms while the GOE ones do not.

Comparing results presented in Figs 3(a)-(d) and Figs 4(a)—(d) one can
see that the histograms fit better the theoretical results for integrable sys-
tems while the density x decreases, e.g. when the order parameter AN in-
creases. This result shows that the systemn with high value of the order
parameter is “more integrable” than the system having a lower value of AN.
It has been shown elsewhere that the order parameter AN is a measure of
number of independent invariants [22]. When the number of invariants is
equal to A then AN = 1. Therefore, the order parameter is a measure of
integrability, e.g. it measures how far the system is from the full integrability
(AN =1).

Some statistical measures like fycoes and fyeoss) get agreement with
the theoretical results much faster than others: frcoew) . fycose. This
effect suggests that distributions of three point finite elements are more
suitable for description of the integrable system than the distribution of
spacing is.

On the base of presented results one can formulate the following hypoth-
esis:

- SGRSE(z < (N
~ SGRSE(z > 2. (N

), N) is equivalent to the integrable system
). N} is equivalent to GOE(N).

4. Conclusions

The results presented in Section 3 indicate a smooth phase transition
from the chaotic systems to the integrable ones as a function of the density
parameter z. It is convenient to describe such a phenomenon by quantities
characteristic for phase transitions. like an order parameter and a phase
diagram. Figs 1(a), (b) suggest that AN = N(4+0) — N(—0) can play the
role of the order parameter. An example of dependence of AN versus log(z)
for dimension A/ = 100 is presented in Fig. 5, where the log means decimal
logarithm. This dependence is typical for the continuous phase transitions
of the order higher than two.
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Fig. 5. The order parameter AN as a function of logarithm of density x for A’ = 100
together with the errors.

12t 1
4 Ar
-1.8f

log(AN)

-1.8}f

2F
22F
-ZAI'
1.8 148 ~1.4 138 13 125 12

log(x)

Fig. 6. The logarithm of the order parameter AN as a function of logarithms of
density x for N = 100 near the critical value z..
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Fig. 7. The logarithm of the critical density z. as a function of ensemble dimen-

sion V.

From the plot of log(AN) vs log(2) we estimate the critical exponent 3 =5
(see Fig. 6).

The obtained dependence indicates transition from integrable phase la-
beled by 1 to chaotic one labeled by II at x.. The critical density 2. depends
on dimension A" of the ensemble, therefore it would be interesting to inves-
tigate this dependence and to present the results in the form of the phase
diagram Fig. 7. The diamonds on this diagram approximate the separatrix
between the chaotic domain [I and integrable one I. Domains [ and II in the
Figs 5. 7 represent systems having different physical properties. This is why
we relate them to different phases. Therefore, presented analysis based on
the concept of random matrices gives some information about the phase sit-
uation resulting from some general properties of Hamiltonian. These prop-
erties are more general than assumptions about the Hamiltonian forming
renormalization group and the presented method allows to investigate also
systems for which the Hamiltonian is unknowable.
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The natural extension of the presented research is the Sparse Gaussian
Complex Hermitian Random Ensemble — SGRHE(zRe, €1m, V'), where A/
is the dimension of the real matrices Hy, H; generating hermitian matrix
H (compare [23], Table II), and zg. is the fraction of the Hy matrix el-
ements not equal to zero, 1y, is the fraction of the H; matrix elements
not equal to zero. The rg. elements of matrix Hy are zero-centred Gaus-
sian distributed with variance equal to o2, while the remaining elements are
constant random variables equal identically to zero, distributed everywhere
randomly (including the diagonal). The analogous situation holds for z,,
elements of H,. The elements are independent random variables. Among
the other extensions there is the Sparse Gaussian Real Quaternion Self Dual
Random Ensemble — SGRQSDE(zg, 21, 2, 23, ), where A is the dimen-
sion of the real matrices Hg, Hy, Hy. H3 generating real quaternion matrix
H (compare [24], formulas (85), (89)). and z,, is the fraction of the H, ma-
trix elements not equal to zero, p = 0,1,2,3. The z, elements of matrix
H, are zero-centred Gaussian distributed with variance equal to o2, while
the remaining elements are constant random variables equal identically to
zero, distributed everywhere randomly (including the diagonal). Analysis of
the phase diagrams for SGRHE and SGRQSDE will extend our knowledge
about the phase situation of quantum systems with broken symmetry from
the unitary and symplectic ones. Expected results may shed some light onto
explanation of the phenomena which are not completely understood yet, for
instance HTS.

The authors are indebted to Prof. N.G. van Kampen for reading the
manuscript and critical remarks.
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