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In this paper a new approach to solving the Ising—Onsager problem in
external magnetic field is investigated. The expression for free energy per
Ising spin in external field both for the two dimensional and three dimen-
sional Ising model with interaction of the nearest neighbors are derived.
The representations of free energy being expressed by multidimensional in-
tegrals of Gauss type with the appropriate dimensionality are shown. The
possibility of calculating the integrals and the critical indices on the base
of the derived representations for free energy is investigated.

PACS numbers: 05.50. +q

1. Introduction

It is well known that the Ising-Onsager problem {1, 2] in an external
magnetic field has not been solved , despite intensive efforts of a few gen-
erations of physicists and mathematicians. By the problem we mean the
exact calculation of the statistical sum for the Ising model with interac-
tion of the nearest neighbors both in the two dimensional case (in finite
external field) and in the three dimensional case (in external field as well
as without such a field). Therefore, we do not intend to present a variety
of approximate methods and approaches to solving the Ising-Onsager prob-
lem. Detailed discussion of these matters could be found in numerous well
known papers and monographs. We note here only the paper by Yang [3],
where the problem was investigated for the case of infinitely small external
field in two dimensions. In our opinion, the efforts to find an exact solution
to the Ising-Onsager problem is of great interest. The reason is, the Ising
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models are connected with numerous other models of statistical mechanics
and quantum field theory [4-7]. Therefore the present paper is treated as
the next step in the direction described above.

2. The partition function

Here we consider firstly the two dimensional case(d = 2, H # 0), and
then we will report on the results for the three dimensional case (d = 3, H #
0) without going into details of the derivations. Let us consider a rectangular
lattice consisting of M columns and N lines, in nodes of which are given
variables o,,, which take values +1.

These variables will be called "spins". The collective index nm number
nodes of the lattice; n number of line, m numbers of column. The Ising
model with the nearest neighbors interaction is given by the following form
of the Hamiltonian:

H= —J2 Z OnmTn4l,m — ']1 Z OnmOnm+1 — HZ Onm (21)
nm nm nm

which takes into account the possible anisotropy of the interaction between
the nearest neighbors and also interaction of spins o,, with external field
H, which is directed "upwards" (o,, = +1). The investigated problem
consists of calculation of the statistical sum for the system:

Zh)y = > . Z exp (—8H)

o11==%1 UNM::EI

NM
= Z exp Z (I(2Unm0'n+1,m + I(lo'nman,m-{-l + hanm)
(onm==%1) n,m=1
(2.2)
where
Iﬁ—l’g = ﬂ.]lyg, h= ﬂH, ﬁ = 1/kBT (23)

Typically, periodic boundary conditions on variables ¢,,, are imposed and
we will assume this everywhere below. Let us note that the statistical sum
(2.2) is symmetric with respect to the change h — —h.

As is known [8], the statistical sum (2.2) can be represented in the form
of the trace of the T-operator (T-transfer matriz):

M
Z(h) = To(T)M = Tr [(@2sinh2K) VIT T (2.4)

where the matrices T} 5 j are of the form:

N
T, = exp (I(f Z U,f) , (2.5)

n=1
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N
Ty = exp (I\"g Z UfLU;H) , ON41 =01, (2.6)

n=1

N
Ty = exp (h > o;;) , (2.7)

n=1

and K7 and I; are connected by the relations:
exp(—2K,) = tanh(KT]), or sinh(2K,;)sinh(2K7)=1. (2.8)

In the formulae (2.5)—(2.7) the quantities (62¥%), (n = 1,2,...N) are well
known from quantum mechanics 2"V-dimensional matrices:

oV =1 @10 .00 Y % .. .61, N factors),
T N p ! ~ v
where ¢%¥%* — two dimensional spin Pauli matrices:

(U e () (3 8) e

satisfying the standard transposition relations:

("2 =1, o*c/+0l6" =0, (k,j)==.y,5 ;%Y =1i0", ... (2.10)
For example, spin matrices for the n-th electron in the system consisting of
N nonrelativistic electrons are exactly the matrices g%¥*. It is known that
for n # n' spin matrices or¥* commute and for any given particular n they
formally satisfy relations (2.10). It follows from this that matrices 75 and
Th, (2.6)~(2.7) commute but they do not commute with the matrix Ty, (2.5),
ie.

(T2, Th)- =0. [Th.Ty]- #0., [T, T1]- #0. (2.11)
It follows from (2.11) that under Tr(...) we can write for the statistical
sum (2.4) the expression:

Z(h) = Tr (YOI PTT M = Te (T PT TP T)M = Tr (PYM, (2.12)

P = (2sinh 2K )V TP, (2.13)
where we used the identity Tr(AB) = Tr(BA).

Now we will consider in details the matrix U = T}:/leT,z/?; since the

. - - ' . . .
matrices o7 and o%,, commute for n # n, we can write the matrix U in the
n
form:

N N
U=T"TT,% = [ e/D7ieRivh e/ 27 = [T U, (2.14)
n=1

n=]
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Further the matrix U, can be represented in the following form:

U, = ¢D% (cosh KT + o sinh K7)el"/2)7x

cosh Kisinhh ,  sinh K} x)}
= exp |w - o’ - o , 2.15
p [ ( sinh w nt sinhw 7 ( )
where w is a positive root of the equation:
coshw = cosh K7 cosh h, (2.16)

In determination of the expression (2.15) we used the identity:
exp(ut) = cosh g + tsinh p, t?=1. (2.17)

It is easy to see that for h = 0 we obtain from (2.12) the standard expres-
sion for the statistical sum Z for the two dimensional Ising model without
external field [5, 6].
2.1. The 1D Ising model
One can relatively easily show that (2.12) becomes:
N M
Z(h) = Tr [(-251;11121\',)-"’/2 1T U,,,Tz} ., (2.18)

n=1
where U, is given by the formula (2.15), and it describes correctly the tran-
sition to the one dimensional Ising model both in the constant K, and in
the constant K'y. Indeed, if we take Ky = 0 and N = 1, what corresponds
to neglecting summation over n we obtain:

M
Zi(h) = Tr [(2sinh 21{,)1/2U0} . (2.19)

where the matrix Uy is given by (2.15). where the index n was omitted.
Eigenvalues of the matrix [y can be easily obtained:

AT = exp(tw),

where w is the positive root for the equation (2.16). As a result we obtain
the following formula describing free energy per spin in the thermodynamic
limit:

L 1
N T
f(h) 5 im 7 In Zy(h)

=-3 In [el“ coshh + (e”“ sinh? h 4 e 2l )1/2} \ (2.20)

8

t.e. the known classical expression [1].
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Transition to the onedimensional Ising model limit in the constant K,
could be done by taking K; — 0, and M = 1, t.e. we neglect summation
over the index m and go to the limit A7 ~— 0. As a result we obtain from
(2.18):

N
Zi(h) = Tr [H(Ho;‘)TzTh] , (2.21)

n=1
where we used the transition to the limit:
lim (2sinh2K4)/? exp(Kjor) = (14 0}),
I\—l —0
where we took into account the relation (2.8) between K, and K. Note here
that the factors (1407 ), entering the expression (2.21}, are simply necessary
to get the correct result. To calculate the trace (2.21), it is convenient to

apply the fermion representation [6, 8]. Omitting some calculations we can
write for (2.21) in the form:

Zy(h) = Tr (DTETy), (2.22)

where the operators D, T.Zi and T}, expressed in terms of Fermi creation
and annihilation operators (¢}, ¢,) are of the form:

N
D= ]I [t+(=n%]. (2.23)
n=1
1\‘7
1; = exp [1\"2 Z(C;F — cn)((:j;l_1 + cn“)] , (2.24)
n=1
N n—1
Tw=exp{h} exp it} cfep| (] +en)ps (2.25)
n=1 p=1

In the formula (2.24) the sign (4) is related to states that are even with
respect to the operator of the complete number of particles (N = Z,Ll cten)
and to which correspond anticyclic boundary conditions, while the sign (—)
to the odd states, to which correspond cyclic boundary conditions. It is
easy to see that because of the multiplicative character of the operator D,
(2.23). all diagonal matrix elements in (2.22) vanish with the exception of

the vacuum-vacuum madtrix element, i.e.:

Zy(hy =2%(0 | (TFTh) | 0), (2.26)
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where the operators Tf and T}, are defined by (2.24)-(2.25). Then, "acting"
with the operator Tj, on the vacuum state | 0 >, and using the Hausdorff-
Baker formula [10], («, 8 = const):

exp(ax)exp(By) = exp(az + By + (af/2){z, y]-) ,

o3 = [1,2)- =0, == [o,y-,
the operator T}, (2 25) can be reduced to the “effective" form (in the sense

of action on | 0 >):

N N-n
Ty, = cosh™ (h) exp [tanh? hz Z ctre n+p . (2.27)

n=1 p=1

When developing the expression (2.27) we have taken into accaunt the fact,
that the diagonal matrix elements of the odd number of Fermi operators are
equal to zero.

Finally, going to the momentum representation:

exp(—i7r/4) ign
Cp = ———1—= ) 'y
and computing the matrix element for a fixed ¢ after some an complicated

transformations we arrive at the case of even states in the expression for the
statistical sum [Z} (h)] (2.26):

Zf (k) = [2cosh(M)]V []

0<¢<r
x[cosh 2K — sinh 2K cos ¢ + o sinh 2K5(1 + cos )]

z

= [2cosh(h)cosh K]’ H

"~ 1/2

[1 + 22 4 2292 — 225(1 — 2) cos(QZn) . (2.28)

4

where z; = tanh A’y and = = a? = tanh? h. In the case of odd states it is easy
to show that the sum Z; (h), is equal to Z] (k) = 2Z; (h). Finally, we obtain
in the thermodynamic limit again the formula (2.20), (M — N, K; — K3)
for free energy per spin.

The 1D Ising model was discassed here with so many details because
it was unexpectedly found, that Z;f (k) such as represented in (2.28) can
be applied in graph theory. Namely, using the representation (2.28) one
can calculate the generating function for the Hamilton cycles on the simple
square lattice (N x M), [9].
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2.2. The 2D Ising model

For further purposes it is convenient to represent the matrix UT3, en-
tering the formula (2.18) and where U is defined by (2.14) in the form of a
simple product of matrices P, such that their diagonalization is relatively
easy. The reason is that, as is known from [5] — [8], to calculate free en-
ergy per spin in the thermodynamic limit it is sufficient to find the maximal
eigenvalue of the matrix UT5, which is 2V x 2V dimensional. First of all we
note that the matrix U/ (2.14) can be represented in the form of a simple
product of matrices Uy:

N
= JJUn=Ue@Uo®..®Us, N —factors, (2.29)

n=1

where the matrix U is defined by the formula (2.15), in which one should
skip the index n. In order to represent the matrix 7, (2.6) in the form of a
simple product we will use the well known identity {10, 11]:

fe ]
. 1 .
exp(A?) = ~i7 / exp(—€2 + 2A8)d¢, (2.30)
where A is a bounded operator (matrix). Writing exp(Kz0Zo;, ) in the

form

B
P20z 4020 - K|

exp(Nq0,07,,) =exp [ 3

we can represent the matrix T3 in the form:

e—NK2 7
B /
N N N
onp |- 3 €0 @K Y06 +Ennioi| TT - 230

n=1 n=] n=1

where 0%, ; = of and £ny1 = &. After writing the matrix Ty, (2.31)
this way we can represent it in the form of a simple product of matrices
exp[(2h°2)Y/%(&, + &,41)07] inside the integral:

N N
H exp[('ZK-Q)I/Z(én + £n+1)‘7;+1] = H & exp[(.ZA'?)l/Z(fn + fn-%—l)o':] s

n=1 n=1
(2.32)
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where on the right hand side of the formula there is a simple product of
2 x 2 matrices. Next, we can write the matrix UT3, using (2.29) and (2.31).
{2.32), in the form:

G_N Ky = N
l'Tz = W—N,/a— / aes / H (1572
nz=]
-G -

N
} [H 2 exp[(2K2) Y2 (& + Enp1)o7]| L (2.33)

n=1

Y
X exp [— Z 5;‘3

n=1

where we included the constant matrix U under the integral and we used
the known theorem on simple product of matrices:

(Al A )(Bl & Bg & ) = (AlBl) (0% (Asz) .

Expression (2.33) enables the calculation of all 2V eigenvalues of the ma-
trix UT,. Eigenvalues of the matrix Upexp[a(&, + &uy1)07] can be easily
calculated and are equal to:

ME(n,n+ 1) = etwinntl) (2.34)
where w(n, n + 1) is defined as a positive root of the equation:
coshfw(n, n4+1)] = cosh(A]) cosh[h+a (& +E&np1)], o = (2K,)Y2. (2.35)

In the diagonal representation the matrix V under the integral (2.33) can
be represented in the form:

N N
V= [H & S{n.n+ 1)} H

n=1 n=1

N A (n,n+1) 0 X e ,
( 0 A (myn+ 1) lleb’(n-,nH) .
(2.36)

where S(n,n+ 1)S'(n,n 4+ 1) = 1, and A*(n,n + 1) are defined above by
(2.34). From this it follows that the eigenvalues A; of the matrix V" are equal
to:

A = A5 (L2253, 405V, D), (F=1,2.3,...,2Y), (2.37)

where to each j there corresponds a combination of (+) and (—) eigenvalues
M(n,n+1).
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Finally we can express the statistical sum (2.18) by the formula:

NI\Q =
Z(h)="Tr | (2sinh 21\1 Nz / ] H d€,, exp ( Z fn)
e n=1
(2.38)
where the matrix V is given by (2.36).

3. The free energy

As we mentioned above, the free energy per spin in the thermodynamic
limit can be expressed by the maximal eigenvalue of the matrix T, entering
(2.18). We menaged to express this matrix in the form of an N-type integral
(2.38), where the matrix V is defined by (2.36). and all the matrix elements of
V are positive. On the other hand, in accordance with the known Frobenius
Perron theorem, the matrix B, with all, matrix elements positive has its
maximal eigenvalue nondegenerate. Let us assign to the maximal eigenvalue
of the matrix V a letter Ay, In accordance with our definition of the
eigenvalues A% (n.n+ 1), using (2.37) we obtain the following expression for

A max-

N N N
Amax = H AMnon+1)= H e ) — oxp [Z win.n+ 1)] . (3.1

n=1 n=1 =

where w(n,n + 1) is defined as a positive root of the equation (2.35), and
Amax > A5, (G =1,2,..,2Y),

Further we denote the eigenvalues of the matrix UT; by ij Taking into
account the dimension of the matrix UT;,. which is equal to 2V. we can
write on the base of the relation (2.18) obvious inequalities:
1M v, N iM
Ab < Z(h) <27 A

max ! (3-2)
where 1in]ax is the maximal eigenvalue in the set A ;» to which we also included
also the constant factor (2sinh 2R )™/2. Taking the logarithm (3.2) of this
expression and dividing by the nodes number NM, we arrive at the next
system of inequalities:

1 - 1 1

- 1 . .
¥ In{Apax) < NI ——InZ(h) < Nl n(Amax) + i In2, (3.3)

in which the expression in the middle represents free energy per node with

accuracy to the factor —3~1, where 3 = Z;_T T is temperature. Going to
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the limit (N, M) — oc, we obtain the desired formula describing free energy
per spin in the thermodynamic limit:
1 1 1

y=-1 —2 gim ~In(Amay), (34
fa(h) = =5 lim Man(h) 5 im0 () (3.4)

where Ay is. in accordance with (2.38) and (3.1) equal to:

- N 26-“1)\("'1\') Y = N
Amax = (2sinh2K)° / N2 / / nI;[l d,
N
X exp [Z(—fz +w(n,n+ 1))} . (3.5)
n=1
Finally, using the Onsager identity:
1 "
|z |= - /dq In[2 cosh(z) — 2 cos(q)], (3.6)
o
we obtain the following expression for the function w(n.n + 1) (2.35)
1 [ ) ,
w(n,n+1) = = / dgn[2 cosh K cosh(h + (2K,)Y?(&, + €n41)) — 2c0s(q)].
7
0

(3.7)
Sxpressions (3.4) and (3.5) should describe properly at least the transition
to the one dimensional Ising model. Tt is easy to show that the transition to
the limit Ky = 0, gives the correct result (2.20) for the one dimensional Ising
model. The analogous limit taken with respect to the constant K| seems a
more complicated and has the form:

. —7\11\2 =
I‘}vlllll)o‘lilllax(l\l = \/2 / /H(lfn

n=1

X exp [— Z fi] H 2 coshh + (&, + &np1)] . (3.8)
n= n=1

where « is defined above by (2.35). This is an integral of the Gauss type

and it could be relatively easily calculated. For this purpose we apply the

following formal procedure. Namely. let us write the expression 2 cosh(...),

entering the integral (3.8), in the form:

2cosh[h + a(&, + &41)] = Z exp [l + apn (En 4 &ny)]

pn==%1

(n=1,2,...N), (3.9)
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where we introduced a new variable u,, of the Ising type. Therefore, we can
represent the right hand side of the equality (3.8) in the form:

pRE / f Hdﬁn

(I—lnz:tl)

N
X exp [ Z 52} H e explapin (& + §n+1)]}

n=1 n=1
N
= Z exp [Z(hun+1\"2,un,un+1)], (3.10)
(n==1) n=1

where we took an integral over the variables &,,, and we imposed on variables
fn cyclic boundary conditions {(pn 41 = p1). Calculation by standard meth-
ods [6, 7] of the sum (3.10), and following substitution of the expression
(3.4), gives well known result (2.20).

Consideration of the expressions (3.4) and (3.5) for free energy of the
twodimensional Ising model in external field we present at the end of this
paper but now we go to the three dimensional case.

4. The three-dimensional Ising model

The Hamiltonian for the three dimensional Ising model in external field
with nearest neighbors interaction we write in the form:

NMK

e -

(n.m,k)=1
X (Jlgnmko'n,vn+1.k + ']20'nmkgn+1,mk + J30n7nk0nm,k+l + Ho'mnk) b
(4.1)

where the collective index (nmhk) numbers nodes of the simple cubic lattice
and H is the external field. Constants .J; take into account anisotropy
of interaction of Ising spins. We impose on the variables o,,k, as it is
commonly done, periodic boundary conditions. Quantities N, M and K are
node numbers in corresponding directions of a cubic lattice. As is known [5],
the statistical sum for the three dimensional Ising model can be represented
in the form of a trace of the K-th power of the fiber—fiber transfer matrix (£):

W(h) = Tr (RN = Tr (TT.TLWTh)Y, (4.2)
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where the matrices T, (i = 1,2, 3, h) of dimensions 2VM x 2VM are of the
form:

T; = exp (Kl Z af”ncr,‘;.mﬂ) ., Ty=exp (Kg Zoflmaiﬂvm) . (4.3)
nm

nm

T3 = (2sinh 2K3)V /2 exp (Kg Z oﬁm) , Th=exp (hszfm) .
nm nim
(4.4)

Here K; = 3J;, (1 = 1,2,3); 3 = (1/kpT). T - temperature, h = 3H, and
K3 and K3 are connected by relations of type (2.8). In the formulae (4.3)~
(4.4) the matrices ¢ are Pauli matrices, which are defined analogously to
(2.9), and have dimensions 2VM x 2NM

Continuing considerations analogous to these in the two dimensional
case we obtain the following formula describing free energy per spin in the
thermodynamic limit:

1 1 .
fB(h) - “E N, ]l\l[H.E)OU NM In Ama)\ ) (4'0)

where the maximal eigenvalue Apyay of the matrix R, (4.2) is defined by:

e~ NM(K1+1Ks)
Amax = (2sinh 21&3)NM/ ————N—-—/ /Hd"?nmdSnm
g — O
NM
Xexp | Y (=M = Eam +w(nam)) | (4.6)
n,m=1

and w{n,m) is defined as the positive root of the equation:

coshw(n, m) = cosh K3 cosh[h + o1 (Dng1,m + Mnsims1)
+a2(&nm+1 + Entr,mr1)]s (4.7

where o 3 = (2[&'1,2)1/2.

We impose on integration variables 7,,, and &,,, cyclic boundary condi-
tions, in accordance with periodic boundary conditions for the former vari-
ables:

ONg1m = +07 0y Onprpr =05, n(m)=1,2,3,..NM). (4.8)

Similarly as in the twodimensional case, the function w(n, m) can be ex-
pressed explicitly in terms of variables 7,, and &,,,, using for this aim the
integral representation given by the Onsager identity (3.6).
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It is slightly more complicated matter to take a limit with respect to the
constant of interaction K3, although the derived formula is much simpler
than the formulae (3.4)-(3.5). Imposition of the limit (K3 — 0) in the
formulae (4.5)—(4.7). gives, after some simple transformations, the following
representation of free energy per spin of the two dimensional Ising model

fa(h):

1
hy = —= Ii ——In Ampa
0 = =g Loy, L) wag I A
- _3— (N.)’J/I?—)oc NM
~NM(K\+K3) 7 =
€
x In {_-—FTW—_ / / Hd:]nmdfmn exp[— Z(nim + &)
ne o M nm

X H 2 COSh[h + ay (Un«}-l,m + 7]n+l,m+1) + a2(€n,7n+1 + k_.cn+1.m+l )}} s
nm

(4.9)

where we used relations of the type (2.8), and a; 3 are defined above (4.7).
The integrals in (4.9) are integrals of the (Gauss type and, as it is easy to
show applying the described above formal way of introducing the variable
of Ising type gt,, = *1, can be represented in the form (2.2), what could
lead to classical Onsager solution [2].

Analogously, one can show rigorously that free energy per spin for the
threedimensional Ising model can be represented in the form of a multiple
integral of the Gauss type:

1
By= —= i _
Ja(h) B (NM K)o NME
e~ NMEK(K1+K2+Ks) 7 3
xIn 73NMR/2 / / T dmmmrd€nmpdCume
e g nmk
x exp[— Z (77721777.k + f'imk + C;‘zmk)]
n,m,k
X H QCOSh{h + oy (nnmk + 77n+l,mk) + aZ(fnmk + fn,m—i—l,k)
nmk
+”3(Cnmk + Cmn,k-H)]}a (410)

where o; = (2K;)'/2, (i = 1,2.,3). The formulae (4.10) can be an obviously
generalized to describe d-dimensional Ising models but we will not consider
the case here.
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Let us make few remarks here. First of all, as far as it is known to
the author, the representations for free energy per spin in the forms (3.4)-
(3.5) and (4.5)—(4.10) for the two dimensional and threedimensional Ising
models, respectively, have not appeared in the literature. We belive that the
known representations (see, e.g. [12, 13]) are more complicated than the
ones derived by us. The formulae (4.9) and (4.10) are, in a sense, obvious,
the formulae (3.4)-(3.5) and (4.5)-(4.7) are not so. The integrals (3.5) and
(4.6) can be represented as integrals of the "quasi Gauss" type, because
the functions w(n.n + 1) and w(n, m). described by the relations (2.35) and
(4.7), respectively, in accordance with the Onsager identity (3.6) are almost
"linear" in their arguments (£,,) and (7,m, &nm ). This justifies our hopes that
we it may be possible to calculate rigorously the integrals (3.5) and (4.6) in
case h = 0 using an Ising type variable (u = %1). described above. On the
other hand, it seems that for the case (h # 0) it is much simpler to deal
with the expression (3.5), than with the expression (4.9), although it could
sound paradoxical. For the three dimensional Ising model in the external
field (h # 0) the situation is no longer so clear, while for the infinitely small
field (h ~ 0), similarly as in the two dimensional case, it is easier to analyze
the expression (4.6), than (4.10).

5. Conclusions

The derived expressions (3.4)-(3.5) and (4.5)—(4.10) for free energy per
spin for the Ising model can be of some interest, we hope. Actually, as can
be seen from (3.4) and (4.5), we should learn how to calculate logarithmic
asymptotics of multiple integrals of Gauss type. It is known, that there
exist a well developed formalism of calculation of logarithmic asymptotes
for integrals of the Laplace type for the one dimensional as well as for the
multi dimensional cases [14]. In the case under consideration the situation
is more complicated, because for the integrals of the kinds (3.4) and (4.5)
it is not possible to transform them to a form of a multiple integral of the
Laplace type, at least in the framework of their classical definition. With the
increase of the large parameter (A — oo} there also changes also the number
of variables. over which one integrates and this needs reformulation of the
corresponding methods of asymptotic estimation of the considered integrals
(14]. In future publications we intended to investigate in more details the
expressions (3.4) and (4.5), obtained in this paper and to calculate critical
indices for the Ising model.

I am grateful to H. Makaruk and R. Owczarek for their help in prepara-
tion of the final form of this paper.
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