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The class of two-particle relativistic models which are described by the
time-asymmetric Fokker-type integral of general form is considered. The
manifestly covariant description of such models is constructed in the frame-
work of the canonical formalism with constraints. By means of certain
gauge fixing, the time-asymmetric models are reduced to the Bakamjian—
Thomas model supplemented by a space-time interpretation. The corre-
sponding two-body problem is reduced to quadratures.
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Introduction

Among various approaches to the relativistic direct interaction theory
(RDIT), the formalism of Fokker-type action integrals is most closely re-
lated with field-theoretical descriptions of particle interaction [1-4]. This
feature permits to construct models of particle systems with interactions of
transparent physical meaning. Unfortunately the Fokker formalism gives
rise to integral- or difference-differential equations of motion which compli-
cate to great extent an analysis of the Fokker-type models.

On the other hand, mathematically simpler approaches to RDIT, namely
those which provide a prediction of particle evolution determined by Newton-
like equations, lead to phenomenologically, rather than theoretically, sub-
stantiated models [5-7].

There exists a relativistic two-particle model which possesses advantages
of both of the above classes of approaches to RDIT. This model was origi-
nated by Fokker in the framework of his formalism [1] and it was later elab-
orated in more detail by Staruszkiewicz [8]. Rudd and Hill [9] and Kiinzle
[10]. Physically their model describes the following particle interaction me-
diated by a massless linear vector (electromagnetic) field: the advanced field
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of the first particle acts on the second particle and the retarded field of the
second particle acts on the first particle. In this model a one-to-one corre-
spondence of points of two particle world lines appears naturally, namely,
of those points which are separated by an isotropic interval. This corre-
spondence allows to reduce the Fokker integral to a single-time action, i.e.
to reformulate the model into the framework of the Lagrangian and then
Hamiltonian formalism [11, 10] and, finally, to solve the equations of motion
[9, 10, 12].

The structure of the above model points the way to its generalizations.
The same l-to-1 correspondence arises in the Fokker integrals of the more
general form. namely, in those integrals whose integrand contains the re-
tarded or advanced Green’s function of the d’Alembert equation. Fokker
actions of such a kind produce a wide class of relativistic two-particle mod-
els [13] which can be called (following the Refs [12, 14]) time-asymmetric
models. Some of them permit a field-theoretical interpretation of interaction
and thus can be of special interest in physical applications.

There exist other ways leading to time-asymmetric models which are
based on mathematical rather than physical considerations.

One of these was proposed by Kiinzle [10, 15] in the framework of
manifestly covariant predictive mechanics. He has shown that the time-
asymmetric models form the only class of relativistic models which do not
fall under the purview of the well-known no-interaction theorem [16].

Another such approach starts from the 3-dimensional Lagrangian for-
malism in various forms of relativistic dynamics. Usually the form of rel-
ativistic dynamics is defined by means of a family of spacelike or isotropic
hypersurfaces determining the simultaneity relation in the Minkowski space
My [17]. A possible generalization of forms of relativistic dynamics is the
isotropic form proposed in Ref. [13]. It is based on the family of isotropic
hypersurfaces which are the future- or past-oriented light cones with the ver-
tices located on one of the particle world lines. In this case the simultaneity
relation is determined not in whole IM4 but only on points of the particle
world lines. This relation establishes for them a one-to-one correspondence
which is the same as in time-asymmetric models. The attractive feature of
the isotropic form is the ability to construct interaction Lagrangians which
depend only on the first order derivatives (unlike other forms of dynamics
which require dependence of Lagrangians on higher derivatives of all orders
up to infinity [17]).

It is shown in Ref. [13] that all the ways mentioned above lead to different
descriptions of the same class of the time-asymmetric models. The existence
of simple relations between these descriptions unifies them into the common
approach which can be referred to as the relativistic two-particle mechanics
on the light cone.
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In the case of two-dimensional space-time the light cone degenerates to
the light front and the mechanics on the light cone becomes the front form
of two-dimensional relativistic dynamics. The general formulation of the
latter is proposed in Ref. [18] in the frameworks of both the Lagrangian and
Hamiltonian formalisms. The dynamics of time-asymmetric models in this
case is rather simple and was well studied with several examples both on
classical [8, 9, 14, 19] and quantum [20-22] levels.

In the more realistic case of the 4-dimensional Minkowski space the
dynamics of concrete time-asymmetric models has been studied far less.
Indeed, the above mentioned vector model is the only model of such a
kind which was considered in literature. It is complicated enough, and its
mechanical analysis given in Refs [10, 12] seems to be work of art rather than
application of some standard method. An analysis of other time-asymmetric
models, especially those which permit a field-theoretical interpretation, is
not expected to be simpler. Nevertheless just such models can be useful in
physical applications and they need further elaboration.

For this purpose the convenient calculation scheme which allows the
study of time-asymmetric models is proposed here. Following this scheme
we specify the time-asymmetric model by means of the choice of rele-
vant (for instance, physically tractable) time-asymmetric Fokker-type ac-
tion integral. Then, we reformulate equivalently the chosen model to the
well-known Bakamjian-Thomas (BT) model {23] and, finally, reduce it to
quadratures by means of the standard Hamilton—-Jacobi method. Because
the BT model uses the noncovariant canonical centre-of-mass variables, the
proposed scheme includes the relation of covariant particle positions with
canonical variables. Having the solution of Hamiltonian equations and using
this relation we can build particle world lines in the Minkowski space.

The scheme is based on the results of a previous work [13] (in collabo-
ration with Tretyak), and it consists in successive reformulations of time-
asymmetric models into the frameworks of various formalisms: manifestly
covariant Lagrangian mechanics, Hamiltonian formalism with constraints
and three-dimensional Hamiltonian mechanics (i.e. BT model).

The Hamiltonian formalism with constraints is the most important link
of the scheme. It is based on the two Poincaré-invariant first class con-
straints. One of them is purely kinematic and it determines the simultane-
ity on the light cone. The another constraint is the mass-shell constraint
which determines the dynamics of the system. The general structure of this
constraint is found and the connection of its concrete form with a choice of
the original Fokker integral (or Lagrangian) is established.

Calculatingly, the hamiltonization of the time-asymmetric model implies
some algebraic problem (namely, the set of three equations) to be solved.
It is done for certain models exactly. In other cases some approximation
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method (for example, expansions in a coupling constant) can be used. Ex-
cept this problem all steps of the proposed scheme are equally applicable to
the arbitrary time-asymmetric model.

We note that not only the Fokker approach, but all the intermediate
formalisms entering into the proposed scheme, can be considered as original
ones for the formulation of time-asymmetric models. For instance. in the
framework of canonical formalism with constraints, the dynamics of models
is determined by the choice of the mass-shell constraint: within the BT
description it is determined by means of the function of the total mass. In
any case, the variety of the time-asymmetric models is as wide as the class of
functions depending on three arguments. Besides, the possibility to choose
different descriptions for the same model is convenient for comparison with
other models known in literature.

This paper is organized as follows. In Section 1 the most general form
of the Fokker-type action integrals leading to the class of time-asymmetric
models is proposed, and a structure of those which correspond to the field-
theoretically tractable models is shown. In Section 2 the reformulation
of the time-asymmetric models into the framework of manifestly covariant
Lagrangian formalism is performed. and Noether’s integrals of motion are
obtained as consequences of Poincaré-invariance of the models. In Section
3 the transition to the manifestly covariant description in the framework
of canonical formalism with constraints is done. In Appendix A the model
which permits the exact construction of the mass-shell constraint is repre-
sented. The gauge freedom generated by the pair of first class constraints is
analyzed in Section 4, and the transition to three-dimensional Hamiltonian
description is discussed. In Section 5 the BT description of an arbitrary
time-asymmetric model is constructed. The corresponding two-body prob-
lem is reduced to quadratures in Section 6.

In Appendix B the free-particle mechanics on the light cone is con-
sidered. and its relation to the standard Hamiltonian description of the
free-particle system is found.

1. Time-asymmetric Fokker-type action integrals

We start with the most general Fokker-type action integral for a two-
particle systems which has the following form [3, 4]:

2
I = - Z 772,(1/(1Ta\/i‘3 - /(Iﬁcsz@, (1

a=1

here m, (@ = 1,2) is the rest mass of the a-th particle; x4 (7,) (£ =10,...,3)
are the covariant coordinates of the a-th particle on the Minkowski space
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IMy; 7, is an arbitrary evolution parameter on the a-th world line; z# =
e —ahdl = dal Jdrg;

¢ =/i3/23U (2, ur, wa) (2)

where U is an arbitrary scalar function of 4- Vect01s x and u, = 11/\/13
We choose the time-like Minkowski metrics. i.e., || 9, ||= diag(+, —. —. —).

and put the light speed to be unit.

There exists a physically important class of Fokker-type integrals which
permit a field-theoretical interpretation of the interaction between particles
[3, 4]. For this class the function U describing the interaction mediated by
the tensor field of rank »n is given by

U*(n) = [/192(“1 . llz)nG(’IJ) , (3)

where g, are the charges of particles, and G/(2) is the symmetrical Green’s
function of relevant wave equation.

The choice n = 1 and G(z) = &(z?) on the right-hand side (r.-h.s) of
Eq. (3) corresponds to the well known Fokker—Wheeler-Feynman action
for the electromagnetic interaction [1, 2]. Its time-asymmetric counterpart
was introduced by Fokker [1] and later was developed by Staruszkiewicz
(8], Rudd and Hill [9]. They proposed to replace the symmetrical Green’s
function by

Gy(z) = 20(12%)é(a?) (4)

which is the retarded (for = +1) or advanced (n = —1) Green’s function
of d’Alembert equation. The resulting model yields ordinary differential
equations of motion which were analysed in Refs [8, 9, 10, 12].

A natural generalization of this model leads to the action integral (1)
with the function & of the form:

P=dG,. (5)

where @ is an arbitrary regular function of the form (2). Let us express this
function in a more explicit form.
Since the Green’s function (4) does not vanish if and only if

22 =0, nz">0, i.e., nz® = |z, (6)

where & = (2; = —a') (i = 1,2,3), the function & does not depend on the
scalar argument 22, Next let us suppose that the action (1), (5) is deter-
mined only on timelike world lines (i.e., &2 > 0) which are parametrized by



1092 A. DUVIRYAK
well defined evolution parameters (i.e., & > 0). Then, using Eq. (6) one
can easily prove the following inequalities:

@1-82>0, (7)
N, -z >0, a=12. (8)

Finally, the function & can be put into the following form:

é:(:i‘l.x)(:&z-x)&ﬁ(\/g Vg f1- 22 ) (9)

nEp- T nig-z’ (&p-x)(E2-T)

where ¥ is an arbitrary regular function of the indicated positive arguments.
The general structure of ¥ determines the class of models which we take
under consideration. Especially, the choice of ¥ in the form

- - 1-n . . n
gp(n):glgz( \/T_% \/"—”g> (( T1- %2 ) (10)

nEy - T NEg- T Ty - ) (&2 - )

corresponds to the n-rank tensor generalization of the vector model.

2. Single-time Lagrangian formalism

The Fokker action (1) is parametrically invariant with respect to each
of the parameters ; and 75. Thus the two of eight functions (1), z5(72)
to be found (one for each particles) remain undetermined within the varia-
tional problem. The structure of the function @ allows to fix partially this
function arbitrariness in natural manner. Let us require of the condition
(6) to be identity if 77 = 7. This means, firstly, that both world lines are
parametrized with a common evolution parameter, for instance. with 7y;
and, secondly, that a simultaneity relation for points of world lines is set.
Since the condition (6) can be treated as the equation of a past- or future-
oriented light cone (it depends both on what is the value of » = £1 and
what point @ or x5 is chosen to be the vertex of the cone), this parametriza-
tion can be called naturally the single-time description on the light cone.
Following Ref. [11] the Green’s function G, in the second term of the action
(1) can be written down in the form:

29[77(1'(1)(1_1) _ :L'g(Tz))} 5[(:1:1(7‘1) - .2‘2(T2)>2}

_ 6(m — 1) _ (11)

!i@(rz) . (331(7'1) - 2’2(7'2))!
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Integrating explicitly this term over 75 one can reduce the functional (1) to

the single-time action
= [arl (12)

with the Lagrangian L= L|tk, where

L= Zma\/_+

(13)

112 x|

The Lagrangian L is defined on the first prolongation TIK of the 7-dimensional
configuration manifold IK C IM?2 = M4 x IM4 described by the equation (6).
The corresponding variational problem gives rise to second order differential
equations and thus the transition to the usual Hamiltonian description is
straightforward.

The action (12) is a parametrically invariant functional with respect
to the common evolution parameter 7. Hence the Lagrangian L (as well
as L) is a first order homogeneous function in particle velocities. This fact
together with the condition (6) enables to remove redundant degrees of free-
dom which correspond to the time variables 29, 2. An explicit elimination
of these variables, both partial and complete (the latter leads to the ordinary
Lagrangian description in the 6-dimensional configuration space) breaks the
manifest covariance of the description and makes the hamiltonization pro-
cedure cumbersome.

It is more convenient to renew a manifest covariance by means of transi-
tion to the Lagrangian description on the 8-dimensional configuration space
IM2. For this purpose an unconditional extremum problem is modified in
favour of an equivalent conditional extremum problem of the action

I = —/dT(L+ Az?) (14)

with the Lagrangian (13) defined on TIM%. Here the Lagrangian multiplier
A is introduced to take into account the condition (6) as the holonomic
constraint (the boundary constraint nz® > 0 is meant also).

For the sake of construction of the Hamiltonian description it is desirable
to put the Lagrangian (13) in a more convenient form. Let us parametrize
the space IM? by the collective variables

y* = L) +2f), ' =af —ah (15)
(the external and internal variables respectively) in terms of which

ak = y* + 1(~)%", a=12, a=3-a. (16)
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Taking into account the inequalities (8) and the differential consequence of
the constraint (6), i.e.,

t-x =0, (17)
the following positive function can be introduced and written down in a few
ways:

O=ny-x=nry-x=ntyx>0. (18)
Then the Lagrangian (13) takes the following form:
L ——»HF((TI,(TQ (S) (19)
F= Z myo, +¥(oy,02,6), (20)
a=1

where an interacting term ¥, and thus the total expression F. may be an
arbitrary function of positive arguments:

UHE\/-’i‘Z _ \/!)2+(*)‘i!2'-73+%”3‘2’ =12,
0 ‘ 0
- . .'2 1 -2
e T1°T2 _ y —Z.’L‘
0= 7z = P (21)
Especially, for Eq. (10) we have
v = gigs(0102)' 6" (22)

Poincaré-invariance of both the Lagrangian (19) and the constraint (6)
leads to the existence of ten Noether’s integrals of motion. These are the
total momentum P, of the system and the angular momentum tensor

Juu = y;tPu - yuPu + Q,uus (23)
where

2, = r,w, — r,w,, (24)

JL F' F: 1 F' FoN\z

po=9k yony L 2}

g ()yﬂ (Ul + 2k ) 0 + 2(0’1 0‘2) 8
+ (F- 01F1 — 0, Fy — 28F5)na,, (25)
JdrL 1 F' F' Y F" Pz ) 4 .
N e = - -2 — 2Fc | —, 26
u‘ 0.‘;)1" '2((7'1 0'2> 0 +4(0’1 +0‘z 8 9 ( )

and F, = 0F/do, (a = 1,2), Fj = 0F/9J.
Besides, the Lagrangian (19) satisfies the identity:

yP+i-w—L=0, (27)

which is the consequence of parametric invariance of the action (14).
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3. Canonical formalism with constraints

The Lagrangian description in the configuration space IM? enables a
natural transition to the manifestly covariant Hamiltonian description with
constraints [24] on the 16-dimensional phase space T*IM2. First of all con-
sider general features of such a description.

Let us parametrize the space T*IM2 by the position variables y*. x* and
conjugated momenta P,, w,, and introduce the standard Poisson brackets
[.......]. Then the above integrals of motion P, and .J,, become the gen-
erators of the canonical realization of the Poincaré group in T~IM3.

By virtue of the parametric invariance of the Lagrangian description
the canonical Hamiltonian vanishes (as follows from the identity (27)) and
the dynamics of a system is determined by the Poincaré-invariant constraint
which can be called the mass-shell constraintin analogy to the single-particle
case.

Besides, the kinematical constraint (6) is carried into the Hamiltonian
description too, so that both these constraints are the primary ones. The
constraint (6) allows to remove a redundant internal coordinate, for one
29. A conjugated momentum variable (wg in present instance) is obviously
unobservable and is sooner or later subject to elimination by means of a sec-
ondary constraint which can be found to provide a self-consistency of the
description. Instead, it is more convenient to construct the Hamiltonian
description is such a form which uses at the beginning the observables only.
The latters are meant as quantities which do not depend on the redundant
momentum variable. Of course, there exists arbitrariness in a choice of re-
dundant variables. Nevertheless it is possible to formulate the observability
condition unambiguously. Namely, the function f(y,x. P.w) is observable if
it satisfies the condition:

[f, 23] =0, (28)

where sign “~” denotes an equality on the light cone (6). Integrating the
condition (28) one concludes that an observable can be an arbitrary function
of the covariant arguments y#, z*, P, and v, = PY$2,,/P - & (see (24))
which form 15 independent quantities (because P - v = 0).

The covariant particle coordinates x5 and the canonical generators P,,
Ju are evidently the observables (in the sense of the definition (28)). This
means that the description in terms of observables only provides the com-
plete physically important information concerning the classical motion of
a system. Hence it is natural to require of the Hamiltonian equations of
observable motion to be expressed in terms of observables only. This re-
quirement is fulfilled if the function on the left-hand side (l.-h.s.) of the
mass-shell constraint is observable. Besides the x? there exist 4 indepen-
dent Poincaré-invariant functions of the observables. They are P%, v?, P.x
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and v -z & w- . Thus the general structure of the mass-shell constraint is

as follows:
o(P?, v*, P-a, v-2) =0. (29)

Since ¢ satisfies the condition (28), the corresponding Hamiltonian equa-
tions of motion guarantee that the constraint (6) holds, and they do not
produce any secondary constraints. It follows from this fact that an extra
constraint for redundant momentum variable would arise as the primary
constraint only and thus the set of equations (25), (26) would be twice
degenerated. For the present this extra constraint may be not taken into
account because it has no physical meaning while the constraints (29) and
(6) are considered as a pair of first class constraints which determine com-
pletely the dynamics of the observables.

Above rather general considerations lead to the Hamiltonian mechanics
which embraces the class of particle systems as wide as the original Fokker
or Lagrangian formalism does. Indeed, the mass-shell constraint (29) can
be considered as an equality which determines implicitly one of the argu-
ment of ¢ as a function of three other arguments. And so, the variety of
all possible models in both the original Fokker and resulting Hamiltonian
formalisms contains (except few degenerate cases) an arbitrary function of
three arguments.

Now we follow step-by—step the hamiltonization procedure of an ar-
bitrary time-asymmetric model which is given originally by means of its
Fokker or Lagrangian formulation. For this purpose consider the relations
(25)-(26) as the set of equations for the particle velocities to be found. In
the general case the rank defect of this set is 1 (as a consequence of the
parametric invariance of the description). In order to obtain the mass-shell
constraint in the desirable form (29) it is necessary to decrease the rank of
the set (25)-(26) by 1. This is possible owing to the holonomicity of the
constraint (6). Indeed, its differential consequence (17) sets an additional
relation for velocities which can be taken into account on the r.-h.s. of Egs
(25)—(26). After this is done one can easily see that the 4 arguments of the
function ¢ indicated in Eq. (29) can be expressed in terms of 3 independent
functions o3, 02, & (21) of coordinates and velocities. Especially,

/ /

P2z = 77(£+&+2F§) , (30)
I3 ]

ver = l(i i) R (31)
2 ()

1 2

2 - , /22 Fl, 74 F2, /) 5
P :Z +F 0o + 2|+ E5 J{ S+ F5 )0
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F F!
+ 2(—1 + 2y 2Fg) (F— o1 — oyFh— 26F0) . (32)

o1

while the remaining quantity v? obeys the relation

)2 (U-IL‘)2P2 1 ﬂf_g 2
vt (P-z)? t nP-z \ o1 09 Fs
P‘Z
X <nPw —2F+01F{+02F2'+26F(§) =0. (33)

Eliminating o1, o2, & from the set of equations (30)—(33) one can find the
mass-shell constraint in the form (29). Notice that besides the (30)—(33) one
can obtain one more relation which determines the unobservable (in sense
of (28)) quantity P -w in terms of oy, o3, 6. This makes it possible to find
the above mentioned subsidiary primary constraint which has no physical
meaning and thus will be omitted from further consideration.

The possibility to construct the mass-shell constraint (29) in an explicit
form depends on how successful can be excluded the quantities oy, o2, §
from the relations (30)—(33). For example, if the set of equations (30)—(32)
permits the existence of a positive solution for oy, o2, ¢ in terms of P - z,
v-z, P2, its substitution into thel.-h.s of (33) yields the mass-shell constraint
sought. In certain models the quantity ¢ falls out of the equations (30),(31)
and (33). In these cases only solution of equations (30) and (31) with
respect to oy, oy is needed, which simplifies the construction of the mass-
shell constraint. The example of such a model which corresponds to the
arbitrary superposition of the scalar, vector and confinement interactions is
represented in Appendix A.

4. Transition to the three-dimensional Hamiltonian description

The scheme of the transition from the manifestly covariant description
of a canonical system with constraints to its three-dimensional formulation
is well known in literature {25, 26]. It consists in the reduction of an orig-
inal phase space to a space of less dimensions (to be the reduced phase
space IP), determined by means of relevant number of pairs of second class
constraints. The latters serve also for constructing of the Dirac brackets
[-..,...]* which being restricted to the IP induce on IP the symplectic struc-
ture, i.e., the nondegenerated Poisson brackets {...,...}. Final step of the
reduction procedure consists in parametrization of IP by such variables in
terms of which the Poisson brackets take the standard form. For this pur-
pose it is convenient to use the Shanmugadhasan method [25], that is, to
perform in original phase space a canonical transformation which reduces
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the set of constraints to the canonical form. The latter is that form in which
at least one constraint of each pair of second class constraints means the
vanishing of that new canonical variable which must be eliminated. The re-
maining new variables parametrize the space IP in desirable way, i.e., they
are canonical with respect to the induced Poisson brackets.

When first class constraints are present, arbitrary (in principle) gauge
fixing constraints of the same number can be added in order to use the above
reduction procedure. In this case a proper choice of gauge fixing constraints
can simplify to a great extent the Shanmugadhasan transformation and/or
a final description in the reduced space IP.

In our case the manifestly covariant Hamiltonian description on the 16-
dimensional space T*IM? is based on three constraints. One of them is a first
class constraint and two other form a pair of second class constraints. Thus
such a description can be reduced to the description on the 12-dimensional
phase space IP. It has been shown above that the dynamics of such a
system can be determined in physically equivalent way by the pair of first
class constraints, namely, the mass-shell constraint (29) and the holonomic
constraint (6). During the reduction procedure this fact allows to replace
the above mentioned second class constraint of nonphysical meaning by an
arbitrary (not necessarily Poincaré-invariant) gauge fixing constraint

’L/J(y,GJ»PJU):Oa (34)
where 1) obeys the only condition

[v, "] # 0. (35)

The constraint (34), which together with (6) removes a pair of redundant
internal variables (for instance, 2® and wp), has purely formal meaning
because its explicit form does not influence both the dynamics of a system
and the structure of final three-dimensional description.

In order to remove a redundant pair of external variables (for instance,
y® and Pp) we need one more gauge fixing constraint which complements
the mass-shell constraint and completes the whole set of constraints to
the second class ones. This constraint breaks the parametric invariance
of the description and fixes the evolution parameter in terms of observables.
Therefore it can be defined as follows:

x(y,z,P,v,t)=0, (36)
where the function y is only restricted by the conditions

[x, 9] #0, Ix/Ot #0; (37)
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here and hereafter t denotes the evolution parameter fixed by the constraint
(36).

The gauge fixing constraint (36) (as well as the previous one (34)) does
not influence the dynamics of a system, but its choice (together with the
structure of the constraints (29) and (6)) determines specific features of fi-
nal description, namely, the reduced phase space IP (as a submanifold of
T*H\/I:‘;). the induced Poisson brackets, and a possible choice of variables, in
terms of which these brackets take the canonical form. An explicit form
of observables (i.e., the covariant particle positions, the generators of the
Poincaré group etc.) being functions of canonical variables of the space P,
depends on a choice of the constraint (36) too. Thus using the arbitrari-
ness of this choice one can effectively influence the structure of the final
description.

Note that the more special choice of the constraint (36),

x(y,z, Fo,t) =0 (38)

(here the function on the l.-h.s. is arbitrary and it is chosen to satisfy
the conditions (37)), allows to avoid the well-known no-interaction theorem
[16], that is, to pass to such a three-dimensional Hamiltonian description
of time-asymmetric models in which the spatial covariant particle positions
become the canonical variables.

The three-dimensional Hamiltonian description in terms of covariant
variables is desirable in various aspects. For example, it simplifies the in-
troduction of the interaction with external fields and allows the position
representation on the quantum-mechanical level. But this description is not
convenient for solving a two-body problem. because it does not provide a
relevant separation of external and internal degrees of freedom. Below we
propose the transition to another three-dimensional description in which the
desirable separation is achieved using relativistic centre-of-mass variables.

5. Three-dimensional Hamiltonian description in terms of
relativistic centre-of-mass variables

We look for variables in terms of which the motion of a two-particle
systemn as a whole can be separated naturally from its internal evolution.
It is convenient to start this search in the framework of the manifestly
covariant Hamiltonian description (in T*IM2). We note, that the above
defined external and internal variables y*, P, and z*, w, do not solve this
task. Indeed, the manifestly covariant Hamiltonian equations of motion for
external variables y*,

J ~ [y, 8 = 96/0P, . (39)
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predict an intricate external evolution due to the general structure of the
function ¢ (29) including a particle interaction. It is desirable to replace
the y* by another variables Q* which describe the motion of a system as a
whole like the motion of single particle with 4-momentum P,, i.e.,

Q" ~ P*. (40)

Such variables can be introduced by means of a canonical transformation in
T* M2,

(¥, Pu, 2%, wu) = (QF, Fu, p*, wy), (41)
which does not change the total 4-momentum P, and provides a dependence
of the function ¢ on new external variables through the P? only.

The transformation (41) can be naturally determined by means of the
generating function:

v

Wy, P,z,w)= P,y*" +w,A (l—%) at (42)

o
where |P| = vV P%, and ||A(P/|P|)",|| € SO(1, 3) obeys the condition:
AR PY = §5| P} . (43)

The matrix A describes the Lorentz transformation into the centre-of-inertia
reference frame. The condition (43) fixes A up to an arbitrary matrix of
spatial rotation (which can depend on P). Omitting details we note that this
arbitrariness allows to get as the result of the following reduction procedure
various Hamiltonian forms of dynamics (see, for example, [26, 27]).

Let us choose A as a pure boost, i.e.,

Py P,
Pl ' Pl ’
jan | = _ (14)
ik 5i' + _P'EL____
[P 3T PP+ Fo)

Then we obtain the final description in the framework of the Bakamjian—
Thomas model, that is, the three-dimensional Hamiltonian description in
the instant form of dynamics formulated in terms of the centre-of-mass
variables.

Let us write down explicitly the canonical transformation generated by
the function (42),

. vT

V= Q- 5 G

= pAf w, =w,A”,, (46)

(45)

v o
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where
Suu = AU,TAUU To — puwu - Puwu L] (47)

and express the constraints (6) and (29) in terms of new variables:
p?=0, 7p°>0, ie, p’—nlpl=0, (48)

P? — M*(50,5%, p°, pw)=0. (49)

The function M in the l.-h.s. of Eq. (49) is the positive solution of the

equation: ‘
H(M?, M?S5,5%, Mp®, p-w)=0 (50)

and has a sense of the total mass of the system. Under the general analysis
of the description (when ¢ is meant arbitrary) the mass M can be considered
as an arbitrary function of the indicated scalar combinations of the internal
canonical variables p#*,w,. It is obvious that the mass-shell constraint (49)
satisfies the condition (40) regardless of the internal] dynamics of the system.
So, we have the desirable separation of variables.

Now we perform the transition to the three-dimensional Hamiltonian
description following the scheme proposed in Sec. 4. Let us choose the
gauge fixing constraint (36) in the following form:

Q° -t =y’ +tr(ANRIA/R)) —t =0, (51)

while the constraint (34) remains arbitrary.
Following the Shanmugadhasan method [25] we perform the canonical
transformation

(QO’ in POv B,ﬁpo» ,01, wo, UJ,’) ‘
— (QO» Ql-, PO» I:)iv ﬁov /)1~ &, ﬂ-i) (52)

which is determined by the generating function:
W = By(Q° — 1) + PQ' +wo(p® — nlpl) + mip'. (53)
It has the following explicit form:
Q°=Q%—t, p°=p"—nlpl, m =wi—nwopi/lpl (54)

(the remaining variables do not change). This transformation reduces the
set of constraints to the canonical form (i.e., two constraints (48) and (51)
among four ones read: p° = 0 and Q° = 0). Besides, due to the explicit
dependence of the transformation (52)-(54) on ¢, the Hamiltonian H = Fy
appears. The following reduction of the description onto the 12-dimensional
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phase space IP parametrized by the canonical variables Q¢, P p'. 7 (i =
1,2, 3) is straightforward and leads to the BT model [23] with the well-known
canonical generators of the Poincaré group,

H =P = VM+P, P,
J; = Ei]'ijPk + 5.
(PXS)g

= —th 2" .
K; + Q:H + M H

Here § = p x 7 is the total spin (the internal angular momentum) of the
system, and M(p, w) is the total mass of the system which determines its
dynamics in the reduced space IP. In our case M is the positive solution of
the equation:

HM?, —M?p*n2. yMp, —p-7) =0, (56)

which we call the mass-shell equation (here p = |p|, = = |=x|).

Besides the canonical realization of the Poincaré group, the reduction
scheme proposed in Sect. 4 permits to obtain the covariant coordinates of
particles 2} as functions of the canonical variables, what makes it possible
to build particle world lines in the Minkowski space IM4. Using constraints
in the r-h.s. of Eqs (16) and (44)—(47) it is easy to get the z explicitly,

P\1*
at = XH 4+ [/1T (/\7)} V@Z(p,ﬂ'), (57)
where
X% =t (58)
y : (P x S) .
X" = LN S 59
S VIR e (59)

are the well-known Pryce centre-of-inertia variables [28], and

e = 5(=)"np. a=1.2,
(—)p" + npm* /M | i=3-a. (60)

|— ta]—

i

€ @ ‘

3

The formulae (57)-(60) correspond to the special choice of general expres-
sions for the covariant coordinates which are proposed in Refs [29, 30] for a
space-time interpretation of the BT model considered « priori.

In Appendix B we treat the free-particle system as the time-asymmetric
model, and we find the relation of its BT description to the standard Hamil-
tonian description of the free particles in the instant form of dynamics.
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6. Reduction of the relativistic two-body problem to quadratures

In the BT model the 12-dimensional phase space IP can be expanded
naturally onto the external and internal subspaces IP = IPex X IPi,, where
the IP.y is parametrized by the external variables @);, P, and the IP;, is
parametrized by the internal variables p;, m;.

Due to Poincaré invariance of the description it is sufficient to choose
the centre-of-inertia reference frame in which

P=0, K=0, (61)

so that
Q=0, X=o0, (62)

and then to consider the subspace Py, only. At this point the problem is
reduced to the rotation invariant problem of some effective single body. The
corresponding phase trajectory lies in the plane which is orthogonal to S.
For its description it is natural to use the polar coordinates,

p=ype,, T=m,€,+S€,/p; (63)

here S = |S|; the unit vectors €,, €, are orthogonal to S, they form together
with S a right triplet of vectors and can be decomposed in the usual manner
in terms of the Cartesian unit vectors 2, 7, i.e.,

€, =tcosp+Jsing, €,=—ising+jcosyp, (64)

where ¢ is the polar angle.
The mass-shell equation (56) reads:

o(M?, —M*(p’n2 + S?), nMp, —pr,) =0, (65)

and the covariant coordinates of particles (57)—(60) take the form:

xg =t + 3(=)np, (66)
= (1_yay e ___7756‘P 67
2o = (3 +2) pe, + 122 (67)

Using equation (65) the internal radial momentum 7, can be expressed
in terms of p, M, S and then following the Hamilton—-Jacobi method a
solution of the Hamilton equations can be locally found in quadratures,

[ty = /dpfi(g_w”ii) (68)

0 LM, S .
99—990:—/df’7r—p(%—5__)' (69)
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The function 7,{(p, M, S) usually consists of few branches and describes the
projection of the phase trajectory onto the subspace of the radial variables
(p,m,) =P, C IP;,. Thus the quadratures (68), (69) give a local solution
of the problem only, i.e., within the domain of values of p in which some
branch of the function 7, exists. In order to obtain the global solution it is
necessary to sew up local solutions in such a way that the resulting curve
in IP;, should be a continuous and preferably smooth curve. Generally such
a phase trajectory can consist of few isolated continuous components, and
physical meaning of some of them turns out to be not clear. This situation
occurs often in various relativistic models [12, 19] and one has to be careful
when constructing their Hamiltonian description.

Finally we give the direct prescription how to obtain the mass-shell
equation when the dynamics of a time-asymmetric model is given originally
in the framework of the Fokker or Lagrangian formalism. In this case the
function ¢ in the l.-h.s. of Eq. (65) is determined by the structure of the
function F(oy,09,8) (20). Taking the relations (30)—(33) into account one
can represent the corresponding mass-shell equation in the following form:

S? 2 P
=+ (B - dm? - =)L)
M / / /
P
where o1, 09, § must be found from the set of equations:
Fz;, ! 1 a I —
U—+F5=ba§(§lw+77(—) o) P a=1,2, (71)

bio? + bia2 + 2b1byd + 2Mp(F — 01 F] — 02 Fy — 26Ff) = M?*. (72)

Conclusion

The formalism of the Fokker-type action integrals has arisen as one of
early approaches to RDIT. In spite of the close relation of this approach to
the field theory its application to the description of concrete physical sys-
tems is held up by difficulties due to nonlocality of the equations of motion.
Alternatively a variety of other approaches which are more similar mathe-
matically to the nonrelativistic mechanics appears. They make it possible
the construction of much simpler (including exactly solvable) but usually
phenomenological models of relativistic systems of interacting particles.

The class of time-asymmetric two-particle models proposed here can be
considered as the compromise approach which lies on the frontier between
the field theory and the relativistic mechanics of directly interacting parti-
cles and possesses some of their advantages.
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First of all, there exists a subclass of the time-asymmetric Fokker-type
integrals which permits a field-theoretical interpretation of the particle inter-
action and thus it can lead to tractable models of various physical systems.
There is also an important possibility to modify these integrals in order to
take semiphenomenologically into account such field effects which by now
can not be deduced from the first principles (for example, the phenomenon
of quark confinement).

Second, the time-asymmetric models are descriptively flexible. It is pos-
sible to reformulate them into the framework of the Lagrangian and Hamil-
tonian formalisms (both in the manifestly covariant and three-dimensional
forms) using the covariant coordinates or the centre-of-mass variables. These
opportunities are useful for the study of the models and enable their com-
parison with other models known in literature.

Third, all the time-asymmetric models are exactly solvable: their equa-
tions of motion are integrable in quadratures. We plan in next works to
study some physically most interesting models.

I am grateful to Professor R. Gaida and V. Tretyak for their interest in
this work and helpful discussion.

Appendix A

The model of particle system with scalar, vector
and confinement interactions

Let us choose the function ¥(oy,02,8) on the r.-h.s. of Eq. (20) as
follows:

U = o100+ 30 + 7, (A.1)

where «, 3,7 are arbitrary constants. The first and second terms on the
r.-h.s. of Eq. (A.1) correspond to the scalar and vector field-type interac-
tions with the coupling constants o and 3 respectively, and the third term
describes the confinement interaction (when v > 0). In the nonrelativistic
limit this model leads to the potential U = (a + 8)/r + vyr. where r is the
distance between particles.

Calculating F) and F§ for this case and substituting them into the I.-
h.s. of Eq. (33) one can see that the latter does not depend on 4. The
corresponding set of equations (30)-(31) takes the form:

m, + a0, + Ba,
UG

:bazn(%P-z—}-(—-)aU'l‘), (AZ)

and can be easily solved with respect to o,:
(ba — B)ma + am;
(by = )by = B) —a?~

0, =



1106 A. DUVIRYAK

Finally, substitution of ¢, (A.3) into the l.-h.s. of (33) gives the mass-shell
constraint
O =@f + Pine =0, (A4)

where

vz

¢r = 1P — L(md + ml) + (m] - m%)P p, + v? (A.5)

is the free-particle term, and

2amymy + 3(P? — m? — mn? b

oy = — 2amymy + (P ‘ mi — m3) 9 by1bsy —‘3)
nP - nP-x

2amymy + (by — 3)ym3 + (bp — 3)m3

2 92 X
—(a® =3 - 1 A€
& ) T P (b — 9 ~ 3) — ) (A0
describes the interaction.
Appendix B
The free-particle system
The free-particle mass-shell constraint ¢y = 0 (see Eq. (A.5)) takes
within the framework of BT description the form
IM? — w2 — Y(mi 4+ m3) - n(m? - m%)w P _y. (B.1)

Mp

Besides. the requirement of o, o3 to be positive restricts the phase space to
the domain in which

lm-p| < LMp. (B.2)

The mass-shell equation is cubic with respect to the function of the total
mass M (p, 7). Its solution has a complicated form and does not coincide
with the standard total mass of the free-particle system in the BT model
[31]. Nevertheless, following the reduction scheme proposed in Sec. 1 and
integrating the equations of motion (using (B.2)) we come to correct particle
world lines.

Here we do not display this analysis which represents rather method-
ological interest. Instead. we construct the canonical transformation of the
internal variables (p, 7) — (r. k) which reduces the free-particle total mass
to the standard form.

Let 2 5
mi —ms p .
=k - p2—2L, B.3
T 0 p (B-3)
The substitution of (B.3) into (B.1) leads to a biquadratic equation for M.
(m} — m2)?

IM? - L(mi+md) + - k? = 0, (B.4)

4712
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which has four solutions. They are:

2 2
M(k) = ) cukao = D _cay/m + K, (B.5)

a=1 am=]
where ¢, = +1 (a = 1,2). Only one of them has physical meaning (if
¢« = 1). Let us show that nonphysical solutions can be dropped when

requiring positivity of A and taking (B.2) into account. Hereafter we set
my > my. Using (B.2) and (B.3) in (B.1) one can obtain the inequalities

< m? — m?2 2 a =1, )
<1kl+——————' ) g (B.6)

g2 2 S 2
;M7 —m; 57

2M

(AVARVAY

which after simple calculations and use of (B.5) become
(e1k10 — €2k20) (sakao + |R|) > 0, a=1,2. (B.7)

Requiring the positivity of M and taking (B.7) into account we conclude
that ¢, = 1. which corresponds to the standard form of the free-particle
total mass.

Now taking an explicit expression for M (k) into account one can write
down the Eq. (B.3) in the following form:

7
m = k+ %(’\"20 ~ k10)2
P

=0 (k'PJrg(km*klo)P) =

a9 oW (p, k)
dp '

% (B.8)

Thus W{p, k) is the generating function of the transformation sought, and
we immediately obtain:

oW (p. k) n( 11 )
_ YWie R 7= 2 ) k. B.C
ok Pt I\ e He )’ (B.9)

Eqgs (B.8) and (B.9) which determine this transformation in an unexplicit
form, make it possible to express all dynamical quantities in terms of new
variables. Especially the expressions for the functions e,, €% (64) determin-
ing the covariant coordinates of particles can be written down as follows:

eo(r k) = (=) ("‘““O | G k) 1,2
a\T, = {— =5 T T H 4= 1,2,
A’[ kao

co(r.k) = L(=)"np(r. k), a=3-a,  (B.10)
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where the function p(r, k) has a cumbersome form but is not essential for
the following calculations.

The covariant coordinates of particles (57)-(59), (B.10) do not agree
with the standard description of the free particles in the framewcrk of the
BT model [31] unlike the canonical generators (55) and the total mass (B.5)
(with £, = 1). Nevertheless the description obtained here reproduces cor-
rectly the free-particle dynamics. In order to prove this statement we per-
form (following [31]) the canonical transformation from the centre-of-mass
variables @, P,r,k to the particle canonical variables q,,p, (¢ = 1,2).
This transformation is defined by the generating function

2

Wiar a0 Pb) = 20, P + (-4 (k4 o ). (B)

n=1

It reduces the canonical generators (55), (B.5) to the standard free expres-
sions in the instant form ot dynamics, ‘€.,

2 2 2
H=Zpao = Z\/mgthﬁ, P:Zpa
a=1 a=1 a=1
: 2
J=3 a.xp., K=-tP + ) g.peo, (B.12)

a=1

The covariant coordinates of particles (57)—-(59), (B.10) in terms of new
variables read:

22 =t+ Ay, =g, + AP,/ Pao, (B.13)

where A, are some functions of canonical variables. These formulae describe
correct (straight) free-particle world lines, each of them is parametrized by
the time ¢ although shifted in time by A, in comparison with the standard
description.
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