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Multifractal scaling analysis of nuclear giant resonance transition prob-
ability distributions is performed within the approximation which takes
into account the one-particle-one-hole (1p-1h) and 2p-2h states. A new
measure to determine the fractal dimensions of the spectra is introduced.
It is found that chaotic dynamics governing the decay leads to non—trivial
multifractal scaling properties. Such a kind of scaling is absent in the case
of regular dynamics. The degree of collectivity is another element which
worsens the scaling.
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1. Introduction

There exist well established methods to identify chaotic behaviour in
classical non-linear dynamical systems. It is, however, not fully clear what
are the signatures of chaoticity at the quantum level. In fact, several indi-
cators have been suggested. For systems with complex energy spectra the
statistical analysis of their fluctuations has been introduced by Wigner in the
context of compound nuclei. The Wigner form of the nearest neighbor spac-
ing (NNS) distribution turns out to be a good indication that an underlying
classical system is chaotic. This distribution can be simulated within the
random matrix theory by the Gaussian orthogonal ensemble (GOE), while
the spectra of regular systems have Poissonian distribution [1, 2]. The NNS
test can be successfully applied to stationary systems and the information
about the energy spectrum is sufficient. However, one would be interested to
take into account more information included in the wave function [3]. The
aim of this research is to find further signatures of chaos coming from the
structure of the wave functions. In particular, chaotic dynamics on the clas-
sical level is known to be associated with various fractal structures obeying
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the scaling relations [4]. It would be extremely interesting to identify a trace
of such structures also on the quantum level.

To this end we shall consider the nuclear giant resonances as physically
interesting excitations and we shall investigate their energy spectra and the
transition probabilities resulting from the coupling to more complex config-
urations. These quantities are in principle measurable experimentally thus
our predictions are verifiable. In particular, our calculations have been done
for the “°Ca nucleus and its J™ = 2% excitations to have the well defined
angular momentum and parity quantum numbers. The centroid energies of
nuclear giant resonances are relatively well described within the mean field
1-particle-1-hole (1p—1h) approximation. To describe its decay one needs to
include states of the np—nh type. Truncating on the 2p-2h level is, however,
technically necessary (to have the hamiltonian matrix of a manageable size)
and physically well justified [5]. As the nuclear forces are predominantly
two-body in nature an initially excited giant resonance (a superposition of
the 1p-1h states) can couple directly to the 2p—2h states only [6]. In partic-
ular, within this approximation one obtains a good agreement with experi-
mental data. Furthermore, the corresponding spectral fluctuations fulfill the
GOE characteristics [7] which implies an underlying chaotic dynamics and
the fact that already the subspace of the 2p-2h states properly simulates
relevant characteristics of the compound nuclei [8].

2. The physical model

The general form of the Hamiltonian in our model reads:

H = ZS,' (tfa,' + -;Z Vij ki (L}La} a; ar , (1)
B ikl
where the first term (Hpg) is the mean field part and the second term (V) is
the residual interaction. For calculations we specify Hp in terms of a local
Woods—Saxon potential including the Coulomb interaction. The interaction
part, V, was taken as the zero range Landau—-Migdal interaction with the
empirical parameters taken from [9].
The Hilbert space in our model is spanned by the 1p-1h and 2p-2h
vectors defined in terms of the creation and annihilation operators:
_ N =gl of -
1) = ayanl0) , |2) = aplapzah?ahlm} , (2)
such that they diagonalize the operator Hg in 1p—1h and 2p-2h sectors and
(1] Hof2) = 0. A
We prediagonalize the Hamiltonian H in the two sectors separately by chang-
ing the basis as follows:
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=Y clin., =3 cil). (3)
1 2

The Schrédinger equation then reads:

[fiié 715;] Rﬂ - 5[] (4)

where Ej ; are diagonal block-matrices, Aj3. A3; are the off-diagonal blocks
and

Aié = ZCII (1]0[2) C'g . (5)
12
The A blocks are responsible for the coupling between these two sectors and
"leaking’ of the probability from the 1p—1h sector to the 2p—2h one.
We consider two distinct and physically interesting cases:

A) No residual interaction in the subspace spanned by [2) (V = 0 in that
subspace). In this case the only non-vanishing matrix elements of the
type (2|H|2) are the diagonal ones ((2|H|2") = (2|Ho|2") = e28221).
The fluctuation properties of £ are then those characteristic for the
regular systems [5].

B) All the matrix elements are included which results in the GOE fluctu-
ations of the energy spectra ¢, typical for classically chaotic systems

[5])-

By comparing these two versions of our model one can then study the influ-
ence of chaotic dynamics on quantum decay.

The transition probabilities that will be used in the following Section to
define our measure (11) are taken as transitions between the ground state
(10)) and the excited states (|{)) enumerated by ¢ = 1,2,...,N. In our
notation a state |i) can be expressed as a superposition of states from both
sectors:

i) = D ai 1)+ a3y 12), (6)
1 2
and the quadruple transition operator reads:

O = QYy(0) r*, (7)

where ) is the standard charge operator: O = %(1 + 73), 73 being the

(isospin) Pauli matrix. The first term in @ defines the isoscalar and the
second term the isovector component of the transition.
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The transition probabilities can be computed directly from the following
formula:

pi = 1(0[O1i)* . (8)

Since the transition operator defined by Eq. (7) is one-body in nature it
picks-up the 1p-1h components of |¢) only and thus:

pi = | 2 X CL (OO I (9)
i1

In principle, any state |i) includes certain admixture of |1) and, therefore,
an originally (with no coupling to [2)) localized transition strength becomes
much more fragmented.

To have good quantum numbers we take the 4°Ca nucleus with the an-
gular momentum and parity: J™ = 2%, Taking into account four mean field
nuclear shells (two shells above and two.below the Fermi surface) this implies
26 1p-1h states and 3 014 2p-2h states. Here, the centroid energy is 31 and
25 MeV for isovector and isoscalar transitions respectively, with dispersion
of the order of 5 MeV. Figs. 1 and 2 display the transition probabilities for
different energy levels in the regular (a) and chaotic case (b) for isovector and
1soscalar transitions, respectively. Even at this level one can observe a clear
distinction between regular and chaotic cases. The later case even suggests
a certain kind of self-similarity regarding the clustering and the relative size
of the transitions. For this reason the following Section is an attempt to
perform a more systematic analysis of these transition probabilities in the
spirit of the Renyi exponents [10].
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Fig. 1. Isovector quadrupole strength distribution in our model *°Ca nucleus for
the regular (a) and the chaotic (b) case. Note different scales.
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Fig. 2. The same as Fig. 1 for the isoscalar strength distribution.

3. Scaling analysis

The standard definition of a measure to compute the fractal (Renyi)
dimensions (exponents) for a set of n points in N boxes (intervals) of a
size [ is:

n:

pil) = —

where n; = n;(/) denotes number of points in the i-th box (interval) and the
measure is properly normalized due to: 3. n; = n. With this measure one
can determine the fractal dimensions d, (¢ being any real number) by taking
the limit / — 0 and extracting the exponent from the following formula [11]:

(10)

n

SplW) ~ T (1), (1)

where the log-log plot of the left hand side of Eq. (11) vs N is used to
compute the standard scaling exponents d,,.

Applying these ideas to our energy levels only we get not a very in-
teresting result as the energy spectrum of a typical quantum systems has
dimension equal to one and the same holds true in both our cases. (There
exist however systems whose energy spectra display a fractal character [12].)
Therefore, consistently with our previous discussion we are going to consider
the sets of pairs of points, the i—th pair containing two numbers: the energy
and the transition probability, {E;, p;}. Taking into account the proba-
bilities p; we have a more complicated structure. Because to each energy
corresponds exactly one probability the whole structure is expected to have
dimension in the range [0, 1] if the idea of scaling applies. Of course, due
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to non-uniformity of the probability distributions the dimensions should
depend on ¢ [13].

The specific value of p; can be interpreted as a frequency with which
the energy {E;} is ‘visited” and this modifies an effective number of energy
levels in a given box. In this way each energy point gets a different weight.
To have a measure with the proper normalization we define, instead of (10),
the following new measure P;(l):

-1
P(l) = {Z Pi] x Y pi s (12)
all E.€ i—th box
where the summation in the numerator goes over probabilities whose ener-
gies are included in the i-th box. Here again the measure F;(l) is properly
normalized: >; P;(I) = 1. The scaling exponent (“fractal dimension”) with
the measure (12) we will denote by D,, while d, we reserve for the standard
fractal dimension. From (12) it is clear that in the limit ¢ — 0 (capacity
dimension) the different nonzero probabilities p; give the same contribution
to the left hand side of (11), because the measure P;(!) is in the power of 0:

1 if —th box is not empty,

0 if i-th box is empty. (13)

tig PY() = lim () = {
Hence, we have: Dg = dp, the last being the standard capacity dimension. In
general, both measures and the corresponding dimensions differ for ¢ > 0 ac-
cording to: 0 < Dy < d,. The differences reflect a degree of non—uniformity
in the probability distribution. To determine the scaling exponents we use
the formula (11) with the new measure (12):

z,(l) = pr(z) ~ [4=DPe 150y, (14)

and the log-log plot of the quantity z,(!) of Eq. (14) vs the number of boxes
N is used to extract the scaling exponents D, in Figs. 3 and 4.

The input data (of Figs. 1 and 2) consist of the order of ~ 2!! data points,
the number sufficient to display an exponential scaling but one should have
in mind that some statistical errors will be present, as the fractal dimension
formula involves the [ — 0 (or, equivalently, the N — oo) limit. In fact, for
the chaotic case we have got a fairly good scaling in the range of about &8
points in the log-log plot as can be seen from Figs. 3(b). What is important,
this scaling persists up to the high ¢ values, i.e. to the region where the
structure of the probabilities is mostly probed. This kind of scaling has
been considerably worsened in the regular case (Fig. 3(a)). In the special
case of the capacity dimension we get Dy ~ 1, as in this case the scaling
exponents are determined solely by the energy distribution (see Eq. (2)).
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Fig. 3. The log-log plot of z4(!) of Eq. (14) vs the number of boxes N (equivalent
to the inverse of the box size I). z4(l) is determined by the isovector quadruple
transition probabilities in the regular (a} and chaotic (b) case for ¢ = 2,4, 6.
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Fig. 4. The same as Fig. 3 for the isoscalar transition probabilities.
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This is not a very interesting limit and has not been plotted in Fig. 3(b).
The regular case is also plotted for comparison, even though the scaling soon
degrades with increasing ¢ and choice of the scaling exponents is difficult in
this case. Hence, for ¢ > 2 the linear fits have not been plotted in Fig. 3(a).
Also, as has been expected, we get larger differences between D, and d; = 1
for greater ¢’s.

Analogous plots for the isoscalar transitions are displayed in Fig. 4. One
can observe that in this case the scaling exponents (fractal dimensions) are
slightly (about 5%) lower which is consistent with the less uniform distri-
bution of the corresponding transition probabilities shown in Fig. 2. Also,
the scaling is less evident (its range is shorter, see Fig. 4(b)) even though
the fluctuations in the subspace 2 remain the same. This may reflect the
fact that the isoscalar giant resonance is more collective! than its isovector
counterpart and, as such, it is more resistive against decay [14]. In other
words, the collectivity is expected to regularize the dynamics and the result
seems to confirm such a conjecture.

4. Summary and conclusions

In this paper we have investigated the scaling properties of nuclear gi-
ant quadrupole resonance transition probabilities in °Ca nucleus. These
quantities have been computed within the approximation which includes
the 1p—1h and 2p-2h states. The results still preserve the Wigner form of
the NNS distribution of energy levels and they are in good agreement with
the experimental data (see Figs. 1, 2 and [5, 7}).

To estimate the scaling properties we have introduced a measure defined
by (12) which combines the energy spectra and the transition probabilities.
This definition allows to make use of the concept of the generalized Renyi
exponents [10, 11]. Based on this concept it has been shown that for both,
the isovector and the isoscalar transitions, one can speak about the scaling
exponents D, of the multifractal type. This observation applies, however,
only to the case when the physics of fragmentation is governed by the chaotic
dynamics. These results can be treated as an interesting indication of what
are the further signatures of classical chaos on the quantum level.

For the isovector transitions the scaling is somewhat better and the ex-
ponents are about 5% higher. This effect may have to do with the fact that
the isoscalar resonance is more collective than its isovector counterpart. The
collectivity is a natural element regularizing the dynamics.

! The notion of the collectivity used here means strong localization of the transition
strength in energy and should not be confused for the same notion used in the context
of self-organization.
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It has been suggested [15] that dynamical systems of the type discussed
in this paper can be simulated by the binary, self-similar and conservative
random fragmentation process which yields universal behaviour indepen-
dent of the precise fragmentation mechanism [15, 16]. This gives another
justification for neglecting the higher order excitations.

We thank Marek Ploszajczak for very useful discussions. This research
was supported by KBN Grant 2 PO3B 140 10.
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