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group is constructed. The relevant Lie algebra is obtained and covariant
differential calculus on quantum plane is found.
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1. Introduction

Much attention has been paid recently to the special deformation of
Poincaré algebra (group) called x-deformed Poincaré algebra [1] (group {2]).
Many particular results were obtained which gave more deep insight into
their structure. One of the most important open problems is to find and
classify bicovariant differential *-calculi. Partial results were obtained in
Ref. [3] where some differential calculi on deformed Minkowski space were
considered using bicrossproduct technique developed in [4].

In the present paper, following the approach developed by Woronow-
icz school [5,6] we construct fourdimensional bicovariant -calculus for the
deformed E(2) group. This group differs trivially from twodimensional &-
Poincaré group so our results apply, mutatis mutandis, to this case also. In
the subsequent paper we shall consider the bicovariant differential calculi for
four dimensional case.

The paper is organized as follows. In Section 2 we describe the bico-
variant differential -calculus obtained, according to Woronowicz [5], by an
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appropriate choice of right ideal R C ker . In Section 3 the generalized Lie
algebra is found and compared with the deformed (euclidean) x-Poincaré
algebra. It is shown that Woronowicz functionals are expressible in terms
of k-Poincaré algebra; in particular, additional, fourth generator, is related
to the Casimir operator of x-Poincaré. Finally, in Section 4 the covariant
differential calculus on k-plane is constructed and compared with that given

in Ref. [3].
To conclude the Introduction let us remind the definition of deformed
E(2) group [7.8]. It is generated by four elements: a, a*, vy, v— = v}

subject to the following commutation rules:

i i
[a,v_] = E(I—— a), [a",v_] = - (a a ) .
i ) i _
[a,vy] = - (a. - (12> , [a",vy] = - (I —av)
[vp,v-]= i(v_ ~vy), @e=aa*=1. (1)
K

The coproduct, antipode and counit read, respectively:

Na=a®a, Aad*=a"Da",
Avy=a@uvy+ve o1, Nv_=a" Qv +ov. &1,

S(a) =a”, S@™)=a,

S(vy) = —a" vy, S(vo) = —av_,

cla)y=¢(a”) =1, e(v.) =¢(vy) =0. (2)

2. The bicovariant *x-calculus

We follow closely the Woronowicz school approach [5,6]. The ideal R C
ker < is chosen to be generated by the following nine elements:

(a=D{e"—-1)=2]—-(a+a"),

(a— vy, (@™ = Doy,

(a —Tv-, («* = TNv_,

5, 1 t ‘

“ I . - —_— tg
vy l{,v+' v /{U ( )

We easily check, that R is ad-invariant; also @ € R implies S(z)* €
R. Therefore, R determines bicovariant x-calculus [5]. This calculus is
fourdimensional: kers/R is spanned by @ — a¢*, vy, v—, vyv_ + (i/K)vy.
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Using standard technique we arrive at the following commutation rules
between the elements of algebra and differentials:
ade = daa, «*da=da¢*, ada” =da"e, «"da* =da"a",

veda = davy + ~I—(a —Ida, vyde™ =da™vy + i(I — a)da™,
K K

v_de = dav_ + ;I;(a.* — DNda, v_de” =da*v. + é((z* - Nda™,

i i
advy = dvya — —ada, adv. = dv_a - —a*da,
K K
i i
a"dvy =dvpa” — —ada™, a"dv. =dv_a" — —a"da”,
K K
: :
vpdvy = dvgvy — —dog, vodv_ =dv_v_ — —dv_,
K K
i i
vpdvo = —dvyv. — ;dmr +d <v+v_ + ;v+> ,
i i
v_dvy = —dv_vy — —dv- +d {vpv_ + —vy ) . (4)
K K

The left invariant forms read

wo = 3(a*da — ada™) = a*da = —ada™,

wy = a¢"duy,

w_ = adv_,

~ @

wy =d (v+v_ + ——v+> —vypdv_ —voduy . (5)
K

Relations (4)—(5) lead, via Woronowicz construction [5], to the following
external algebra :

wo Awog =10,

L:)()/\J)OZO,

wg ANwy = =Wt Awg,
wo A &g = —wg Awg,
- ~ 2
we Ny = —wy /\wi:i:juuo/\wi,
[

?
wt ANwyg = F—wo Awe,
K

@
wo Awy = —wp Aw_ + —wp A (W —wy ). (6)
K
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Also, using equations (4), (5) and (6) one easily gets

dwo = 0,
d(:)o - 0,
dwt = Fwg Aws . (7)

3. The Lie algebra of deformed E(2) group

It has been shown recently [7-9] that the deformed Lie algebra ¢(2), dual
to E(2), has the following structure:

[P, 2] =0,
[J’PI]:iP27
o Py
[J, P;] = —iksinh (?> , (8a)
J=J, Pf=P, P =P, (8b)

AP1:I®P1+P1@'I
APg_exp< P>®P2+P2®e‘(p(P)
2 2K

P,
AJ:e_% @J+.JDexp (i) . (8c)

On the other hand, Woronowicz theory [5] provides us with the general
construction of Lie algebra once bicovariant calculus is given. The resulting
Lie algebra is quadratic so it must differ from one given by equations (8).
Therefore the question arises how the both algebras are related to each other.
To address this problem we first construct the Woronowicz algebra for E(2).
To this end we introduce counterparts of left-invariant vector fields by the
formula ([5])

dz = (vo * z)wo + (No * )P + (X4 * T)wy + (X= * T)w_ , (9)

where 2 € E(2) and y * 2z = (id ® x)A(2).
Using d(dz) = 0 and equations (6), (7) and (9) we arrive at the following
algebra:

[ \0]—0
[N+, Yo] =
[X+,¥-]=
i 2
[\os X+] = 4 + - \++ ~X=X+ ~ X+ X0,

' 2
[Xos X-] = —X -——\'_——\/ X+ + =5 X-Xo- (10)
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The #-structure can be introduced as follows ( [7-9])

X (z) = x(57H27)) . (11)

It is not difficult to show that, due to the relation S(z)* = S~*(2*) valid in
our E(2) algebra, the conjugation rule (11) can be rephrased in Woronowicz
formalism as

(W X)) = —(w*X) - (12)

In our case

. i
Xo = Xo + ;(/\4 - X-),
\*:l: - _XZF 3
Xo = Xo - (13)

Now, it is straightforward to check that equations (10) and (13) are equiva-
lent to equations (8a) and (8b) provided we make the following substitutions:

P i
o=exp|{—— — P,
Xo e\p( 2K,> (J+ An 2) 3
- 1 . P
Xo=—73 (4};2 sinh? (Z) + P22) ,
P
X- — X+ = Phexp (—:2—,1;) ;

3 2 P
I+ (X++X—)-H—2X0=GXP (__;_) . (14)

2
K
Obviously, we should also compare the coalgebra structures. This is done

as follows. First, the coproduct for \’s is defined as follows [5] . Let w; =
(wo, Do, wy,w-); we define the functionals f;; by

Wiz = Z(f,‘j * T)W; . (15)

J
Then the coproduct for x; is then defined by
Axi=> i@ fii+1®xi- (16)
J

Formulae (15) and (16) allow us to calculate the coproducts for x’s. It is
then straightforward to check that Egs (14) give a coalgebra map. The
detailed calculations are rather lengthy and will be not reported here.
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4. Differential calculus on the quantum plane

Let us define the quantum plane IT as the algebra with unity generated
by two elements 24, x_ = (24)* subject to the following condition

i ;
[ty.2_]= ;(1_ —r4). (17)
If we supply IT with the coproduct, antipode and counit:

Aryg=zye @l +122g,
S(:I‘i) = -+,
glag) =0 (18)

it becomes a quantum subgroup of deformed E(2). Therefore the Woronow-

icz construction for IT considered as quantum group can be obtained by
putting @ — I. vy — 24 in all formulae above. As a result we obtain differ-

ential calculus determined by the ideal generated by 2% — f_aq_, 22— ta_.
The basic rules are as follows:
:l':;:d.l'i = d.”cizb‘i - idti .
redeg = —dogrg — id:ci +d (.7:+.7:_ + iz.,.) . (19)
o -
The invariant forms read:
24 =dzy,
2 =d (9;4_.1*__ + i.z:+) —rpdr. —2z_dey. (20)
K
The external algebra reads:
Q+ A .{2_ - —Q.. A .(2+ N
f?o/\.Q:t: —.Qi/\.éo,
PuN2,=0 a=+,-,0. (21)
Let us define the action of E(2) on IT as follows:
olly=1&1,
o) =aS ey vy 21,
ola)=a"Sa_+v_2l (22)
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extended by linearity and multiplicavity. Obviously this action is a homo-
morphism IT — E(2) @ IT and obeys

([d@e)oe = (ARid)og,
(ce@id)op = id. (23)

Let us now make the following remark. One can easily extend the
Woronowicz theory as follows (the notation below is taken from Ref. [5]).

Assume A is an algebra with unity, B — quantum group and
0: A— B® A homomorphism obeying (23). We define linear map

0:ARA-BRA®A

as follows: let

g=> w0y, o)=Yy adazt, oy =) 0oy,
: j

then

It is then easy to show that §: A% = B ® A% and is given by:

E(Z-Ti@yi) Zg )(id © D)o(y:) .

Now, we assume that A C A? is a sub-bimodule such that 3(N) C B& .
Then the differential calculus (I, d) defined by A" has the following property

Soady =0 = > e(xr)(id @ d)elyr) = 0.
% K

Therefore g (3~ n:kdyk) Sk o(ak) (id ® d)o(yr) is well-defined linear map-
ping from I' into B& I

Following the same lines as in Ref. [5] we can easily prove the following
properties of p:

(i) forae A, ye I

(z), (24)
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()
QOd: (1d®d)09a
(iii)
(id2p)os=(Aid)od (25)
(c@id)og=id (26)

In our case A = II, B = E(2), p is given by equation (22). To check that
0(N) C BN we use the results of Ref. [5] which, together with the property

(1) above imply that it is sufficient to consider elements r~* (1@ (zi - ’,f:-%:))-
Simple explicit calculations verify the property under consideration.
The action p is given by:

(dey) =a@dey .

[

(de_)=a" & da_,
0 <d (ar+m_ + iar+) —zrpda- — ."L'-(l.r+)

=13 (d (.1:+:L'- + iu_) —zpda. — .’L’_d.’L‘+) . (27)
K

[[~=¥]

Let us now describe our calculus in terms of real coordinates : 2z, =
x4+ iTe, T = 21 — twg. We get

1
[-731»!32] = ;M»
[.’171,(1.??2} =0,
]

[z2,daq] = —;dl)-z.
1

[-Tlvd:l:].] - ;}'Ql

[x2,day] = %@—I— 161931 (28)
K K

to be compared with 3d calculus on 2d deformed Minkowski space given by
Sitarz [3].

Finally, let us construct the infitesimal transformations. For any linear
functional y we define

Yo = (x©@id)og,vz=(y®id)og. (29a)

The first definition, equation (29a), coincides with the one used by Majid
and Ruegg [4], while the second one is equivalent to Sitarz proposal, equation
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(23) of Ref. [3]. Indeed, we have

Np(zdy) = (x @id)(e(2)(id @ d)o(y))
= [(xa) @id)e(x)])(id @ d)[(x(2) @ id)e(y)]

where Ay = X(1) @ X(2)-
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