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The real version of the wave equations that control the propagation
of Maxwell-Dirac fields in complex Minkowski space is presented. It is
particularly shown that the electromagnetic potential turns out to be sub-
ject to certain pluriharmonicity conditions whenever the Maxwell fields are
taken to carry positive energy. The actual derivation of a set of invariant
exactness relations for the entire system is then carried out.

PACS numbers: 11.10. Qr

1. Introduction

One of the purposes of the present paper is to build up a set of real
wave equations for complexified Maxwell-Dirac fields. A remarkable result
arising in this framework is that if the electromagnetic fields are required
at the outset to bear positive energy, then the Maxwell potential turns out
to satisfy specific pluriharmonicity relations on the forward tube CM™ of
complex Minkowski space CM. The relevant statements thus appear to be
directly associated with the corresponding holomorphicity condition. Our
paper is also aimed at carrying out explicitly the derivation of second-order
derivative relations for the fields and potential which bring out both the
invariance and the exactness of the complete system whenever the Lorentz
gauge is effectively adopted [1]. The formulation of the theory in CM shall
obviously be taken for granted from the beginning [2], and will indeed afford
the basic blocks upon which the elaboration of our work rests.

There are two somewhat strong motivations lying behind the completion
of the pertinent procedures. One is the fact that such a work would certainly
enhance some of the striking features of the inner structure of the system.
The other is essentially related to the absence of prescriptions which might
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1138 J.G. CARDOSO

enable one to establish the invariant exactness of the system in a manifestly
methodical way. We have organized the paper as follows: Section 2 recalls
the complexified field and wave equations which are of immediate interest
to us. In Section 3, we exhibit a symbolic version of the holomorphicity
requirements along with the pluriharmonicity relations. There, it will suf-
fice to work out the key potential statements by using the Lorentz gauge.
In addition, we will assume that the Dirac fields also satisfy the positive-
energy condition. Roughly speaking, the reason underlying this assumption
is that it entails the occurrence of real structures possessing a useful symme-
try. Section 4 deals with the presentation of the real wave equations. The
methods for constructing the derivative relations are given in Section 5. We
make some remarks on our procedures in Section 6. Throughout the paper,
we utilize the natural system of units wherein ¢ = h = 1 as well as the spinor
conventions and rules provided by Penrose and Rindler [1]. The set CM™
will be looked upon as the topological product RM x V™, with the factors
involved standing for the real slice of CM and the (convex) interior of the
closure of the future cone of some origin of RM, respectively. For conve-
nience, an arbitrary point 2 € CM will be defined as &* — in®, where £*
and 7 are both real vectors. The ordinary (holomorphic) partial derivative
operator 0/ 9244 on CM will be denoted by V 44/. All the spinor quantities
occurring in our statements must be regarded as complex mappings on suit-
able products between unprimed and primed SL{2, C}&SL{(2, C) fibers over
2. In particular, the individual Maxwell and Dirac fields will be written as
dap(z), 04 B (x) and w4 (), x* (¢) whilst @44 (x) will stand for the elec-
tromagnetic potential. It is evident that the symmetry of the Maxwell fields
makes it immaterial to order the indices borne by them. Whence we will
not stagger their upper and lower indices when performing any calculations
involving them.

2. Complexified equations

The Maxwell part of the complexified theory is constituted by the gauge-
invariant field equations

VB oap(2) =2nJan(z) = VG 0ap(2), (2.1)
along with the field-potential relationships

¢aB(z) = Vaadh(2), (2.2a)
eAle(.’L') poos VA(A'Spg’)(l) s (22b)
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with J 4 4/ (x) being the (divergenceless) current density of the theory, which
is effectively given by

Jaar(2) = e[t 4 (2)0a(@)+ Xa (2)var(@)]: (2.3)

In Eq. (2.3). the quantity ¢ denotes the charge of the Dirac fields and the

elements of the pair (v 4/ (.17).;‘,4 (z)) are the so-called conjugate Dirac fields
(see Ref.[2]). Adopting the Lorentz gauge A(z) = V,$%(2) = 0 allows one to
drop the symmetrization round-brackets from Egs. (2.2). Hence, this choice
turns out to be associated to the s-tracelessness relations

Az) = ¢h(x) = 841 (z) = 0, (2.4)

which really amount to the symmetry property of the electromagnetic fields.
The Dirac equations show up as the statements

DAY Y (2) = Y (). (2.5a)
Daan™ (2) = —pva(r), (2.5b)

where ;1 = m/\/2 is the normalized rest mass, and D44+ denotes the (mini-
mal coupling) covariant derivative operator of the entire theory whose defin-
ing expression is written as

DAA’ = VAA’ - ie(bAA,(;r). (2())

The wave equations which govern the propagation of photons are written
out explicitly as [2]

Ooap(e) = 47V yald ¥ (2)vg)(2)+ gy V(@) (27)

~ ~.A4
U604 g (v) = dmeV 4 4 [¢py) ()t (@)+ X (2) xBy(x)], (2.8)

or, alternatively, as
Oop(x) = dre{v A’(;II)VAr(A?i’B)(:I:) + Va4 XB) (z)]x* (@)
iel\(4 (2)Bp) 4@\ (2) = Barga(w) & ' ()p) ()]

—2p X(a (2)¢p)(2)}, (2.9)
~ ~A
004 () = Are{[V 4 4 VB () (x)+ X (2) V aaapiy (@)
~A

+iﬁ[’;(,4' (2)Pgrya(x)? (x) = acar(x) X (2)xp(2)]

= 2 ¥ (@)vey ()}, (2.10)
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with 0 = V 44 VA4, For the potential, we have the statement

Oban (z) = dme[th 4 (2)a(2)+ Xa (@) v (2)] + Vawdlz).  (2.11)

The propagation of electrons can be thought of as being controlled by the
“extended” Klein-Gordon equations

(A + m?)pu(e) = 2iedh (2)vp(z), (2.12)
(A +mH)xY (z) = —2ieb5 (z)xP (2), (2.13)

with the operator involved being expressed as
A =D Dy = O—ie[2B 44 (2)VAY + A(z)]— 2B 4 4 (2) DA (2). (2.14)

If we implement this explicit operator expression, Egs. (2.12) and (2.13) take
the simpler form

(04 m*)pa(z) = oalz), (2.15)
O+ mH)x* (z) = 24 (2), (2.16)

where the source spinors are given by

oa(z) = 2iedh (2)vp(x) + ie[20pp (x) VEE + A(2)]ya(2)
+e2Dppi(2)BPE (2)ya(2), (2.17)
and
24 (z) = —2iebf(z) B (2) + ie[2055/(x) VPP + A(2)]x* (2)

+e* P (x)PPB ()Y (2). (2.18)

A point concerning the formal simplicity of Eqgs. (2.15) and (2.16) will be
made later in Section 4 when we effectively consider the situation that in-
volves the construction of real structures for the Dirac fields.

3. Harmonicity and pluriharmonicity conditions

It shall now be assumed that the fields which enter into the former system
are all holomorphic throughout CM*. We thus have the symbolic positive-
energy requirements

Voo ee(2) =0, (3.1)

and N
Voor To(z) = 0 on CMT, (3.2)
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where Vv is the antiholomorphic partial derivative operator on CM, and
2¢e(x) (resp. To(2)) stands for either ¢p4p(z) or O4p/(2) (resp. Y 4(z) or
' (2)). Accordingly, the field set being considered can be split up into its
left-handed and right-handed parts. In effect, we have

LH = {¢ap(x), Ya(2)}, (3.3)

RH = {045/(2), x* (2)}. (3.4)

It follows that, making use of the relation

~ £ .m )
Voor= 3(Voe —i Veer), (3.5)
together with the splittings

2¢e(x) = Re24e(&,n) — 1 Im 244 (&, 1), (3.6)

and
Yeo(z) = ReT (&, n) — i Im X (&, 1), (3.7)

yields the Cauchy-Riemann equations on RM x V*

g 7

Veer Re$264(&,1) = Voo Im£244(&,7), (3.8)
£ 7

Veeor Im$2,4(8,1) = — Voo Re$204(€,7), (3.9)

along with the ones carrying 7,(£, n) in place of £2,4(&, 7). We must stress
that the spotted “subscripts” borne by the above real structures have been
introduced only to effectively denote the spinor indices which label the rele-
vant field components. Therefore, such "symbols” do not appear to play any
other role here. Thus, the harmonicity statements for the Maxwell fields,
say, are written as

(e + Oy) Re £244(€. 1)
(O +0,) Im 244 (€, 1)

Il

0, (3.10)
0, (3.11)

A A . .
where Oy =VcorV ¢, with A denoting either £ or . In carrying out
the explicit derivation of Egs. (3.10) and (3.11), it is convenient to employ
relations of the type [3]

4 7 £ i & L
VaaVp A4 Vi A Vaar=¢€ap VocrV e, (3.12)

Notice that the individual pieces carried by the left-hand side of Eq. (3.12),
which are symmetric in the indices A4’ and B’, do not vanish identically.
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Nevertheless, they turn out to cancel each other when the computation is
carried through.

When combined together with the holomorphicity condition (3.1), the
bivector relationships (2.2) yield at once a set of pluriharmonicity relations
for @4 4/ (). More explicitly, we have on CM™

Veer dap(e) =0 =Veer VA/(AQ%I)(-”C% (3-13)

VCC" HAIB/(iL’) =0 :VC'C' VA(A/@g;)(CL'). (314)

Indeed. to see what the typical real patterns of these conditions look like. it
suffices to work out either of them by taking up the Lorentz gauge. We thus
have the derivative operator

~ o ' ot 4t £ ; € 1 7 7 At

Ve Cvat = %[iéi Voo (O + O+ Vie ' vy V4 Ve vy M
. s U £ A ¢ Y 1 7 sl .

—i(=“Y Ve M Vg +eea VI g, ))} : (3.15)

since the “crossed” pieces

v 7 Af

f £ v N i
2V (¢ [ Vay’ ]-,ZV[C' (© V4 4

are the only ones which survive after the completion of the computation of

~ .t i ..
Im Ve €'Vy Y. Therefore, writing

$ppr(x) = Re®ppi(&,n) —ilmPppi (&, 1), (3.16)
yields the pluriharmonicity relations corresponding to Eq. (3.13)

Sca [ﬁ(Dg +O,) RedG (€. 7)) - % MA" Gy O Im b (€, 77)}

HY e Vi M4 VeVl M Re Byl n)

- %(C' A %4):\1' Im ®F (£.7) = 0, (3.17)
and

coa O+ 0,) 0 (€ )+ v VO $ay €I Redp0 (6 )]

HV (e & Vi) Ay Vrzc (e V”A) ANm b (€, n)

£ apr 4 o P
+ Ve M Vaar Re®f (€)= 0. (3.18)
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Of course, the patterns associated with Egs. (3.14) can be built up out
of the ones just obtained by combining a trivial primed-unprimed index-
interchange rule with an adequate replacement of the real and imaginary
parts.

4. Real wave equations

The basic procedure for decoupling Eqgs. (2.7) and (2.8) consists in split-
ting the complex D’Alembertian operator by utilizing the conjugate of the
relation (3.5). We have. in effect,

1 1€ 7 1
O =28+ 5 Vaarv 44 (4.1)

with Ag,, = U — O,. Consequently, Eq. (2.7) becomes equivalent to the
simultaneous statements

i

) & -y
AgyRepap(é,n) +2 VeV 9 Iméap(E, 1)

. 4 7 7 1
= 87[V.aa Redpy™ (€. n)+ Vana ImJTg? (€0), (4.2a)

and
4 N
AgyIm oap(€,n) =2 VeV ¢ Repap (€, n)
£ ' n 1] .
= 87[Vara ImJpy* (&, n)= Vara ReJgy™ (€.9)]. (4.2b)

It turns out that, allowing for Eqgs. (3.10) and (3.11) yields the explicit wave
equations on RM x V*

3 ] 7 '
¢ Redap(€,n) = 27[Vara Re Ty (€, )+ Vara Im Jpy* (€,0)]

= —U, Redap(&, n), {4.3a)
and
4 ' 1 7
Dg Im @AB({, 'l]) = ZW[VAI(A Im JB)A (f 77)— VA’(A Re .]B)A (f 7])]
= _Dn Im PAB (SC n)s (4317)

whence we can write down the electromagnetic statements

I

AgnReoap(€in) = 47?[%4'(_4 Re Jg) ¥ (€. )+ VLA'(A Im -]B)Al(sc-??)],
{4.4a)
and
Agy I 645(S.n) = 4x(V a0 TSy (€)= Varga Redgy™ (€]
(4.4b)
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Evidently, the decoupled structures for Eq. (2.8) can be immediately spelt
out by applying to Eqgs. (4.2) through (4.4) the index-interchange rule re-
ferred to earlier.

In what follows, it will be particularly seen that the use of Egs. (2.15)
and (2.16) does in fact simplify the form of the real wave equations for the
Dirac fields. In the case of Eq. (2.15), for instance, we have

¢ n '
(Agn + 4m?) Re g EnM+2Vece'V €% Im va(€.n) =4Reoa(&,n),
{4.5a)

and
n

£ s e
(Agn +4m?) Imva (€, 1) — 2 VooV Repa(€,m) = 4Imaa(€, 7).
(4.5D)

Setting Eqgs. (4.5) upon RM x V7 thus yields the statements

(O¢ +m*) Reva(§.m) = Reoa(€.n) = (m? — Oy) Rewa(€.7),
(4.6a)
and
(O +m?*) Im (€, n) = Imaa(E,n) = (m? — Oy) Impa(&,7) -
(4.6b)

Hence, the wave equations for the i-field, on the real product space, are
written as

(Agn +2m*) Repa(€.9) = 2Reoa(&,n), (4.7a)
(Agn + 277?,2) Imy¥a(€,n) = 2Imaa(&,n). {4.7b)

In a similar way, we obtain for the y-field
(Aen +2m?)Rexar(§,n) = 2Re T4/ (&, n), (4.8a)
(Dey+2m2) Im y ar(€,7) = 2Im S0 (€, 7). (4.8)

It is perhaps pertinent to look into the structure of the wave equations
that involve the scalar operator A. Splitting A = Re A —iIm A, and using
the unprimed expression

ioh (v)yp(z) = [Tm 6§ (&, n) Revs(€, 1) + Re o5 (&, 1) Imvp(&. )]
—i[Im ¢5 (&, n) Im¥p(E, n) — Re ¢§ (£, n) Revn(£, )], (4.9)
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we are led to the following formal statements for Eq. (2.12)

(Re A + m?) Rea (€, 1) — Im Alm 4(€, 1)

= 2e[Im ¢5 (€. ) Reys(€,n) + Re ¢4 (€, 7) Im (&, )], (4.10a)
and

(Re A + m?) Im¥4(£.7) + Im ARe v4(&, 1)

= 2¢[Im ¢ (£, 1) Im¥p(€.7) — Re 63 (€,7) Revp(€. m)]. (4.10b)
Once again, the statements corresponding to Eq. (2.13) can be readily ob-
tained from the structures (4.10) by making trivial replacements. In any

case, it seems to be worthwhile to write down the explicit pieces occurring
in the splitting of A. We thus have

-~ e 5 ’ 7] ’
Rel = {Ag; — 5[Vaa In @4 (€, 5) = Vaar Re @44 (€, )]

—e[Im &4 (€. 1) 6‘4‘4' —Red?4' (¢, ) %AA’]
—e[Re @ (€. ) RePaa (€. ) = Im P (£, 1) ImPaar (€, 7)].

(4.11)
and
- 1 [ 7 AAd e & AA' 7 AA!
ImA = -3 VaaV 77 + i[VAA' Re &7 (&, )+ Vaar Im @72 (&, n)]
' E . ! 1
+6[ Re ¢AA (5’ 77) Vaar + Im ¢AA (61 77) VAA’]
—2¢? Re ¢AA'(§, ) Im®s4 (&, n). (4.12)

5. Invariant exactness relations

At this point, the detailed calculations leading to the invariant exactness
relations for the system will be carried out. Such relations were shown before
in Ref. [1], but we will repair some mistaken numerical factors. Another
motivation for introducing these structures is the fact that they make up
the work by Cardoso [4] which deals with a null description of the classical
dynamics of the fields in RM. It will be enough to derive only the relations
for the potential and unprimed fields. The structures for the primed fields
can be constructed from the others by changing indices and substituting
kernel letters appropriately. The equations arising in the formulation of the
theory in CM will play an auxiliary role herein. They will be used so many
times that we will not refer to them explicitly upon performing the relevant
computations.
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Let us start with the first-order derivative expression for the potential
vA' $B (2} = V‘AIQSB') 1_.A'B’ .
4 Pg (z) = 4 ¥B) ($)+25 $aB(7)
+324B0% P (2) + e ape? P A(w). (5.1)

Expanding the second-order derivative in terms of its unprimed-index con-
tributions yields

v;{vB’gbg.’(l) VLVEOE (2) = deap VYA VE,8E) ()
eac VMAVE 85 () — Lepe Ve VME'DG (w). (5.2)

The kernel of the second piece occurring on the right-hand side of Eq. (5.2)
reads

VMAGE@E (2) = — 4 P08 (2) + MU VE A(2)] - VE Y (2)

= LAV A(2) + VB0V ()] - 7B I (@), (5.3)
whereas the kernel of the fourth piece gives

VA VMBG( (2) = V40P (a) - 1PV Afa). (5.4)

Notice that the sum of the second and third pieces is symmetric in the
indices B and C. We next carry out the primed-index expansion of each of
the pertinent terms. We have

"B g’ Ao B £ A'(B'—C") |
VAVE @ (2) = VI VESL (2) +1e2 BV opey (@)
1
2

The c-pieces entering explicitly into the relations (5.3)-(5.5) are already
irreducible. Essentially. this is because of the skew-symmetry of the “metric”
spinors. Hence, making use of the simple structure

ijIOBIG'(:L') — Vf44,0816'l)($) + %gA/(BrVAD/on)D,(m)
’ f A ! !
_ VgA 65" () — _37:5/1 (8 j¢ V(z), (5.6)

and fitting blocks together, we obtain
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VAVES (2) = VI VE'DL) (2) + Es BV bpey(x)
37V fome)(2) + seame BVE) Ale)
+:2‘3£5A(B€AIB/JC),( r) + 35A(BV( &) 07" (z)
—%”chc "B 19 (2 + %BCsB’C’vﬁ’A(w). (5.7)

Let us now consider the electromagnetic relation

V4 ¢pc(z) = 4¢BC)(1) ~ 2,8V 90)p(2)
[ 47
= Viiope)(x) - 3 o) (2, (5.8)

which corresponds to the unprimed-field version of Eq. (5.6). To derive the
relevant second-order derivative structure, it is convenient first to utilize the
symbolic four-unprimed-index expression

—A’ _ =A 1fa —MA' —MA'
~ABCD — —(ABCD) — _[VAB-— (MCD) + 40 = (MBD)

I

—~MA' 1
+eapEM Y msey - HeseZaM (upy

—

=- MA = _MA
+EBD=A (MC')] — 3¢cDZAB M (5.9)

with A’ being some clumped primed index. We thus have
Vi VE écp(z) =V AVB dcpy(e) — '[EABVMA’V vPepy ()

+cac vMA V(M¢BD)(~”C) +eapVM V(MCbBC)(CE)]
—YepeVE VMB opp(2) + eapVE VME dprc(2)]. (5.10)

It should be observed that the piece involving ecp in Eq. (5.9) vanishes
because it bears the s-trace of ¢4p(2). The totally symmetric piece of
Eq. (5.10) is also symmetric in the indices A’ and B’, as can be seen by in-
voking the fact that the V’s commute and performing the simple calculation

QVE:L}t V§]¢C.D>(w) =BV a VY ¢CD)( z)

VM'((AVB)¢>CD)(.77) =0. (5.11)
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Obviously, the sum carrying the overall factor —% can at this stage be for-
mally written as

MAI I

_%[QBCEAAI{‘ BI(]\{D)(«T)%‘SBDMA (]\JC)( )]

2% o ’ ’ .
= “?Vﬁ eB(cIp) (), (5.12)

while the contribution bearing the factor ——i reads

—MA'B' EACS_‘MAIB’ MA'B’

—ileaB= (mepy () + (mBp)(®) +€ap = Bc)(2)]

T ' 1 ] ’
6€A Ble ABVD’(CJB) (z) + 5ACVD’(BJIL))) (a:) +e4pVpisJE) ()]
T

since, say,

£ a4l i 1 ' ' 1 ot ) )
caBVMAVocn)(z) = §€A43[4WVEBCJ6)($) — =P O¢cp(2)]

2
27
= % B2V /D)(.z)—a BV piedBy(@)].
(5.14)

Picking up the part of Eq. (5.10) which is symmetric in A’ and B’, we then
obtain

— S () + i) (@)
W’.‘:{gg)c)(x)] ~3 oo (@) (5.15)
where we have introduced the auxiliary spinor field
Uidep(z) = caVE TE (¢) = i fiop(@). (5.16)

We have the partial computation

—g[wafzs;;<.> F R )] - SR (@) + TR @)
- SEED @) + ipE0 ()] - [GUECAD (@) + 5¥hcan(x)]
~(E¥EDac (@) + 5¥Epac )]
= —23 V2ﬁ1°5)(cJD) () - TFVEA vB)(C'Jg;)(-T) +5 W,({;fc)p)( ')

(A'B") )
= SViben)(®) - 3 VA emycdp) (@) (5.17)
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The remaining ¥-contributions of Eq. (5.15) read
T rgpl(A'B") (A'B')
_§[¢’AB(0D)($) +¥5cp)s(®)]
T rg(A'B A B’ A'B"\M
= —g[w}(;B(c)D)(m) - V}C 5D)(AJB))($) + %5ABW1(\/[(CD)) (z)]
m ™ g\ A'B")

_ (A’ B,
= gv(c ED)(AJB) (¢) - P) AB(CD)(m)’ (5.18)

where the second step involves utilizing the property

A'B"YM A'B! ~
caB¥fion () = WiEtn (@) (5.19)

Consequently, we can reexpress the overall structure (5.15) as

—(A'B’ (A" oB) | BT (A B’
:f‘lBC'l;(‘r) = VEA Vg )OCD)(’JU) - ?VEA EB)(CJD))(l’)
T (A B’ -
+§v§c, <pyatpy (t) - (5.20)

There are three ways of computing the primed skew-symmetric part of
=48 5(z). One consists in bringing together the pertinent parts of
Egs. (5.12) and (5.13), effectively using the divergencelessness of JAA (z)
in the form

' '

(z) = Yapcom™ (2) = Yappom™ (), (5.21)

'

M
YAB(CD)M'

along with the index-displacement rule

eEFO&4(2) = 2:6iFOR (%) = 2¢[E1G|OF A ()- (5.22)
Explicitly, we have

=[A'B! s A'B’ g1 'l
:Ech'z])(l') = ‘6‘54 B W apeoy™ (2) + Yacpym™ (<)

7 T B'A'
+Papsoy™ ()] - g[%B(C]D)(-%')

B'A’ B4, \ . ,nlA'BT .
+w£16’(B]D)(‘T) + '-I’,[w(B]C)(-’L) + 4lpl[9(C|A|D)(‘7’)]
T _A'B
3¢
~Wpcapm ™ (2) = ¥ppac™ (2)]

MB e g VarcIpy (2),  (5.23)

g1 ;MI
[Wapcom™ (2) + Wacepm™ () + Wappem’ (2)

A'B M\
= we® P Wapepm’ (x) = me

where the conservation law (5.21) has been particularly employed to write
the last statement. Here, the ordered-index blocks that partake of Eq. (5.22)
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are AC'B and ADB. The presence of this structure actually entails the
cancellation of the pieces carrying sp¢ and €pp.

An alternative procedure for obtaining the result expressed by Eq. (5.23)
amounts simply to picking up the primed skew part of the derivative of the
statement (5.8). We have, in effect,

VAVE ocp(e) = {VEVE écp(e) + VA VE opp(2) + V4 VE opc()]
o ap ,
- S Wa&ip(@) + ¥EBac (@), (5.24)

such that the commutativity of the V’s yvields the relations

A' B . 1 1t ,
VL? VB]@GD(J’) = EEAB [caB0¢cp(2)
+eac0dpp(2) + caplopc(2)]
w A'B!

37 Waeappr™ (@) + ¥epiacyu™ (2)]
il q1 Ag!

= §c VB giepae™ (1) + Wacsoin ! ()
FWapmeym™ (2) = Ypeapy T (2)

ELd

~Wppacr’ (2)]. (5.25)

Now, applying the rule (5.22) to Eq. (5.25) and using the same index blocks
as before leads to the equation
(A" =B’ T _A'B M’ : M 96
VE; Vg Yoop(a) = 3¢ Wapcpym™ (2) = 2@gacoym (2)], (5.26)
which is identical to (5.23). The easiest way to obtain the expression we
have been considering is to pick up from the beginning the interesting part
of the whole second-order derivative structure. We thus have the statements
=[A'B’ A'B’ M A'B’ (o
:Eigm];(-’lf) = LBV AV dep(2) = e P eaplocp(@)

g1

= "B Wupepy™ (2), (5.27)

which recover Eq. (5.23) once again. It follows that, adding together (5.20)
and (5.23) yields

"B’ (A' B’ T (A B’
VA VE éep(a) = \7{ Vi ) (z) - .—V(A 53)(6']13))(«?7)

Tode

+3 (¢ =D 4]B)( )+ 7P eap Ve By (@),

(5.28)
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whence the invariant exactness of the Maxwell part of the system can be
accomplished by choosing A(2) = 0.

Towards deriving the relations for the Dirac fields, we consider the trivial
identity

’

Dp® o (x) = D" vy () - gSBcXB (2). (5-29)

For the second-order (covariant) derivative, we have the expression

DAt DpP e (v) = DA DB Ve () + 16V B Dy aDEM vy (2)

__3_5 [»Dz\[(A D(CB )U%{{)( ) + l¢4 B’ DA{'D(CA/IIQZ?M)(Q:)}
~Leac DD BV g (2) + 164 B} D™ van ()]
—%EBC[D(A DEM (@) + LeV B Danp DMM s (2)] (5.30)

The second term of the right-hand side of Eq. (5.30) can be simplified by
using the following equation [2]

DaraDp™ ey (2) = —ied(ap(2)vey(a) . (5.31)
In effect, we have the easy computation

DapaDe™ vy (@) = DapaDpy™ vey(2) = —ied ap(2)vey(a)
1€

= ——[<DA(B( Nvey() + dpale)vey (@) + oca(x) ) ()]
= "§[3¢A( B(@) ey () + o) a)() + e (€)1 41(2)]

= —ie[gpq(x)¥eyla )+§»4(B<D()( ()] (5.32)

It is obvious that the kernels of the individual pieces of the third term can
be explicitly written as

I

DMUAD By (2) = ied4F (2)gc(x) + EDEN @), (5:33)
and
DM/D(CMII/»’M).(J’) = —L1[3Avc(2) + 2iepd (v)Par(2))]
= LBuPvc(z) - diegM (2)pur(2)].  (5.34)

The fourth term can be entirely obtained from the third by interchanging the
indices B and C', whereas the bracketed piece of the fifth term is expressed
simply by

D(ADB Lbar(2) + 1-48'2) aar DM s (2 )

7 ’ [,2 IR~ -
= 1D\ @) = e By (o). (5.35)
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Whence combining the relations (5.30)—(5.35) yields

1 ’ 1 ’ 22 gt
D4 D' vc(z) = DA DR ey (2) - 5 s (@)ve) (@ )04 P (z)

~ulseasDey? X‘B’)($)+%€BCD(‘ xB) (@)
+1eB (iele 402 (2) (@) — Sa(B(2)%c)(2)]
xp?l3eBova(z) — eaB () ¥y (2)]} - (5.36)

In Eq. (5.36), the kernel of the y2-contribution equals —¢ 4p%¢c(z) while the
piece involving outer products between the unprimed fields is given by

capdt) (@) bar(z) — ap(2)¥ey(2) = dpo(@)¥alz) — 2048 (2)¥0) (@ )
(:

To compute the p-term systematically, we define the quantity

! ' 1 A B .
whft(z) = eprDa XP) (@ )—w[(EF]G)( ), (5.38)

and apply the device (5.22) to the (ordered) indices EFG. This procedure

facilitates keeping track of the relevant indices when the calculations are
actually carried out. We thus have

A'B A'B'
—3WiBe)(2) - ‘lg'«’BCA(l
Bioa(z

= —3wiiBa(@) +whln(©) - jwsda (@)
= 1w Bs (@) - ch ](m)]+3wéBBA( z)
= Lwd () +widi (@) = i bp (@) = Zec(aDp)*XB ) (w).

(5.39)

Therefore, substituting these latter results into Eq. (5.36) leads to the in-
variant exactness statements for the Dirac part.

6. Concluding remarks and outlook

The procedures giving rise to the real wave equations on RM X VT al-
low one to build up formal integral solutions for the system of fields, which
carry Green’s functions satisfying prescribed boundary conditions. In this
connection, it might seem natural to make use of the method given by Car-
doso [3] whereby explicit solutions to complexified wave equations may be
constructed upon CM™. It becomes clear that the usefulness of the symme-
try involving the operators U and O,,, which was brought about particularly
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by the procedure yielding Eqs. (4.7), appears to be related to the applica-
bility of the above-referred method, and thence also to the formal simplicity
of the statements (2.15) and (2.16).

We believe that the implementation of this programme can perhaps lead
to a physical interpretation of the solutions of the wave equations recalled
in Section 2. It is expected that the pertinent prescriptions will provide
structures of special interest if the massless limiting case is taken into con-
sideration. These situations will probably be entertained elsewhere.

I wish to acknowledge Dr. Asghar Qadir for his invaluable suggestions.
My warmest thanks go to the Brazilian agency CNPq for supporting part
of this work financially.
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