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BUNCHING PARAMETERS AND MULTIPLICITY
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We apply the bunching-parameter analysis to the hadron-hadron col-
lisions within the FRITIOF model. The monofractal structure of inter-
mittency is observed, in contrast to the multifractal structure in the ete~
annihilation. The unusual enhancement of the second-order bunching pa-
rameter is a direct manifestation of the enhanced void probability.

PACS numbers: 13.85. -t, 13.90. +1

1. Introduction

The analogy between photon-counting in quantum optics and multiple
production in high-energy physics has been known for quite a long time
[1]. Recently the stochastic method of continuous measurement in quantum
optics has been proposed to analyze the fractal structure of multiplicity
distributions in high energy collisions[2, 3]. The intermittent structure of
the multiplicity distribution is studied in terms of the bunching parameters
1, defined as
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where P(n) is the multiplicity distribution. Conventionally the fractal be-
havior in multiparticle production has a straightforward manifestation in
the study of the normalized factorial moments F, defined as[4]
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These two sets of parameters, 7, and Fy, carry the same information of the
multiplicity distribution P(n) and can be translated into each other. Given
the set {£,} with all orders ¢, the multiplicity distribution P(n) can be
obtained with one more parameter, e.g., the average multiplicity (n). Sim-
ilarly, given the set {7,} with all orders ¢, P(n) can also be determined up
to one free parameter, e.g., the ratio P(1)/P(0). With one more parame-
ter. the multiplicity distribution P(n) can be reconstructed from either the
complete set {F,} or {n,}. For the incomplete sets, these two types of pa-
rameters have different applications. The normalized factorial moments I
provide the information for the global shape of the multiplicity distribution
with more weighting put on the large multiplicity tail. The bunching pa-
rameters 7, probe into the local structure around the multiplicity n = ¢—1.
These two approaches can be taken as complementary to each other.

In Ref. [3], the comparison of the normalized-factorial-moment and
bunching-parameter analysis is studied in the JETSET 7.4 PS model [3].
The behavior of bunching parameters 7, for hadrons produced in e*e™ an-
nihilation at 91.2 GeV is analyzed, and the azimuthal angle ¢ is used as a
phase-space variable. As the size of the phase space decreases, all orders of
bunching parameters increase with a power-like behavior. The multifractal
structure of intermittency is concluded as an inherent feature of fluctuations
in the azimuthal angle.

In this paper, we apply the bunching-parameter analysis to the hadron-
hadron collisions. The fluctuations of the final pions produced in the pp
collisions are studied with the FRITIOF 7.02 model taken as the event gen-
erator [6]. Instead of the azimuthal angle ¢, the pseudorapidity 7 is used
as the phase-space variable. The monofractal structure of intermittency
is observed. in contrast to the multifractal structure in the ete™ annihi-
lation. The unusual enhancement of the second-order bunching parameter
12 is a direct manifestation of the enhanced void probability. which is the
characteristic of rapidity-gap events.

In Section 2, we review some of the fractal structures revealed by the
bunching-parameters and normalized-factorial-moment analysis. In Section
3. we present the numerical results from the Monte Carlo simulations. In
Section 4, we give the conclusion.

2. Multifractal and monofractal

For the distribution within a very small phase space, the average multi-
plicity is small and only the first few orders of the parameter are important,
no matter the parameter-set is 7,, F,, or P(g). In such case, it had been
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shown that the following approximate relations are valid, [2]

q

Fy~ H (nm)q*—l*m ) (3)
m=2
or equivalently
F, F,_
Ny ~ _2__‘1_22_ (4)
(Fq—~1)

We notice that the above relations are exact for the binomial distributions,
both for positive and negative binomial distributions. In general, the mul-
tiplicity distributions in high-energy collisions can be described quite well
by the negative binomial distributions defined as [7]

mm:fﬁ%%ga(%gn@+%gﬂ% , (5)

where the two free parameters are (n) and k. For this distribution, we have

it i ;
Fq=H(1+E> : (6)
i=1
1
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It is straightforward to check that Eqgs. (3) and (4) become exact for the
above expressions.

The fractal structure of intermittency is understood in the language of
normalized-factorial-moments F, as the power-law divergence of the mo-
ments when the phase-space & decreases, i.e.,

Fy(8) o 67% (8)

where ¢, are the intermittency indices and can be related to the anomalous
dimensions of the system. In the bunching-parameter analysis, with Eq. (4),
the same fractal structure is revealed as

nq(8) o §—Pa—bq—2+2dq1 (9)

There are two kinds of fractal structures and we would like to determine
which one belongs the high-energy multiproduction. The first kind is the
multifractal structure characterized by the intermittency indices

d
=5 qlg—1) (10)
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This feature occurs in the random cascade model of the high-energy fluctu-
ation phenomenology [4]. The corresponding structure in bunching parame-
ters 7, is characterized by the same power-law behavior for all the bunching

parameters
1g(0) ox §7% forq>2 . (11)

The second kind is the monofractal structure characterized by the inter-
mittency indices

bo=ds (g—1) . (12)

This feature is expected for the fluctuations in the second-order phase tran-
sition [8]. The corresponding behaviors of the bunching parameters are

72(8) o 67%  and ng(8) ~ const. forq>2 . (13)

For high energy collisions, the fluctuations become more violent as the
phase space decreases. The normalized factorial moments are observed to
increase with the decreasing phase space. To determine the fractal structure
of the system, one has to interpolate the slope of the power-like behavior
of the normalized factorial moments to obtain the intermittency indices. In
the above two cases, multifractal in Eq. (10) and monofractal in Eq. (12), all
orders of Fj, increase with the decreasing phase space. Though the increasing
rates are different, it is not easy to discern the difference. On the contrary,
the bunching-parameter analysis provides a clear way to discern one from
the other. If all orders of 7, show the power-law behaviors, it is multifractal.
If only the second-order 7y diverges, it is monofractal.

In the case of the widely used negative binomial distributions, Eq. (5),
the fractal structure is controlled by the parameter k. A power-like behavior
of Fy is expected when the parameter k decreases with decreasing phase
space. As only the second order 7, diverges accordingly, see Eq. (7), it is the
monofractal structure. However, the observation of monofractal structure
will not guarantee the validity of negative binomial distributions, while the
observation of multifractal structure would certainly imply that the negative
binomial distributions are not valid.

3. Fluctuations in the FRITIOF 7.02 model

The general features of hadronic final-state fluctuations can be studied
by simulating high-energy collisions according to Monte Carlo models. In
this section, we apply the bunching-parameter analysis to the final charged
pions produced in pp collisions using the FRITIOF 7.02 model [6]. It is
expected that the behavior of the higher-order bunching parameters can
provide a discriminator to distinguish the monofractal structure from the
multifractal one.



Bunching Parameters and Multiplicity Fluctuations . . . 1211

6-

[ ] =2
[ ]
i % o g=3
5 . -
. o q=4
*

A =5
-
bt
<
£
o
bl
I
-9
oo
£
=
Q
=
=
[a+]

1 10 100

M
Fig. 1. Bunching parameter 7, as a function of the number of bins M, in the
pseudorapidity range |n| < 5. The solid lines are the predictions of the negative
binomial distributions.

We generate 50,000 minimum biased events at CERN SppS energy /s =
540 GeV with the default parameters. The charged pions produced from the
non-single-diffractive events are recorded within the pseudorapidity range
—5 < n < 5. The multiplicity distributions P(n) for various sizes of pseudo-
rapidity intervals are obtained. The corresponding bunching parameters 7,
and normalized factorial moments F, are calculated with Eqgs (1) and (2),
respectively. In the following, we study and compare the M,-dependences
of n, and F, for symmetrical bins || < Min We note that in contrast to
the usual data analysis, the average over M,-bins is not performed. Fig. 1
shows the values of 7, as a function of M, for the first few ranks ¢, where
M, is the number of partitions of the pseudorapidity range —5 < n < 5.
Except 7, all the higher-order 7, do not show M, -dependence, which is a
clear indication for the underlying monofractal structure. As the number of
partitions increases, the second-order 75 increases significantly to the value
over 5 when the pseudorapidity range decreases from An = 10 down to
An = 3. With further decreasing of the phase space the effect of antibunch-
ing begins to set in and 7, decreases and then saturates at a value less than
2.

To further probe into this unusual enhancement of bunching and anti-
bunching of the second order 7, we estimate the behavior of 7, predicted by
the negative binomial distributions. The results are also shown in the same
figure. Note that the two free parameters of the negative binomial distribu-
tions are simply fixed by the observed average multiplicity and dispersion,
not the best-fit of the data. For the higher-orders 7, the predictions are
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Fig. 2. Normalized factorial moments Fy as a function of the number of bins A, in
the pseudorapidity range |n| < 5. The solid lines are the predictions of the negative
binomial distributions.

consistent with the data. In the case of 13, the negative binomial distri-
butions predict a slow and monotonous increasing. The enhancement of
1, observed in the data is totally missed by the prediction of the negative
binomial distributions.

To compare with the normalized-factorial-moment analysis, we present
in Fig. 2 the behavior of F, as a function of M,. The normalized factorial
moments tend to increase with the decreasing of phase space. Again, the
predictions from the negative binomial distributions are also shown in the
same figure. The predictions overestimate the fluctuations in the higher
moments; note that we do not perform the best fit of the data. However,
the features observed in the data can be fully reproduced in the predictions
of the negative binomial distributions.

In Fig. 3 we present the My-dependence of 7, in the azimuthal angle ¢,
where My is the number of partitions of the full azimuthal angle -7 < ¢ <
7. It is observed that all the bunching parameters are independent of the
size of the phase space, i.e., no fractal structure in the transverse direction.
Similar results are also observed in the My-dependence of F;. We note that
these observations only imply that there is no My-dependence when 7, and
F, are evaluated within the full pseudorapidity range Inl < 5, ie., M,=1.
For the restricted pseudorapidity intervals, M, # 1, the My-dependence is
observed in both 7, and Fj.

To present the fractal structure in both longitudinal and transverse di-
rections simultaneously, we show in Fig. 4 the (M,,, My)-dependence of the
second order 7, where M, and My are the numbers of partitions in longitu-
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Fig. 3. Bunching parameter 7, as a function of the number of bins M, in the
azimuthal angle ¢. The solid lines are the predictions of the negative binomial
distributions. Notice that the scale is different from that of Fig. 1.

dinal and transverse directions, respectively. The total number of partitions
in the phase space is then (M, x M,;). The dependences on both M, and
My are clear observed. In the special cases of M,, = 1 and M,, >> 1, the
values of 7, become independent of M,. Also in the case of My >> 1, the
values of 7, become independent of M,. The effect of ny-enhancement in
the longitudinal direction decreases as the partitions in transverse direction
increases. All the higher-orders 5, do not show significant dependence on
the partitions in both directions.

Fig. 4. Bunching parameter 72 as a function of the number of bins (M,, My) in
both longitudinal and transverse directions.
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Fig. 5. Normalized factorial moment F» as a function of the number of bins
(M,, Ms) in both longitudinal and transverse directions. Notice that the scale
1s different. from that of Fig. 4.

In comparison, we present in Fig. 5 the behavior of F; as a function
of (M,, My). The dependences on both M, and M, are also observed.
but not as strong as in the case of 7,. All the higher-orders F, show a
similar dependence on the partitions in both directions. We note that the
observed power-like behavior has a much wider range of partitions, in this
case (M, x My).

4. Conclusion

The phenomena of intermittent dynamical fluctuations can be described
in terms of bunching parameters, complementary to the normalized factorial
moments. One of the important properties of the bunching parameters is
that the analysis is not affected by the experimental statistical bias which
arises in the normalized factorial moments when the bin size becomes very
small. Moreover, there is a trivial tendency in the behavior of the normalized
factorial moments that the value of the moment monotonously increases
with its order. On the contrary, the bunching parameters can have any
kind of behavior when taken as a function of its order.

The multiplicity fluctuations of final hadrons produced in the hadron—
hadron collisions have been studied by means of the bunching parameters.
The fractal behavior has been identified with the monofractal structure,
in contrast to the multifractal structure observed in the ete™ annihila-
tion. In the study of one dimensional partitions, M, or M,, the fractal
structure results from the multiplicity fluctuations in the longitudinal di-
rection, i.€., the pseudorapidity 1. There is no fractal structure in the
transverse direction, i.e., the azimuthal angle ¢. In the study of two dimen-
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sional partitions, both M, and M,, the observed fractal structure is the
combined results from both directions.

In studying the bin-size dependence of parameters 5, and Fy, in contrast
to the conventional bin-averaged parameters, we focus on the symmetrical
bins centered at (7, ¢) = (0,0), i.e., |n| < —A—‘:}—n and |¢| < ﬁ’;' In the two
dimensional partitions, the values of 7, reveal a strong dependence on the
ways of partitions, see Fig. 4. With fixed number of partitions (M, x My), 1,
has different. values for different choices of M,, and My. Such variations can
be related to the different production mechanism within different kinematic
regions. The observed features will be smeared when one studies the bin-
averaged parameters.

Besides the fractal structure, the bunching-parameter analysis also re-
veals the unusual enhancement of the second order 7,, which has not been
revealed in the normalized-factorial-moment analysis at all. This unusual
behavior of 1, is outside the validity of Eqs (3) and (4), where 1, ~ £}
is expected. This enhancement of 7 can be traced to the corresponding
behavior of the void probability P(0). As the bunching parameters probe
into the local structure of multiplicity distribution, the enhancement of the
void probability has a direct manifestation on 7y, which is proportional to
P(0). As to the normalized factorial moments, on the contrary, the varia-
tion of P(0) only causes a small change in the normalization factor, which
is not so easy to discern. With recent interest in the rapidity-gap events,
the bunching-parameter analysis is expected to provide a much more direct
manifestation than the conventional normalized-factorial-moment analysis.
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