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A two-body wave equation is derived, corresponding to the hypothesis
(discussed already in the past) that v and d current quarks are relativistic
bound states of a spin-1/2 preon existing in two weak flavors and three col-
ors, and a spin-0 preon with no weak flavor nor color, held together by a new
strong but Abelian, vectorlike gauge force. Some nonconventional (though
somewhat nostalgic) consequences of this strong Abelian binding within
composite quarks are pointed out. Among them are: new tiny magnetic-
type moments of quarks (and nucleons) and new isomeric nucleon states
possibly excitable at some high energies. The latter may arise through a
rearrangement mechanism for quark preons inside nucleons. In the inter-
action ¢ § — ¢ ¢ of preon-composite quarks, beside the color forces, there
act additional exchange forces corresponding to diagrams analogical to the
so called dual diagrams for the interaction 7 — 77 of quark-composite
pions.

PACS numbers: 12.60. Rc, 14.65. Bt, 14.20. Dh

1. Introduction

The idea of composite quarks and/or leptons returns from time to time
to the physicists’ attention, in spite of its rather poor predictive power, at
any rate, in comparison with the Standard Model and even its supersymmet-
ric and grand-unification extensions. The reason, not only of psychological
nature, is that such an idea corresponds to the main avenue of historical
developments in particle physics, from its composite molecular and atomic
levels to its composite nuclear and hadronic levels. Therefore, some recent
high-energy signals of possible excess of jet rate (at large transverse mo-
menta) over predictions of the conventional perturbative QCD [1], although
tenuous (and probably premature), are welcome by a considerable part of
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the physical community. However, it was already argued that this apparent
deviation, if real, might still have another (than compositness), more stan-
dard origin: an additional interaction of elementary quarks, mediated by a
new, very heavy, neutral vector boson [2], practically not interacting with
leptons (leptophobic). A possibility of new. not leptophobic, vector bosons
exists a priort as well.

In Ref. [3] we constructed and discussed at some preliminary level a
relativistic two-body wave equation corresponding to the particular hypoth-
esis [4, 5, 6] that u and d current quarks are, in fact, very tight relativistic
bound states of two (more elementary) very heavy constituents: one with
spin 1/2 and one with spin 0. More precisely, in Ref [3] we assumed that
these constituents are: (i) a spin-1/2 preon @ with charge (2/3,-1/3) in
units e and baryon number 1/3, existing in two weak flavors U, D and three
colors, and (i7) a spin-0 preon S with charge 0 and no weak flavor nor color.
They are held together by a new, strong Abelian gauge force (called “ultra-
electromagnetic" force), mediated by some massless neutral vector bosons
(“ultraphotons" I'). On the level of quantum mechanics, this interaction
is approximately (in fact, rather qualitatively) described by a new, strong
Coulomb-type potential —al")/r with o) = (W2 (an analogue of —a/r
with @ = e?). This is the static, one-ultraphoton-exchange attraction be-
tween both preons, Q and S, supposed to carry opposite “ultracharges” e
and —e("), respectively (a priori, (") > 0 or < 0). Thus, u and d quarks are
the bound states!

u=(US) , d=(DS) . (1)
Then, their charge (in units €) and weak hypercharge follow correctly as
Q=IM4v/2=(2/3.-1/3) and ¥ =21V + B = 1/3 or (4/3, -2/3)
with I{") = (£1/2) or 0 and I{™ = 0 or (41/2), depending on their left (L)
or right (R) chirality, respectively.

We assumed that the new vectorlike gauge group U(1), generated by
the ultracharge, describes a new local symmetry in the physical world, and
that it commutes with the Standard Model group SU(3)xSU(2)xU(1) [7].
This acts, of course, in the standard way on the color-triplet “ultraquarks"
U, D, forming one left weak isodoublet and two right weak isosinglets with
baryon number 1/3, as well as on the color-singlet “ultrascalar" S being a
weak isosinglet with weak hypercharge 0. In contrast to v, the ultrapho-
ton I, being the gauge boson of the new U(1) group, is a total scalar of

! Another option (not discussed in this paper; cf. Ref. [4,5,6]) is that the ultracharged
constituents of u and d quarks are: (i) a spin-1,/2 preon L with charge (1, 0) in units
e and lepton number —1, existing in two weak flavors Lt L% and (1) a spin—0 preon
S with charge —1/3 in units e, baryon number 1/3 and lepton number 1, appearing in
three colors. They may be called “ultraleptons' and “ultraleptoquarks", respectively.
In this option u = (L §) and d = (L° 5).
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the Standard Model group. It is also a strong isoscalar. This forbids the
ultraelectromagnetic decays X% — AI' and 7% — 2. in contrast to the elec-
tromagnetically allowed familiar processes ¥¥ — Ay and 7% — 2y 2. At the
end of Section 4 we shall briefly comment on the possibility of breaking our
U(1) local symmetry, leading to a massive ultraphoton.

Let us stress that the preon-composed quarks ¢ = (Q S) and antiquarks
G = (Q S) can interact strongly ¢ § — ¢ not only chromodynamically i.c.,
through the exchange of gluons coupled to their colored constituents € and
@, but also through the exchange of QQ and S S pairs emerging from the
lines of their () and S constituents [in analogy to the so called dual diagrams
mm — w7 for quark-composed pions 7 = (¢¢)]. In the case of very heavy
preons and also their bound states (Q @) and (S S) [in contrast to the light
(Q S); cf. Section 3], this exchange leads to an effective contact interaction
for composite quarks ¢ = (Q S). Obviously, such an interaction should be
significant only at energies high enough (if we were lucky, this might happen
already in the experiment of Ref. [1]).

In general, according to our hypothesis, the up and down quarks of three
generations ought to be composed of ultraquarks U7, D of three correspond-
ing generations and the ultrascalar S.

It should be emphasized that this particular preon model, containing
the color ultraquarks U, D (appearing within composite color quarks) and
ordinary ultracharge-neutral leptons [ = v, [~ (assumed to be elementary),
is chiral-anomaly free in each of three fermion generations if considered-in
the Standard Model sector. As a whole, however, our model is not chiral-
anomaly free because of the nonvanishing triangle anomalies W*¥W~1I" and
ZZT', unless the contributions from three generations of ultraquarks @; =
(Ui, D;) (i = 1,2,3) cancel. This happens, if the ultracharges of @Q; are
QMel with 7, Q™ = 0 (Q™ # 0).

To set an example suppose that there are two broken horizontal-SU(3)-
group triplets of preons, one (Q;.@Q2.Q3) of u tlaqualks and one
(S1, S, S3) of antiultrascalars, both with ultlacharﬂes 1,-1/2, —-1/2) in
units e(®) [or 2/3 —1/3 —1/3) in units (3/2)e(¥)]. It meanstlatQ (w)e(u) =
diag {Q(l , Q2u ,Q3 ) (u) — [(1/2)A3 + (1/2v3)As](3/2)¢ (“) in terms of
horizontal Gell-Mann matrices. Then, the composite quarks of three gen-
erations may be given, after breaking the horizontal SU(3) group, as the

2 A similar argument cannot forbid the decays n -+ 2I" and ' — 2[, since both n
and 7' contain some flavor-SU(3)-singlet parts beside their flavor-SU(3)-octet parts.
Here, the smalluess of quark magnetic-type moments, responsible for a tiny coupling
of ultracharge-neutral composite quarks to the ultraphoton I, must be invoked [cf.
Eq. {40)].
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bound states q; = (Q151), @2 = (Q252). ¢z = (Q353) with masses
my, < mg, K Mgy, (and very high preon masses mg, ~ mg,, mg, ~ ms,,
meg, =~ ms,; c¢f. Section 3 as to the smallness of my, caused by the re-
quirements of mg, ~ mg, and al®) ~ 2). Perhaps, the ultracharge-neutral
color-triplet bound states (Q2 53) and (@3 S2) may also exist (if, really, only
[" contributes here to Coulombic potentials), but with very high masses of
the order of preon masses (when mg, and mg, are significantly different from
ms, and mg,, respectively). Beside ordinary hadrons, there should also ex-
ist extra ultracharge-neutral colorless bound states (Q; Q2 @3), (Q: Q;) and
(S7.55.53), (S; S;) with baryon number 1, 0 and 0, 0, respectively. Their spin
would be 1/2or 3/2,0 or 1 and 0, 0, their charge in units ¢ — (1, 0) or (2,
1,0, -1). (1,0, =1) or 0 and 0,0. In the first category there should appear
also the bound states (Q; Q2 Q2), (Q1 Q3Q3), (Q2Q3) and, perhaps, in the

second category — (S; S2.52), (57 53.53), (52 53) (if only I' contributes here
to Coulombic potentials).All these extra ultracharge-neutral colorless bound
states would be expected to get very high masses of the order of preon masses
and to be highly unstable in ultraelectromagnetic and color interactions.

In this context. notice that the Cabibbo-Kobayashi-Maskawa mixing of
composite quarks d . s, b requires (at the phenomenological level) the appro-
priate mixing of preon pairs Dy S;, D3 S2, D3 .S3. This may suggest the ex-
istence of broken horizontal-SU(3)-group couplings ¢™Q;v*(1/2)AY Q;Vy

and —g(h)gifi 5:‘ (1/2)A£i5j\/:j". Here, A\, (a = 1,....8) are (horizontal)
Gell-Mann matrices and V! denote for a # 3, 8 massive ultracharged vector
fields [with ultracharges +1 in units (3/2)e("], while the ultracharge-neutral
vector fields Kl? and fo form two independent linear combinations, one defi-
nitely massless and one likely to be also massless (¢f. Footnote® in Section 5),
the former describing the ultraphoton I'. Tt is so, if ¢‘* = (v/3/2)e(*) and
the massless ultraphoton I' is given by AL,“’) = (V3V2 + V2)/2. Then.
the second combination (—=V?2 + \/—3_§“8) /2 describes a new horizontal ultra-
charge-neutral vector boson. This is coupled to a new diagonal horizontal
charge. [—(1/2v3)As + (1/2)As)(3/2)e'™) = diag (0, 1, —1)(v/3/2)e™), like
I is coupled to the ultracharge Q¥e(*) (so it is not active for the first preon
generation). Of course, in contrast to ultraquarks and ultrascalars, leptons
of three generations (being ultracharge-neutral and elementary) do not inter-
act with the horizontal vector bosons presented by V7. It should be kept in
mind that the transition amplitude for ¢; — ¢; (j # 7) is diminished by the
factor 1/mi,, where my is the mass of the heavy vector boson V* (a # 3, 8)
exchanged between the ultraquark and ultrascalar, while the amplitude for
q; = q; I (j > i) is damped additionally by the average preon distance (r) of
the order O(1/2mpreon). because ultracharged very heavy preons are bound
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very tightly within composite quarks (and their virtual excited states acting
effectively). Similarly, the amplitude for ¢; — ¢;v (j > ¢) is also damped
additionally by O(1/2mpeon) (in this case, it contains y/a < Va9, and,
moreover, only ultraquarks, as charged, contribute to the v emission).

In consequence of the Abelian character of ultraelectromagnetic force, the
ultracharged preons U/, D and .S would not be confined for ever within the
ultracharge-neutral quarks [5], though their binding should be rather strong.
The stronger this binding, the better description for hadronic phenomena (at
energies not too high) would be provided by the effective QCD operating
with composite quarks coupled effectively to ordinary gluons ¢ (assumed
here to be elementary like all other gauge bosons: v, W*, Z, I' and,
possibly, horizontal vector bosons other than I').

In fact, at energies high enough, the ultracharge-neutral quarks could be
split within highly excited hadronic states into ultracharged preons U/, D
and S. If the energy is sufficient, this splitting might cause the “ultraion-
ization" of hadrons into some ultracharged (though always colorless) debris,
possibly accompanied (if decelerated) by ultraphotons I" forming then “ul-
trabremsstrahlung". In particular, the colliding nucleons

p=[US)(US) (DS)] , n=[US)(DS) (DS)] , (2)

where U, D (and S) are ultraquarks (and an ultrascalar) of the first gener-
ation, might lead, for example, to the following ultraionization processes:

p+p—p+[U US) (DS))+S (3)

and S )
p+p—=p+[U(US)(DS)]+S . (4)

In a similar way, the colliding pions

=t = [(US) (DS)],

== S (US) 05 - (D) (D))
r = [(DS) (U] . (5)

might result, for example, in the following ultraionization reactions:
p+at = p+[U(DS)]+S (6)

and

p+r” —=p+[(DS)U]+S . (7)
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Perhaps, much below their ultraionization energies but still at some high
energies, colliding nucleons, due to a tunnelling mechanism for quark preons,
might be excited to their rearranged isomeric states

pP=[(UUD)SSS], n"=[(UDD)SSS]. (8)

In“these new, hypothetic nucleonic states a triple-ultracharged colorless core
(Q Q Q) would be surrounded by three colorless ultrascalars S bound through
the “ultraelectric" attraction of this core. Of course, the wave function of
the colorless bound state (Q Q Q) of three color-triplet fermions () should
include (in the ground state) a fully symmetric spin-1/2Xisospin-1/2 part,
analogical to that of the nucleon (naturally, the excitation of this part to
a fully svmmetric spin-3/2xisospin-3/2 part, analoguous to that of the A
nucleon isobar, would occur frequently).

Thus. it might happen at some high energies that, for instance, pp — pp”
orp p*andpp — pp orp porp p~aswellas pr® = p~andpr™ — n™. Of
course, p~ and n”™ could be excited also in lepton-nucleon and photon-nucleon
scattering. Since they would be highly unstable in ultraelectromagnetic and
color interactions. in some cases they might play the role of broad heavy
resonances. A priort, the excitation of individual quarks ¢ = (QS5) might be
also taken into account [c.f., however. the comment after Eq. (29)].

Similarly, due to a tunnelling mechanism, colliding pions might excite at
some high energies their rearranged isomeric states

= (UD)+(S9),
= ST - (D] +(59)
7 = (DU) + (5 8) (9)

rt=

which here would be split into pairs of simpler spin-0 particles. still nltra-
charge-neutral and colorless. but likely to be unstable with strong decay
rates. In fact, by ultraelectromagnetic and, or color interactions (5 5) — 21
(and/or hadrons) and (U D) — =% I" (and/or hadrons), if the masses are
sufficient.

The Abelian nature of ultraelectromagnetic force has also another. in
principle observable consequence that the ultracharge-neutral. preon-composite
quarks (and so. the quark-composite nucleons too) should display nonzero
internal “ultramagnetic" moments [4], much like the charge-neutral, quark-
composite neutron displays a nonzero internal magnetic moment. Then, the
ultracharge-neutral nucleons should reveal an additional interaction (with
each other and with ultraphotons) caused by their ultramagnetic moments.

While the ultramagnetic moments of spin-1,2 preons U, D have the

same Dirac-type value ;Lﬁ,‘i.lon = 6(")/'2771])”30" (if U, D are assumed to
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have the same e{*) and mreon), the ultramagnetic moments of ultracharge-

neutral u and d quarks are both equal to /Lﬁlu)wk = eff /2"\’[quark- Here,
{u)

Myuark ~ Muycleon/3 stands for the constituent quark mass and e g has to
be calculated from the wave equation for composite quarks (cf. Section 4).
Such a calculation shows that the ultramagnetic moments of proton and
neutron are both equal to

uf::l)cleon = p‘gu)ark - - Ngl"t)aon (10)

when a(® = ¢W2 5 2 Thus. when al¥ — 2,
(~e£'flr)) ce() Mauark : Mpreon <K 1. (11)

Hence, the proton magnetic moment pu, =~ e/'ZZVIquark ~ 3e/2Mpycleon 18
expected to be much larger in its magnitude han the proton uitramagnetic

moment that is equal to ufm)deon = eeﬁ /Zzwamk ~ 3elt off /2 Muucleon- 1t is so.
because from Eq. (11)

2 .
“‘f:z)deonl “Hp = lefzuﬁ)l tE— \/; (M quark : Mpreon) K 1 (12)

when o(") — 2, although y/a"/a — 16.6 > 1. For instance, if mpreon =
O(1 TeV) to O(10 TeV), what gives the leasonable quark size 1/mpreon =
0O(1071% cm) to O(10717 cm), one gets ];L |: 1, =O(1072) to O(107%)
when a(%) — 2.

In the next Section we will present an improved derivation of the relativis-
tic two-body wave equation in order to describe more precisely composite
quarks corresponding to our particular preon model.

nucleon

2. Composite-quark wave equation

Consider a system of one spin-1/2 particle and one spin-0 particle which,
if isolated from each other, are described by the Dirac equation and the
Klein—-Gordon equation respectively. As was shown some vears ago (cf. the
second Ref. [8]). such a system can be described (in the stationary case) by
the following set of first-order wave equations:

{E-v—a [ - edim)] - 3mi} o7, @) = mao®(71,7) -
(72— e2A(72)] 671, 72) = mad(71.72) .

{E-V=a-[5 - ad(7)] - Bmi} &(.72)

= [ - @A(R)] - 671, 72) = mao(7, 7) | (13)
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where @ and 3 are the familiar Dirac matrices. This set corresponds to the
Klein—-Gordon sector of the more extended, reducible set of wave equations
for a system of one Dirac particle and one Duffin-Kemmer—-Petiau particle
(the remaining part is the Proca sector, where the bosonic partner of Dirac
particle corresponds to the Proca particle).

In the five-component wave equation (13) there are taken into account an
external Abelian gauge field (A4,) = (A%, —A) (say, ultraelectromagnetic or
electromagnetic) as well as a total (internal and external) vector-like poten-
tial V (71, 73) including among others the “ultraelectric" attraction —a(® /|7 —
7| (™) = e(W)2) and the term eq A%(7) + €2 A%(7%3). Of course, all five wave-
function components ¢, ¢, qg are here Dirac bispinors.

Eliminating from the set (13) four wave-function components ¢, é we
get the second-order wave equation for ¢:

({-v =[5 - )] - o}
- [ - e2dl)] = ) ot ) = 0. (14

This will be our basic two-body wave equation. In some situations, the case
of m; = my (and e; = —e3) may be referred to as the (ideal) case of a
supersymmetric particle-antiparticle pair (cf. the first Ref. [8]).

After an algebraic manipulation, Eq. (14) can be equivalently rewritten
in the form

o[- o e . 3.
( E-V-2{a[p-eAli)] + B} - - 2 5 Bi)
1 _ L2
+—E—_l7 { [])1 - 6114("“1)] + m?
- = 12 9 1 I,
- [Pz - 62/4(7‘2)] - mz} \/—E;_:V) P(r1,72) =0, (15)

—

where B(7}) = rotiA(7) (i = 1,2) and
Y, 7e) = VE -V o(r, ) /d37°1 Projp(m, ) =1, (16)

the normalization condition being valid for bound states, both with respect
to the internal and the external potential.

Further, introduce to Eq. (15) the total momentum and the momentum
transfer of two partons

—y

P=pi+p , =3P —p2) , (17)
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as well as their canonically conjugate coordinates:

R-;{r;—{-lz) s 7—“‘-—-‘7?1—7“'2 . (lx)

Obviously, only in the case of equal preon masses m; = my = m. the
coordinate K describes the centre-of-mass position and the momentum p
refers to the relative momentum (although P and 7 are always the centre-
of-mass momentum and relative coordinate, respectively). In the case of a
composite quark confined within a hadron, it is convenient to include the
confining interaction through the substitution m; — m; + S(;) (i = 1,2),
where S(7%) = M, /2 or oo inside or outside the hadron, respectively, while
M, denotes the constituent quark mass (in the case of a nucleon, My ~ 3M,
is the nucleon mass). Then. Eq. (15) transits into the following form valid
for our composite quark inside the confining hadron:

(E -V-a |P-ed(R) - edR)] - M,

€ - 3=
[2])— €1 ( )_*_(24(72)] - 32my — E__lva-B(m)
+_1__ (B = e A(7y) — 2 A()]
I A o AL !
. [2]) — e  A(ry) + tzA(’?)] \/—E;j_T
TM,)? M,)?
+ (1r11+ g;___§7nz+ 0) }‘II)(FLFZ):O . (19)

—

Note that in the case of a homogeneous external magnetic-type field B,
where 4( = (1/2)( BXT 5 (i =1,2). we can write in Eq. (19)

A £ eA(R) = et e)(Bx R+ MerFe)d(Bx7) . (20)

Thus, in the case of €; = —e; there is no magnetic-type external contribution
to P and also no magnetic-type internal contribution to p.

Now, due to the weakness of all external interactions of our composite
quark inside the confining hadron (in comparison with the internal inter-
actions of preons within the quark), we can replace approximately £ — V
in the denominators in Eq. (19) by M, — V" where VI*(7) denotes the
internal potential dominating the total potential V (1, 73), while for u and
d quarks the internal energy eigenvalues E'™ (giving in ground states the

quark current masses) are much smaller than their constituent masses M.
The eigenvalues E'™ correspond to the situation, when in Eq. (19) we put
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A(F) =0 (1=1,2), V(F,7) = V() , S(7)=0 (i=1,2) and P = 0:

. . 2 _ 52 .
DL V2t 2(@‘.])‘+ 57711) + H wln(m =0. (21)

This is the relativistic wave equation for internal motion of preons within our
composite quark. If m; = my = m, Eq. (21) becomes the Dirac equation.
If my # ma (but [my — mg| € my +my), the last term in Eq. (21) (with E'?
replaced there by E},’;sz or even neglected versus V™ (#) ):may be treated
as a perturbation, and then in the lowest order

Ein — Ein + 5Ein

my=my
with
5Ein — "’(7731 _ 7712)<¢in](m‘1 + n_&?)(Ewin . V’in)-—lid’in>m!:m2 .

We will assume that m; = my = m or, at least, m; ~ my. Obviously, this
is an ad hoc assumption. Note that, in contrast to the bispinor ultraquarks
U. D, a nonzero mass for the (scalar or pseudoscalar) ultrascalar S is, in
principle, allowed even before standard SU(2)xU(1) symmetry breaking.
However, the bilinear Higgs mechanism may be the origin of ultrascalar
mass. Then, the assumption m; ~ m, may be not unnatural.

It is interesting to note that the hamiltonian resulting now from Eq. (19)
implies the following velocity operators:

Z, 1 - — 1 — 1= Al 1
= — {R’ H] =0 - = [2])— e,A(‘rl) + e2A( 2)] T
12 A/Iq _ Vm AIQ - Vm
(22)
and
1. 1 [L } . 1 5 1
SFE =< |37, H| =d - ——=——=|P - 1 A(7]) — e2A(7})| ———,
2 112 /]wq_vin{ ],/MQ—V‘“
(23)

due to specific coupling of the external and internal motion in the last term
in Eq. (19) (notice that in Eq. (23), and also later on, V() can be freely
commuted with P). From Egs. (22) and (23) we obtain the particle velocity
operators

Mo = RE7/2 = G£EF2M,=V™) V2 [ = e12A(F 2)| (M, - V™)~V

where (M, — Vin)=l s of the order O(1/2m) (if m; = my = m) and 2m >
M, > m,. Thus, making use of Eq. (22), we can rewrite now the wave
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equation {19) in the form:

{E -V - é . []3 - 6114‘(7?1) - 62/?(772)] - /3]\/[(1

- oo T/ o € ~ O
— . [2[) — 6144(7'1) + E‘EA(TQ)} — /327721 - E‘;I—WHU . B(?‘]}
; A 79V2 _ (. M /92
L mit Mq/ﬁ ‘(mz + M, /2) } b(F1. ) =0 (24)
g — ¥

with B as given in Eq. (22). We can see that the Dirac bispinor degrees
of freedom, connected with the parton 1, are involved both in the external
and internal motion as it is defined by the coordinate R and 7, respectively.
That makes the verv concept of these motions physically unclear, in spite
of their independent coordinates B and 7, even in the case of nonrelativistic
external approximation (if only the external motion can be distinguished
from rest). However, we will undertake the task of clarifying this concept in
Eq. (26).

Consistently with the relative weakness of all external interactions of
our composite quark, let us assume that the quark centre-of-mass motion

inside the confining hadron is nonrelativistic in the sense that [13—61./{(7_“1)—

~ 2 - - ~
ezA(f'z)] is small enough in comparison with A/I;‘" (and P—e; A(7)) — ez A(T7)
is roughly equal to Mqﬁ). More precisely, we begin with putting

—

G- [B - e A7) — e2A(R)] + M,

- —

= {[ﬁ —e1 A(F) — 62.4(772)]2 - G- [ell‘:);(?—"l) + €2é(ﬁz)] + ./\1{]2}1/2

‘ 1 5] Al YRk
~ A/[q + Z—j\-[(—l [P - €1A(71) - 62A(7 2)]

1 5/ = 5= .
~2Mq0‘ [613(71) +sz(’2)} ; (25)

where the first step ought to be understood in the formal sense of Dirac
square root, while the second is the familiar nonrelativistic expansion. Then,

we consider the remaining part of the term —R - [13 — e1 A(Fy) — 62‘4‘(7_"2)}
in Eq. (24) that is
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.
2

(M, = Vi“)“.% [Qﬁ_ "1/_“(7—"1) + f‘zﬁ(ﬁz)} (/Wq - Vi")
[P~ e A(7) = e2 A()]

-1
+ 63/12(7_-'1) — 6542(7"2)} (A[q _ va) 3

in the Coulomb gauge. where div;A(7;) = 0 (i = 1,2). Thus, in the case
of homogeneous external magnetic-type field B, when A(r;) = (1/2)(B x
;) {1t = 1,2}, this is equal to

(3t Vi) [2P = 5 (e = ex) (B x P rxp)

= N

+ (e1+ €3) (ﬁ X 20+ =F X 13)] B+ 0(32)} (A/L, — Vi")~§

v

N

Assume now that V(7. 73) = VX(R) + V'(r) with R = |R| and r = |f].
In such a case, our two-body problem considered in the external nonrelativis-
tic approximation can be solved through the separable ansatz E = E“*+ E in
and ¢(17.73) = v(R)¥™(7) with the Dirac bispinor index ascribed to
¢ (7) [this is the first-order perturbative solution with respect to external-
internal kinematic coupling where (M, — Vi")~! and r are of the order
O(1/2m): as to the negligible second-order corrections cf. the discussion
of the internal-energy spectrum (29)]. In fact, external expectation values
of the vectors R and P linearly coupled with &, 7 and p vanish due to
parity conservation. what leads to an internal wave equation for ¥'*(). in-
dependent of integrals involving %**(K) and ¥**(R). Therefore, the last
expression above may be effectively abridged to

—

“ter—ea) (M= V") (Rx Pixp) B

Thus, in the external nonrelativistic approximation, taking into account
this abridged term as well as Eq. (25). we can reduce effectively our wave
equation (24) to the following form valid in the case of homogeneous external
magnetic-type field:
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1
2M,

{E — M, — V(R) — VI(r) [132 — (e +e2)B - (R x 13)]

3 1 1y
+ e;:}t{j?&.B—c'i- {2]7—5(61+€2)§<BXF)} - 32m
1 L1 S s -
_m{€10+§(€1*62)<1€xp+7XP)}.B

(my 4+ M, /2)? — (mg + M,/2)?
M, — Vin(r)

}w(é, 7 =0. (26)

Here, the kinetic-energy terms are also effectively abridged.
Evidently, the Hamiltonian resulting from Eq. (26) implies that in the
external nonrelativistic approximation

—

R :]\Jq‘l [ﬁ— %(61*{"62) (EX E)] and %7'7:& ,
where we neglected the terms
Ler—ea) (My — V)" (B x B) and L(es—ea) (M, - Vi)™ (B x 1) .

respectively, which are of the order O(1/2m). Hence, 7'71,2 = M !

[P — (1/2)(e1 + e) (B x R)] + &. We can see that in the nonrelativistic ap-
proximation for the external (i.e., centre-of-mass) motion the Dirac bispinor
degrees of freedom — connected in fact with the preon 1 — are ascribed to
the internal (i.e., relative) motion within our composite quark.

In the case of our particular preon model for composite quarks we have
Vin(r) = —al¥/r (ultraelectrostatic attraction between Q and S preons),
and for v and d quarks we put (as our first guess) m; = my = m (equal
preon masses). If the composite quarks move in the external ultramagnetic
field E(“), we have in addition e; = —es = (" at ALU) (opposite preon
ultracharges). Then, the wave equation (26) takes the form:

1 52
2 M,

[E — M, —V™(R) - V"(r) -

o)

—@ 20— PB2m - ———
62— p2m ]\an—V“‘(r)

(5+ﬁxﬁ+f"xﬁ) BB, =0.
(27)

This is our wave equation for a u or d composite quark, moving slowly enough
inside a confining hadron (e.g.. a proton or neutron). This quark moves in
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the (mean) external central potential V**(R) produced within the hadron as

a whole, and also in the external homogeneous ultramagnetic field B("). The
latter is possibly created by a polarized nuclear surroundings. when nucleon
ultramagnetic moments are polarized therein [4].

3. Composite-quark internal structure

In the case of our particular model, the relativistic wave equation (21)
for internal motion of preons within a u or d composite quark becomes

, (u) .
[E'" n “r —92(@-F+ ﬁm)} Y =0, (28)
leading readily to the Sommerfeld-type energy spectrum:
w2\
R o u ¢
E™=2m |1+ s Y=V +1/2)2 = (aW/2)2 ) (29
<n,+7>] 7= VU+1/2) - (@22, (29)

where n, = 0,1,2,...and j = 1/2,3/2,5/2,.... We can see that for the
ground state (n, = 0, j = 1/2) we get the internal energy eigenvalue
Ei" = 2my, with y9 = /1 — (@(®)/2)2, thus 9 — 0 and E® — 0 when
o — 2. Here, /" = 2 is the critical value of a{") giving the Klein-
paradox behaviour of the wave function () at » — 0. However, a choice
of value o) growing to 2 may be not unreasonable as, after all, the current
masses m, of u and d quarks, identified here naturally with E§', are small,
in contrast to their constituent mass M, ~ My/3. Note from Eq. (29)
that all excited states correspond to internal energy eigenvalues E'™ of the
order O(2m). This is an additional factor that makes small all second-
order perturbative corrections (to the ground state) from external-internal
kinematic coupling.
In the convenient representation of Dirac matrices, where

. ( 0 G\ . _(1p O . (& 0
a_<-"75P 0 )’ﬂ_(O -113)’0_(0 5P> (30)

with &p and 1p denoting four Pauli matrices, the ground—state wave func-
tion corresponding to m; = +1/2 has the form

2v0+1 1/2
('Zm 1-73) (1+ o)

re~lexp(—my/1 —~2r
2T (270 + 1) p( 7o)

o () =
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Yoo(7)
0

| =90/ +10) Yiel® | - (31)
~JE1 = 70)/(1+70) Y ()

Here, (1i"|4i") = 1. From Eq. (31) it follows that

. . alw)
(Wi B8y = 50 =320,

. . 1 INCICN |
Wi o) = 520+ 1) "
il : 1 a2 1
(GBI PR = 30-90) 7737 5,
. . l a{“)_;.z 1
injez 2 (Y o L (e e 39
(Yo [ (7 x @) ]y 3m(270 +1) — Im (32)
and
. ) 1 2’)/0+ 1 a(u)__;Q 1
iny ., |..in _ s _
<¢0]’|¢0> - 2m 2 — -Zm’
-
ing 1 in ing 0\ 1-%
WEITIE) = —(lgale) = mT——
@RITIE) = 0= W)
‘ 1 _ 1 7 2%0+1 axp(—
Oy e — [te 2]
M, + o) /r 2m I'(2y0 + 1) ) (M, /2m)z +2(1 — v3)

Meg2m 1 270—*— 1 w1

—_— " — (33)
with x = 2my/1 — 2 r.

4m 1 — 2 4m
Since E™ = 2m7yg, where 7o = 1/1 — (a{¥)/2)2, the current masses of u
0 7 8

and d quarks might be given as

m, =2my/1 —aW2/4 | my=2my/1 —aW2/4. (34)

However, in reality there is a nonzero mass difference my — m, > 0, that
in our model must be caused by the electromagnetic differences between U
and D preons (involved in u and d quarks).In the case of equal preon masses
m, = mg = m,(= m), one may try to describe phenomenologically quark
masses by the ansatz

My = ‘Zm\/l — () +da,)2 /4, my = Qm\/l — (W) + bag)?/4, (35)
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where the effective coupling constants o) + §a,, and o) + day are to
be determined. Then, using the popular, experimentally suggested figures
m, = 4 MeV and my = 7 MeV and putting reasonably m = (1 to 10) TeV,
one getfs

ol 460, =2 -4 <M:IV>2 =2-4x (107" to 107M)  (36)
and
oW 4 day =2 - ? (M)i\/y =2-123x (107" to 107 .  (37)
Hence

. 33 (MeV
ooy = —

2
: ) =83x (10712 to 107 > 0. (38)

m

Note here a gentle balance between very large m and very small square roots
appearing in Eq. (35).

It is not surprising, of course, that our preon binding by means of
Coulombic ultraelectrostatic potential and/or our guess of equal preon
masses my = my are too simple to reproduce quantitatively the current
quark masses m, and mg. Nevertheless, from the above discussion of m,,
and my we can probably draw the conclusion that the ultraelectromagnetic
coupling constant %) is almost, as large as 2.

To try an improved ansatz, put for preon masses m, # m (= m) # m,
and (m, —mg): (m, —m.) = e} : e}, =4, and then use for quark masses
the perturbed formulae (34):

Ny, =2my/1 — aW2/4 4+ dm,, , my=2my/1 —aW2)/44 dmy .

Since the first-order perturbative calculation with m;, — m, and m, — m;
treated as small quantities (¢f. Eq. (21) and two next formulae) gives

o, = = [(mg = my) /L2150 + D) [ doa®* exp(~2)/ [z + 2(1 = 13)]
0

= - [(2’70 +1)/ ('2 — 273)] (m, —m.) = —-0.5(m, —m,)

and similarly dmy = —0.5(m, — m,), we may roughly estimate m, —m, ~
2(m,—my) = 6 MeV, when m,, = 7 MeV and my = 4 MeV. Thus, m, —m  ~
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8 MeV, m, —m, ~ 2 Mev and m; = m. Then, with m, =4 MeV, mg =7
MeV and m =(1 to 10) TeV one gets

MeV 2
oW~ 16( © ) =2-16x (10“]2 to 10“14) ,

m

and

Yo =4/1 - aW /4~4TVI€2\ 4 X (10~6 to 10_7> )

4. Calculating ultramagnetic moments

From Eq. (27) we can read off the (internal) ultramagnetic moments for
u and d composite quarks as both equal to®

() C(")

I - ~ N
Nq B qu + a/(u)/r (U + X m . (3.))

Hence, making use of the quark internal wave function (31). we obtain

(= 8 |98) _ e 02 atge V2 |

() = W0 lHez Vo) e 0t 2 etz V2 (40)
(W& oz |vgh) 4m 1 — v§ 2m

if e > 0 or < 0, respectively. Here, 2m > M, ~ My/3. Note from Eq.

(40) that ,ug”) = —;L};‘f.z,on(yo/2+ D/(1-93 — —,ugf-()gon when oW — 2 (here,

p,,‘,‘;l(m = ¢(W/2m).

In an analogical way, making use of Eq. (26), we can find the (internal)
magnetic moments for v and d composite qua‘rks moving in the external
homogeneous magnetic field B. In this case, e; = (2/3, —1/3)e and e2 = 0
at 4,. Then. with ¢, = ¢y + €, = (2/3, —1/3)e, we read off that?

: Loy irxa L e e — e 7x)
Ly =€, | =——0O - o) — ————— {€ —{€1 — € | .
Ho=C\ong,” Ty M, + atw/r [0 Tl T
(41)
Hence, we calculate

% Notice that the formulae (39) and (41) are valid also in the case of the alternative
option g = (L S) mentioned in Footnote ! (strictly speaking, for u composite quark
there appears then a'*! + a/3 ~ o™ in place of o™, since e; = (1, 0) and e2 =
~1/3).
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_ (Bl e | eg 1 3er(1+70) — e2(l— o)

Hq = <¢ylnl0' |¢m> - 2M,  4m T 8m 1 — 73
T 2M, 3’ 2M, "’

since 2m > M, ~ My /3 and /o =e.

The composite-quark ultramagnetic moments {40) and magnetic mo-
ments (42) imply the following ultramagnetic and magnetic moments for
the proton p = (v u d) or neutron n = (ud d):

(w) _ 2 (w) () 1, (u)
po =3 (2 — 1y 3Hd u) ol 22 :F\/ﬁ

(v) _ 2 (o, (1) _ () 1,.(u) “‘”'(?) 2 (43)
Hn =% Iy My + 3Hu

(if e®) > 0 or < 0, respectively) and

2 1
= — (24, — —fd ~ .
A L) oMy
2 1 2 /a . Ja
n=— 2 - Hu Ty X — 5 =2 44
Hn =3 (2Ha = pa) + 34 3200, = “2aniy (44)

We can see that the nucleon magnetic moments as evaluated in Eq.
(44) are consistent with their experimental values us*? = 2.8\/a/2mp or
p? = —1.9y/a/2my. On the other hand, from Eqgs. (43) and (44) it
follows that

|,u Ny '1232 \/g (M, : m) =0(10"%) to O(107%), (45)

if the preon mass m = O(1 TeV) to O(10 TeV), what gives the reasonable
quark size 1/m = O(107%cm) to O(10~!"cm). Then,

(3¢ ~ (3¢)? (1722 12) “2320(107%) 10 0(107%)  (46)

(where p:( v — ;Léu) = e(u)/Z M, ~ de(u)/zﬁ/lw both for N = p, n). From the
experimental viewpoint [4], these values do not seem to be hopelessly small.

In particular, the classic radiofrequency experiments, determining H,
rotational levels in external magnetic field [9], measured hfs effects in H,
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molecules fully consistent with the ordinary magnetic dipole-dipole inter-
actions of two protons involved. This sets an upper limit on the hypothetical
ultramagnetic dipole-dipole interaction between two protons:

(u)2

¢ - o - o =g poed ~
- B PG ) - -5l (47)

where due to Eq. (43) ,up i~ 36((3;)/2]\’1;\,' — Fv/2/2m when o) — 2. From
an analysis in Ref. [10] it follows that the experiments of Ref. [9] leave the
margin

<">2< =)u, <3x 107 MeV (48)

with

! - -8 \73
(), = (0.74 x 107%m) . (49)

Hence, (36(" ) < 2% 1077, what is not inconsistent with our rough estima-
tion (46).

It should be emphasized, however, that in our argument the ultraphoton
rest mass is zero exactly (z.e., the ultraphoton is the gauge boson of the new
unbroken U(1) local symmetry generated by ultracharge). The experimental

upper limit (36 “)) < O(10™7) might increase drastically if the ultraphoton

developed a nonnegligible rest mass mp (in a process of breaking our U(1)
local symmetry), what would introduce to Eq. (47) the Yukawa exponent
exp(—mpr). For instance, in the case of m; = (5 to 25) keV one would get

2
the upper limit (3¢{y’)” < 0.0004 to 1 (cf. Ref. [10]).

5. Final remarks

Eventually, we would like to point out that the model of composite quarks
considered in this paper exploits (in a particular way) the notion of “real
compositeness i.e., the compositness in physical space. Such a notion ought
to be sharply contrasted with the notion of (pure) algebraic compositness
that was applied recently to the problem of three lepton and quark gen-
erations [11], and gave, jointly with a new idea of the intrinsic exclusion
principle, a consistent explanation of this puzzling phenomenon.

In the present (alternative) paper, the puzzle of existing more than one
fermion generation is correlated rather with intergenerational cancellation of
chiral anomalies in the spatially composite quark model, but then the num-
ber of generations is not (uniquely) determined to be three. Of course, the
ultracharge formula Q*) = (3/2)[(1/2)As+(1/2v/3) As] mentioned in Section
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1 as an example, might suggest a broken horizontal-SU(3)-group structure
for three generations of ultraquarks, ultrascalars and leptons (though the Jast
have zero ultracharge, they are needed to cancel the Standard Model chiral
anomalies in each of three fermion generations). In this case, such a broken
horizontal SU(3) group should play some role in developing masses of these
three generations for ultraquarks and ultrascalars (either in a spontaneous®
or explicit way).

I am indebted to Stawomir Wycech for a helpful remark.

Note added in proof: quite recently ZEUS and H1 collaborations at HERA
have announced an excess of observed neutral-current and charged-current
candidate events at very high Q? and large z in e p collisions over Standard
Model expectations (preprints of February 15 and February 13. 1997).
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