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The contribution of highly asymmetric ¢—§ configurations to the onium-
onium scattering at high energy is discussed in the framework of Mueller’s
QCD dipole picture. A modification of Mueller’s formula is proposed and
applied to deep inelastic lepton-onium scattering.
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1. Onium-onium scattering is a convenient theoretical laboratory for
studies of perturbative QCD amplitudes in the limit of very high energy
[1, 2]. In this context, an onium is treated as a pair of heavy quark and
antiquark with a certain distribution of the light-cone momentum fraction z
and their relative transverse distance r. To consider a specific example, the
formula for the total onium-onium cross-section can be expressed as [3]

Otot = /dzrdz@(z,r;ﬁli) /d%"dz’@'(%,r’: M)o(r,z;r'2";Y), (1)

where @ is the probability distribution for finding a configuration (r, z) inside
an onium and M is the mass of the quark and antiquark forming the onium.
o is the total cross-section for scattering of two ¢ — ¢ pairs and Y is the
total available phase space volume in light-cone momentum fraction of the
cascading gluons:

Y=y+y, (2)

B 2B\, 2F"
yJ%(gJ,%J%(M>- (3)

E and E’ are energies of the colliding onia, so that we obtain Y = log(s/M?)
[3], where s = 4F'E" is the total c.m. energy of the collision squared.
(1239)

where
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The formula for o was derived by several authors [1, 3, 4]. We give here
its integral representation which is convenient for our future argument!:

dry S\
rozir'? V) =2 2t | 2 AM)Y <_> h 4
a(r,z; 72y Y) = 2ralrr Y = (7). (4)
where 4
h(y) = 5
M= 35—y (5)

and A(y) = 9;1\(7) with

X(y) = 20(1) — (L) — (1 = 1. (6)

« is the strong coupling constant and N = 3 is the number of colours.

In absence of high energy beams of onia, to confront these theoretical
results with experiment it is necessary to reformulate them in such a way
that they are applicable to scattering of virtual photons and hadrons. The
Eq. (1) shows that this is —in principle— possible if one knows the distribution
of constituents inside a virtual photon and,or a hadron 2.

When a virtual photon dissociates into a ¢ — ¢ pair, the distribution of

the constituents is given by [6, 7]

N ooy e?
oTl(r, Q) = — fI'VT’L(r, 2;Q), (7)
s
where ) )
WT(r,zQ) = 32 + (1 - 2)?)Q*K{(Qr) (8)
for transverse photons and
WE(r, 2:Q) = 22(1 — 2)Q*K&(Qr) (9)

for longitudinal photons (masses of quarks are neglected, Q? = Q%z(1 - 2)).
Once these formulae are introduced into (1) one obtains explicit expressions
for total cross-section of a virtual photon.

When we want to implement this program, however, we have to decide
how to interpret the Eq. (3). Indeed, for a virtual photon the mass M

! A detailed derivation can be found e.g. in [5].

2 For a nucleon target one needs also to assume that its structure can be reasonably ap-
proximated by a colour triplet-antitriplet system. To avoid discussion of this problem,
in the present note we consider only photon-onium scattering.
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of the constituent has a very different meaning than for the onium. The
phenomenologically successful proposal of [9-11]

, AE'E' 1
vy = () =tos ) .
J

was never given a sound basis and may even seem not to be a natural choice
because it introduces an asymmetry between the two colliding systems?.

At this point it should be emphasized that determination of a unique
formula for y and y’ goes beyond the possibilities of the leading logarithm
approximation (on which the dipole approach is based) and therefore this
problem cannot be resolved by solely formal arguments?. This does not
mean, however, that we cannot bring intuitive physical picture helping (a)
to understand the meaning of a given choice and (b) to take into account
specific physical effects.

In the present paper we discuss this problem in a little more detail.
In particular, we propose another formula which can replace (3) and (10).
We believe that it takes better into account the longitudinal momentum
distribution of quarks in the colliding onia.

Before going into derivation, let me quote the final result: The formula
(4) for the total cross-section of two ¢ — ¢ pairs remains valid provided the
definition of y in (3) is changed into

+. 2
y = log (P_I)_;ﬂ_) , (11)

Tint

where pt is the light-cone momentum of the incident onium, z is the smaller
of light-cone momentum fractions of the onium constituents:

ze=2 |if :S%; ze=1—2z |if 22%. (12)

and Ty = Tine(r, 1) is a characteristic time of the collision. The constant ¢ is
arbitrary. It remains undetermined because the leading logarithm character
of the calculation implies that it is always allowed to change y by an arbitrary
additive constant. ;

Analogous formulae are valid for y’, so that we obtain

o ol 12,02
Y = y+y’ = Iog (M) , (13)

2
Tint

® To illustrate this point, consider e.g. photon-photon scattering where a more sym-
metric formula Y = log(4EE’'/QQ') was recently suggested [12, 13].

* 1 would like to thank R. Peschanski for very illuminating correspondence concerning
this problem.
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where s = ptpt’ is the total c.m. energy of the collision squared. Tin has
the dimension of length and is in general a symmetric function of r and r'.
As remarked above, this function cannot be exactly determined by formal
arguments. Intuitively, 7y, is the time needed for the exchanged gluons to
travel the necessary distance in the transverse space. Therefore we find it
natural to take

Tint = CONSt 7, (14)

where 75, is the larger of r and r’. We show below that (14) gives the result
which is rather close to (10) (apart from corrections related to z-dependence).
Thus our result may be considered as a justification and generalization of
the asymmetric, phenomenologically successful, choice (10).

We also find that to obtain a formula which is close to the one advocated
in [12, 13] for photon-photon scattering, one has to take

72 = const rr’. (15)

We were unable, however, to construct an intuitive argument which would
justify this choice.
In the next section we give arguments in favour of Eqgs. (13) and (14).

2. To discuss Y we have to go back to the derivation of (4) given in
[2, 4]. It starts from the formula

!

a(r.z;r'2 V) = g}i—x,&(x, 2Nd%s n(r 2,y s)n(r', &',y b — 8)d*b, (16)
where n(r, 2.y, s) is the density of the QCD dipoles of transverse size z at
the transverse distance s from the center of the ¢ — § system of transverse
size r. o(z,2') is (energy independent) cross-section for scattering of two
dipoles. The dipole density inside the high-energy ¢ — ¢ system arises from
a cascade process whose length is denoted by y. It can be shown that the
result depends only on the sum y+ 3y’ =Y.

At this point we would like to observe that in the argument leading
to Eq. (3) and(4) it was implicitly assumed [2, 4] that the z-distribution
of quarks in an “onium” is peaked around 2z = —%, so that the rapidity of
the colliding onia (given by (3)) are not substantially different from that
of their constituents. A possible finite difference is neglected in comparison
to the large incident rapidity (one should remember that the Eq. (4) is an
asymptotic formula for very high energies). In this case the length y of
the cascade does not depend on z at all. Although this may be not a bad
approximation for an onium made of two heavy quarks, it seems doubtful
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for distributions (8) and (9) of quarks and antiquarks in the virtual photon.
Particularly for transverse photons the contributions from the region z = 0,
t.e. highly asymmetric pairs, is very important. It is therefore necessary to
consider this region in more detail.

A closer look at the derivation [2] shows that the length of the cascade

is given by
y=log (). (7)
20
where z¢ is given by (12) and zg is the minimal light-cone momentum frac-
tion of the emitted gluon
2
Zp = F . (18)
The factor z« in Eq. (17) explicitly shows that y is connected with the
energy of the slower of the two onium constituents rather than with the
total energy of the incident ¢ — ¢ system. The reason is that in the leading
logarithm approximation all emitted gluons (of which the dipoles are formed)
are required to carry a negligible fraction of the energy of both quark and
antiquark [2].

Now, the crucial point is that pf cannot be arbitrary small for the
Eq. (16) to be valid. Indeed, as is clearly seen from its form, Eq. (16)
was derived under the assumption that the fluctuations of the onium wave
function which are effective in the collision have long enough life time so that
one can separate the gluons in the wave function (which form the dipoles in
one onium) from the gluons which are exchanged between the dipoles from
the colliding onia (and which are thus responsible for interaction) [4]. In
short, the minimal life time of the fluctuation Tmin = Tmin(r, pP¢) must be
larger than the characteristic time of the interaction 74 = Tine(7, 7). This
sets the limit

__ P :
Tmin = 2“5—5 = Tine(r,77) s (19)
where
< ky > const (20)

is the average transverse momentum of the emitted gluons. Thus we have

const Ting(r, ')
pt = —-—?';— X (21)
Using (17),(18) and (21) we finally obtain
i const zezL ptpt rir'?
Y:y+y’:log( < (22)
T2 (r, 1)
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[t remains to determine Tin(r, 7). This we do by observing that ~on the
average— the time necessary for exchange of two gluons between the projectile
and target cannot be smaller than the transverse size of larger of the two
colliding objects. The simplest way to implement this idea is to write®

Tint»(rs T'/) = const rs. (23)

In the next section we show that, when inserted into the formulae (1) and
(16) for the total cross-section, Egs. (22) and (23) imply —for large Q*- the
prescription which is close to the one suggested in [9-11]. We also show that
this result is substantially different from that used in [12, 13] for photon-
photon cross-section.

3. The formulae (13), (14) differ from the hitherto employed prescription
[9-11] given by (10). To compare explicitly the practical consequences of
the new and old approach we apply (13) and (14) to calculation of the total
cross-section of a highly virtual photon scattered off a ¢ — ¢ system at fixed
configuration v’ = ry and z’ = z5. We obtain

o B Q% v, 201 8) = /d2?‘d3¢T'L(2,T‘;Q)O’(?‘,Z;?‘g. 20:Y)
20'2]Vaem€2 d .
= 2 [ (esio) 20 T (. Q)R().
™ 2m1
(24)

where®
1/2 ~
HTL(v, Q)=2 / dzzA(”’)/d27‘7'2_”+2A(7)W'T’1’(r,z;Q). {(25)
0 0

The integrals over d?r can be done with the help of the identity [8]

Jusio= (S22 e

This gives

#h = (3) ST A, 27)

® Another interesting possibility is 72, = r? + 2. It leads , however, to more compli-
cated algebra and therefore we do not consider it here.
® We assume that ro is large enough to justify the integration over dr? from 0 to co.
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where
Ty _ 4= L,y oL rs@-1y)
ST) = =58 SHM = e (25)
1/2 )
27 = [ dale? + (1= 2= 2 (20)
’ 1/2 ,
Zh(y) = 4 / dzz%(l - 3)12‘", (30)
and ’
v =y —2A(7). (31)

Introducing this into (24) we finally obtain
o1 (Q% o, 20; 5)

3 dy [ 2 \*77 [deszo A T,L;\ 7T.L
= 2o Naemefr(,/ 5 (Qro) ( 07 ) h(v)S*5(v)Z" (7).
(32)

Eq. (32) can be transformed into formula for the “structure function” of
the target ¢ — g pair by means of the identity

Q2

AT,

= o - (33)

This gives
F "M (z,Q% ro, 20)
2a°Ne% [ d ro\" [ 4cz Al
=T [ () (B2)  haisTmZ M) 34

72 2mi \ 2 TBj

where zg; = Q?%/s.
Eq. (34) is to be compared with the analogous formula derived from (1)
and (4) using (10) which reads

F2T(;L|d)(w, Q% ro, 20)

2N e2 . Alv)
- a27r2€f / 271 (Q 0) (;{3_) h('V)GT'L(ﬂ, (35)
j
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where

T,y _ CH+ME=7) o, .
TIe2-Hra+3)

L —
N STy NI

(36)

A quick look on these two formulae shows that the differences between them
are not dramatic. In the saddle point approximation they simply reduce to a
change in normalization. It seems therefore likely that our new formula (34)
should also describe correctly the data (with somewhat different parameters
than those given by [10]).

At this point it is also interesting to compare this result with the one fol-
lowing from the symmetric choice (15) in which case a calculation analogous
to the one presented above gives

T.L
Fz (-?J,QZJ 70, 20)

2 N o2 " ~ . At) .
= _2047T]Z‘3f /i’— (QT(’) (CQrOZO) h(v)STE)ZTE(y) (3T)

27 2 TBj
with
oT __4_7— N . oL _I—‘4(2_’Y2—) 38
()_2—’)’_5()’5(7)"F(4—’)’_)’ ( )
1/2
Z7(y) = /dz[z2+(1—z)zls%“‘"‘(l—z)’?’l. (39)
01/2
ZE(y) = 4/(1::15‘(1—:)12:, (40)
0
and
T+ = v+ A(y). (41)

Comparing (34) and (37) we notice a substantial difference in the depen-
dence on Q: one finds in (37) an extra factor Q4(" ~ Q4P. It thus seems
unlikely that these two formulae can be reconciled by adequate adjustment
of the parameters. A detailed analysis goes beyond the scope of this paper,
however.
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4. To summarize, we propose a modification of the Mueller formulation
of onium-onium scattering which is more suitable for application to realistic
processes. Our approach takes explicitly into account the dependence of
the amplitudes on the longitudinal momentum fractions carried by the con-
stituents of the “onium”. It can thus account for the contributions of highly
asymmetric pairs, known to be important in collisions with transverse pho-
tons. Application to virtual photon-onium scattering shows that the new
approach affects mostly the normalization and does not change substan-
tially dependence on xg; and Q2. It shall, however, affect the parameters of
the fit to data.

Discussions with Wiestaw Czyz and Robert Peschanski are highly appre-
ciated. This work was supported by the KBN grant No 2P03B08308 and by
PECO grant from the EEC Programme “Human Capital and Mobility”, Net-
work “Physics at High Energy Colliders”, Contract No ERBICIPDCT940613.
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