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The structure of low-lying states of nuclei with four active nucleons
in the 1s50d and 1p0f shells is studied in the framework of the Collective
Pair Approximation. The collective pairs determined by diagonalizing the
Hamiltonian in the space of two nucleons outside closed shells are consid-
ered as building blocks to describe a nucleus with 2n valence nucleons in
terms of n pairs. It is shown that the low-lying spectrum can be described
quite well by considering only a selected subset of all possible collective
pairs.

PACS numbers: 21.10. Re

1. Introduction

Features of low-lying spectra of nuclei having several nucleons away from
major closed shells have been extensively studied in the framework of the
Interacting Boson Model [1, 2] (IBM). The IBM makes use of boson variables
which can be interpreted as correlated pairs of nucleons and, consequently,
the IBM can be closely related to the spherical shell model.

In the IBM calculations usually only s and d bosons have been incorpo-
rated for the description of the basic features of low-lying spectra of collective
nuclei [3, 4]. But the calculated spectra are, in general, severely affected by
this drastic truncation of the boson space. In order to improve the descrip-
tion of nuclear observables also additional bosons like g boson and excited
s” and d’ bosons as well as T = 0 bosons have been taken into account in

some circumstances [5-8].
(1249)
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The Collective Pair Approximation [9-12] (CPA) is an alternative ap-
proximation scheme that incorporates the basic philosophy of the IBM i
the fermionic space. The CPA can be considered as a truncation scheme
with respect to the shell-model calculations. It consists in constructing the
spectrum of 2n nucleons outside closed shells in a space of n collective pairs.
In first approximation, the structure of these pairs can be fixed by diago-
nalizing the nuclear Hamiltonian in the space of two nucleons outside closed
shells. It turns out that a rather good description of the low-lying states
can be obtained by including only a (small) selected subset of all possible
collective pairs. These play the same role of the bosons in IBM. We stress
that the Pauli principle is exactly taken into account in CPA.

In this paper the structure of the low-lying spectra of the 4 = 20
(T'=10,1,2) and A = 44 (T = 0,1,2) nuclei is studied in the framework of
the CPA (see also Ref. [13]). The main objectives of this study are (%) to find
which collective pairs are essential for a good description of the low-lying
spectra of 1s0d- and 1p0f-shell nuclei and (2z) to verify if calculations per-
formed with effective two-body interactions derived from different methods
lead to comparable results.

In Section 2 the formalism is shortly sketched. The details concerning
calculations and results are given in Section 3. and 4 while conclusions are
outlined in Section 5.

2. Formalism

The operator AIQ 2 creflting a collective pair of multipolarity 2(= J,T)
and projection (= J ,T ') can be written

Aln.o' = Z Cff’)(ilj?)z}mr(jljz), (1)
JiJ2
where
Z}Z.Q’ =(1+ 51'1]'2)_1/2[(1;‘ (1}2](29' (2)

creates two nucleons occupying orbitals j; and j; with total quantum num-
bers £2§2'. The index v denotes different collective pairs with the same quan-
tum number £2. The coefficients C';(j172) are obtained from the diagonaliza-
tion of the Hamiltonian in the complete space spanned by the two-nucleon
states | j1j29292) = Z}(172) | 0)-

A four-nucleon state can be expressed as a linear combination of states
built from two collective pairs of Eq. (1)

| Qi Qs AXY = (AL, AL L 100= Y (2192202, | A4))
214271325374

XC3, (3102 CF, (733) 2, g1 (3132) Z y, gy (3} 1 0), (3)
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where (£2,42,2:0, | AA') stands for the product of the spin (JyJ,JoJ; |
JJ') and isospin (T1T,T,T, | TT') Clebsch-Gordan coefficients. In the case
of identical pairs (v;=v,,02y=2;) the spin and isospin angular momenta
A(= JT) have to fulfil the condition (-1)1+22-4 = 1, States (3) are neither
normalized nor linearly independent. In order to find a set of orthonormal
and linearly independent states we proceede as follows.

Taking into consideration the completeness of the states | n, 3I'T’ ') span-
ning the shell-model space, the unit operator /() can be defined

I(n)= Y |n, B0 ) (n, BT |, (4)

arr’

where 7 is the number of nucleons in the active orbits, I'I"" define total
spin and isospin angular momenta of the n nucleons and their projections,
and S gives a set of additional quantum numbers to distinguish states
with the same nI'I" quantum numbers. By inserting the [{n = 2) and

I(n = 4) into Eq. (3), employing the Wigner—Eckart theorem and utilizing
the orthonormality conditions of the Clebsch-Gordan coefficients, Eq: (3)
can be expressed as

| 21 200; AX) = 3 BB ) | 4,544, )
B
where
BBy 200 4) = (—1)B0+2-A) (94 _ -3
x Y CH(1172)CR (G314, BAI| Zh, (1d2) || 2, 2a(dsia))-  (6)
J1i273]4

States | $2yv1825v9; AA’) are neither normalized nor linearly independent. In
order to obtain a new set of orthonormal states the eigenvalue problem of
the overlap matrix

0(911/1.921/2931/3041/4; A) = <Q1V1 .QQI/Q; AA, | 931/3.94114; /1/1’) (7)

has to be solved.
From the solution of the eigenvalue equation

S Davavs (210182005 AN | Q3v3 24043 AN YD ($2303 2405 A)
= N(aA)D(as v 250, A) (8)

one obtains a new set of orthonormal, linearly independent states spanning
the subspace of two collective pairs which can be written as
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laddy = (N(aA)"2 S D(aiv18205A) | vy Qpva; AN
2101221

= (N(aA)™2 Y D(afwi2:034) B(BS2101224) | 4AA’). (9)
2y 822020

In Eq. (9) the coefficients N(aA) and D(af2 v, 2,1, A) are obtained from
the solution of Eq. (8). The number of states (9) is equal to the number of
coefficients N(aA) > 0, which in some cases is less than the dimension of
the overlap matrix (7).

In order to solve the eigenvalue problem of the shell-model Hamiltonian
in the space spanned by two collective pairs let us first express that Hamil-
tonian as follows

g = Z l WnaA>EnaA<!pnaA ls (10)
aA
where the eigenvectors | W,,4) correspond to the eigenvalues Ey,,4

( H | Ynaa) = Enas | Ynaa)) and the index o distinguishes the eigenvectors
and eigenvalues that belong to the same nA. Noticing that the eigenvectors
| ¥naa) can be expanded in the complete shell-model basis of Eq. (4), t.e.

| Unaa) = A(afBA) | nBA), (11)
B

the matrix representation of the shell-model Hamiltonian (10) expressed in
the subspace of states (9) can finally be written as

(A |V H || ax4) = Z B(B181v152512A)
Bi1Baafdyv favr 3vafdev,y

D(ay$101 82212 AYA(npraA) Enaa A(nB2aA)

X D(a203V3Q4U41'1)B(ﬂ2.931/3941/4/1). (12)

X

Thus in order to solve the eigenvalue problem of the Hamiltonian in the
space spanned by two collective pairs, first the eigenvalue problem of the
Hamiltonian in the complete shell-model space has to be solved, and the
matrix elements of the two-nucleon transfer operators in the same space
have to be calculated. Both these calculations can be done with the aid of
standard shell-model programs, e.g. RITSSCHIL [14].

3. Results and discussion

The method outlined in Section 2 has been applied to describe the low-
lying spectra of the A = 20(T = 0,1,2) and A = 44(T = 0,1, 2) nuclei by
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employing the same effective interactions in the shell-model and in the CPA
calculations. For each nucleus we have performed a series of calculations, by
including a smaller and smaller set of collective pairs. In this way we have
searched for a “minimum set” of pairs necessary in order to have a good
reproduction of the shell-model results for the low-lying spectrum.

3.1. The 1s50d shell

In the 1s0d-shell there are 28 two-nucleon eigenstates of the shell-model
Hamiltonian which can be considered as building blocks to describe nuclei
with a larger number of active nucleons. Their spectrum obtained with
three interactions is shown in Table I. Following the standard notation we
will denote as s, p, d, f, g,... the T = 1 pairs with J =0, 1,2, ..., while the
T = 0 pairs will be denoted as ©;. Of course, the spectrum obtained by
diagonalizing the Hamiltonian in the space spanned by the 4-nucleon states
built in terms of all possible two pair states is identical to the shell-model
one. Our aim is to investigate to which extent a selected subset of collective
pairs is sufficient to give a good reproduction of the low-lying 4-nucleon
shell-model spectrum. Starting from the set including all pairs and then
removing step by step less important ones, we single out the “minimum set”.

TABLE 1

The low-lying shell-model spectra of two nucleons in the 1s0d-shell. Calculations
are performed with the Wildenthal [15] (Ew), Sussex [16] (Es) and Bonn B [17]
(Ep) interactions. Eigenenergies are in MeV.

1s0d shell
T=0 T=1

J Ew Eg Eg J Ew Es Ep
1 0.0 0.0 0.0 0 0.0 0.0 0.0
3 137 075 204 2 218 1.73 212
5 146 1.17 250 4 378 3.00 3.62
2 431 2778 4.08 0 432 438 4.19
3 451 424 578 2 4.44 348 4.23
1 491 404 501 3 5.73 4.63 5.06
1 6.71 536 699 4 875 7.38 8.21
4 678 574 T7.15

2 743 T7.29 7.86

Calculations have been performed for three different two-body effective
interactions in the Is0d shell, i.e. for (i) Wildenthal’s model independent
interaction [15] determined from fits to experimental energies of a selected
set of normal parity states in 1s0d-shell nuclei, (1i) Sussex interaction [16]



1254 E. KwasSNiEwicz, F. CATARA, M. SAMBATARO

deduced from the experimental nucleon-nucleon scattering phase shifts, (71:)
Bonn B interaction [17] obtained from the G-matrix folded diagram method
and the nucleon-nucleon Bonn potential. The single-particle energies for
Ods, lsy and Oda shells have been in case (i) adopted from Ref. [15] while

in cases (i) and (i22) they have been determined from the experimental
lowest-lying levels of the 17O nucleus.

For the sake of brevity only the most representative T = 0 case is il-
lustrated. In Tables II(a)—(c) selected results for the lowest levels of 2°Ne
obtained with the use of three above cited interactions are reported. In the
first two columns the spins and shell-model energies of 2°Ne are presented.
In the other columns the energies obtained with different subsets of pairs
are reported together with the overlap of the appropriate CPA wavefunction
with the corresponding shell-model one. In addition we also report for each
calculation the quantities

N
1
o1 = \J ¥ . Z(ESM EiCPA)27 (13)
=1
1 N
01 =\ 3 SMEM - BfM) - (ECPA - ECPAR, (19)
=2
1 N
g3 = NZ l (WzSM | WFPA) |27 (15)
1=l

where o, and o, represent the RMS deviations in the absolute energies and
in the excitation energies, while o3 is the RMS of the overlaps between shell-
model and CPA wavefunctions. In the first presented CPA calculation we
have included the lowest five T' = 1 and six T = 0 pairs out of the 28 total
number of pairs (see Table I). As can be seen from the third column of
Tables 11{a)-(c), the overall agreement is quite good as testified also by the
values of the three ¢’s. In the next two columns we show the results obtained
when the three highest 7' = 0 pairs have been removed. In such a case we
observe that energy of the first 0% state is essentially unaffected ( in the case
of Wildenthal interaction [15] both 0t states are almost unaffected) while
the others are shifted upwards by about 0.8+1.0 MeV for all three considered
interactions. When all the T = 0 pairs are removed, the excitation energy
spectrum as well as the overlaps are still quite good, while the absolute
energies deviate appreciably from the shell model ones. Therefore, we can
conclude that the exclusion of all the T = 0 pairs leads to an almost uniform
shift of the spectrum without appreciably affecting the overlaps. Finally,
from the last two columns, one sees that the removal of the second 0t 7' =1
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The results of shell-model and selected CPA calculations for the 2°Ne nucleus with
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TABLE 1I(a)

the following sets of pairs: 1) s, sl, d d, g, 0y, @;, ©,, O3, @'3, 65, 2) s, s', d d,
9,01,03,05 3)s,s,d d, gand 4) s, d, d’, g. The symbol O stands for overlap
between CPA and shell-model wavefunctions. Calculations are performed with the

Wildenthal [15] interaction. For details see text.

J Esm E O E O E O E 0]
(1) @) 3) ()

0 -41.41 -41.34 0.999 -41.11 0.993 -39.85 0.949 -39.39 0.928

0 -3442 -34.36 0.998 -34.03 0.990 -33.39 0961 -30.20 0.739

2 -39.50 -39.21 0.992 -38.55 0.973 -38.02 0949 -37.76 0.936

2 -33.87 -3347 0.981 -32.86 0.956 -32.47 0937 -32.23 0.905

4 -37.00 -36.05 0.961 -35.47 0934 -3486 0.884 -34.84 (.885

6 -3240 -32.24 "0.994 -3143 0.946 -31.14 0.915 -31.14 0.915

o1 0.44 0.96 1.52 2.38

(2 0.44 0.77 0.39 1.07

o3 0.99 0.97 0.93 0.89

TABLE II(b)

The same as in Table II{a) but for the Sussex [16] interaction.

J Esm E O E O E O E O
(1) @) 3) (4)

0 -39.66 -39.49 0.996 -39.34 0.992 -37.97 0.940 -37.43 0.917

0 -3234 -32.30 0.999 -31.77 0.981 -30.99 0.939 -29.05 0.779

2 -38.26 -37.86 0.989 -37.34 0.972 -36.45 0931 -36.16 0.916

2 -31.88 -31.54 0.989 -30.94 0.957 -30.56 0.938 -30.44 0.921

4 -3594 -35.24 0976 -34.47 0939 -33.61 0.878 -33.56 0.879

6 -31.87 -31.50 0.98 -30.72 0.939 -30.16 0.874 -30.16 0.874

leat 0.40 0.97 1.74 2.27

o3 0.29 0.75 0.37 0.64

o3 0.99 0.96 0.92 0.88
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TABLE II(c)

The same as in Table II(a) but for the Bonn B [17] interaction.

J Esm E O E O E O E O
(1) ) (3) (4)

0 -40.55 -40.43 0.998 -40.17 0.991 -38.17 0.914 -37.67 0.893

0 -33.60 -33.55 0.999 -32.62 0.968 -31.93 0.930 -29.24 0.743

2 -38.56 -38.16 0.989 -37.25 0.958 -36.41 0.919 -36.056 0.899

2 -32.08 -31.59 0.981 -30.96 0.939 -30.41 00915 -30.07 0.871
4 -36.06 -35.26 0971 -34.49 0.937 -33.30 0.855 -33.25 0.857
6 -30.86 -30.41 0.982 -29.78 0.943 -29.30 0.880 -29.30 0.879

o 0.46 1.13 2.08 2.83
o 0.40 0.86 0.61 1.07
o3 0.99 0.96 0.90 0.86

pair seriously deteriorates the quality of the results. Any further reduction
of the CPA subspace leads to worse and worse results. Similar conclusions
can be drawn for the T = 1 four-nucleon states. Of course, for the T" = 2
states, only the T = 1 pairs contribute. Also in this case we found that the
s, 5', d, d', g pairs are the “minimum set” necessary to get a reasonable
agreement between CPA and shell-model calculations. Besides, it has been
verified that the use of the three above cited interactions leads to similar
conclusions.

3.2. The Ip0f shell

The same procedure has been applied to the A = 44 nuclei using the
FPDG6 two-body interaction and single particle energies from Ref. [18]. In
the Table III, the spectrum of the lowest two-nucleon eigenenergies of the
shell-model Hamiltonian is shown for both 7 =0 and T = 1. In Table IV,
we report the results of the calculations for T = 0 four-nucleon states. The
first two columns of the table are reserved to spins and shell-model ener-
gies of the lowest levels of **Ti. For reasons of space we present only a
few selected CPA results. The first one is reported in the third and fourth
columns and includes the lowest nine T = 1 and four T' = 0 pairs out of the
60 total number of pairs. The overal agreement with the shell-model results
is good and characterized by a rather uniform shift up in energy of all levels,
less evident only for the ground state. Indeed, the RMS deviation in the
absolute energies is 0y = 0.85 MeV while that in the excitation energies
is 03 = 0.54 MeV. It is worthwile noticing that the overlaps between shell
model and CPA wavefunctions for the considered states are rather good,
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as shown also by the value o3 = 0.94. In the next two columns, we show
results obtained by only removing the three T = 1 pairs s’, f, h from the
previous CPA space. This operation essentially affects the 02+ state which
moves up by about 700 KeV while the other states remain stable within 200
KeV. This indicates the minor role of these pairs for the low-lying states.

TABLE 111

The low-lying shell-model spectrum of two nucleons in the 1p0 f-shell obtained with
the FPDG6 [18] interaction. Eigenenergies are in MeV.

1p0f shell

T=0 T=1
J E J E
7 000 0 0.00
1 026 2 1.78
5 060 4 271
3 079 6 3.15
5 242 2 411
3 28 4 492
2 334 3 5.15
4 3.59 5 5.56
1 387 0 596

In the seventh and eighth columns, we report the calculations obtained by
eliminating all the T = 0 pairs from the last CPA space and, therefore, only
leaving the set formed by the s, d. d’, g, ¢', i pairs. This spectrum exhibits
a shift up in energy with respect to the shell-model results, which does not
alter significantly the excitation energy, as it can also be observed by looking
at o1 and o3. The value o3 = 0.87 testifies that the overlaps are still quite
good. Finally, in the last two columns, we display the results obtained by
removing also the ¢’ pair. In spite of the fact that the excitation spectrum
looks still good, o, = 0.53 MeV, one observes that the overlaps for the 03
and 4} states are very poor, which shows that the q pair plays an important
role. It is intriguing that the importance of the ¢’ pair is less pronounced
when 7" = 0 pairs are included. Indeed, the results obtained in a calculation
with s, d, d', g, 1 and @y, O3 Os, @7 pairs are very similar to those refering
to the case 3).
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TABLE IV

The results of shell-model and selected CPA calculations for the **Ti nucleus with
the following sets of pairs: 1} s, s,d d, f g g', h, i, @y, O3, @5, O7,2) s, d,
d, g, g‘, i, @, 03, 05,07, 3) s, d, d, g, g', i and 4) s, d, d', g, ¢ . The symbol
O stands for overlap between CPA and shell-model wavefunctions. For details see
text.

J Esm E O E 0 E O E 0
(1) (2) () (4)

0 -48.45 -48.07 0.986 -48.03 0.983 -46.63 0.909 -46.38 0.887
0 -43.09 -42.01 0.933 -41.29 0.845 -40.81 0.786 -40.11 0.685
2 -47.15 -46.29 0.955 -46.14 0.945 -4540 0.898 -45.15 0.868
2
4
4

-44.02 -43.32 0.953 -43.12 0.935 -42.85 0914 -42.67 0.887
-45.91 -44.92 0.933 -44.73 0917 -44.20 0.882 -43.68 0.791
-42.89 -41.99 0.889 -41.87 0.855 -41.59 0.822 -41.01 0.517

o1 0.85 1.13 1.71 2.14
o) 0.54 0.83 0.43 0.53
o3 0.94 0.91 0.87 0.78

4. The truncated Hamiltonian

The results of Section 3 indicate that the low-lying spectra of 1s0d- and
1p0f-shell nuclei can satisfactorily be reproduced by a “minimum set” of
pairs selected from the 28 or 60 pairs allowed in the 1s0d- or 1p0f-shell,
respectively. Aim of this section is to show that the low-lying shell-model
spectra are better reproduced by the CPA with the fixed “minimum set” of
pairs if the shell-model Hamiltonian to be used within CPA is replaced by
its projection onto the subspace spanned by the low-lying shell model states.
This procedure was introduced by Bonatsos et al. [19] as a way to simulate
the effective Hamiltonian in the truncated shell-model space.

Let us consider a separation of the four-nucleon space into two orthonor-
mal spaces. One of these subspaces consists of the eigenstates of the Hamil-
tonian which lie lower in energy and the other of the rest of the eigenstates.
The projection operator onto the subspace of the low-lying spectrum can be
written as i

P = Z ’Wna’A’><Wna’A’ I, (16)
a’ A’

where the meaning of the na/A’ is the same as in Section 3 and the sum-
mation is only over the low-lying eigenstates | ¥,,/4/). The part of the
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shell-model Hamiltonian that produces the low-lying spectrum can be ex-
pressed as
PHP = Z IWna’A'>Ena'A'<WnO(’A' l . (17)
a' A
The next steps of the procedure to deal with are similar to that considered
in Section 3. The only difference is that the overlap matrix of Eq. (7) is
replaced by the matrix

O/(.Q]IJI .QIIJQ.Q3V3.Q4V4A) = <.(21V1.le/2; ."'1/1, 1 13 l 931/3..(241/4; /l/ll> (18)

and the shell-model Hamiltonian (10) is replaced in Eq. (12) by its part (17)
corresponding to the low-lying spectrum. In order to illustrate how much
the low-lying CPA spectra studied in Section 3 come close to the shell-model
spectra we have performed calculations for °Ne with the “minimum set” of
pairs in the reduced four-nucleon spaces down up to 10% of the size of the full
shell-model space. The RMS deviations in the absolute energies oy (Eq. (13))
and RMS of the overlaps between shell-model and CPA wavefunctions o3
(Eq. (15)) are presented in Fig. 1. It is seen that the first six lowest-lying
shell-model states of 2°Ne are perfectly reproduced by the “minimum set” of
pairs (s, s, d d. g ) if the size of the shell-model space is reduced down
up to 10%. (In the case of 44T its six lowes shell-model states are very well

61 v v i ‘ x 63
2,0 4 ——— T T
VST it
[MeV] ‘\l‘-—,_\:t__- ; )
J /’ = - u
1,5 1 . . N —
/f ’/'---__ e e
Il ////’
4
1,0 g
4 405
I’II
I | |
" 2 interaction
s 3;/ L Bonn B
g - -o- - Sussex
l" oS |
0,0 —as?
T T M ) T 1 T T ’ : 0'0
0,0 02 0,4 0.6 0.8 "
TFSMS

Fig. 1. The RMS deviation in the absolute energies (o7) and the RMS of the
overlaps between shell-model and CPA wavefunctions (o3} versus the truncation
factor of the shell-model space (TFSMS) for six lowest-lying states of 2Ne. The
CPA calculations were performed with Wildenthal [15], Sussex [16] and Bonn B
[17] interactions for s, s, d, d', g pairs.
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reproduced by the “minimum set” of pairs (s, d, d’, g, g’, 1) if the shell-model
space is truncated up to 6%).

From the results of Section 3 and 4 one can conclude that the lowest-
lying states of 1s0d- and 1p0f-shell nuclei can be quite good described by
diagonalizing the shell-model Hamiltonian in the CPA space built from sev-
eral pairs (from “minimum set”). On the other side a drastic improvement of
the CPA results can be attained by diagonalizing only that part of the shell-
mode! Hamiltonian which produces low-lying spectrum in the same CPA
space as above.

5. Conclusions

A comparison has been reported between shell model and Collective Pair
Approximation (CPA) for nuclei with four valence nucleons in the 0dIs and
Of1p shells. From the quality of the results obtained with a substantial
truncation in the space of the collective pairs taken into account we can
conclude that the CPA seems to be a flexible and promising tool for the
study of the low lying spectrum of even-even nuclei. The analysis extended
to nuclei with six active nucleons would be interesting and valuable.

E. K. would like to thank the INFN and the Department of Physics of
the University of Catania for the hospitality and financial support.
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