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The operators a and a¥ realizing the Heisenberg algebra are used to
solve the spectral problems with potentials different from the harmonic os-
cillator. By reducing the stationary Schrodinger equation to the form of
the Whittaker equation (or hypergeometric equation). and next by compar-
ison with the ata product a family of the solvable potentials is obtained.
The solutions of the pseudo-eigenvalue problem (H(Ey, )¢, =F, ) with the
new potentials are given. It is also shown how to construct such pseudo-
eigenvalue equations with eigenfunctions related to the Whittaker function.
The results are used to build up Hamiltonians which are expressible by the
ata product.

PACS numbers: 03.65. Ge

1. Introduction

Resolving the problems of non-relativistic quantum mechanics by means
of algebraic techniques have always attracted much attention. The intro-
duction of a few new concepts had an exceptionally strong impact on these
studies and helped to view this field from a new angle. The famous su-
persymmetry (SUSY) algebra [1] has been successfully utilized to achieve
a SUSY generalization [2-4] of the harmonic oscillator raising and lowering
operators for SUSY shape-invariant potentials. Although shape-invariance
is not a general feature of solvable potentials [5], this has made the SUSY
method a powerful algebraic technique for the spectral resolution of a variety
of such potentials of physical interest [5-10]. In recent times a new class of
spectral problems has been discovered [12-16] with the help of the algebraic
technique. It occupies an intermediate position between the exactly-solvable
problems (like the harmonic oscillator which is reducible to the diagonal form
with the aid of an algebraic procedure), and the exactly-nonsolvable prob-
lems (in those cases the algebraic methods would not allow to diagonalize
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the Hamiltonians). This class called quasi- exactly-solvable is distinguished
by the fact that only a part of the eigenvalues and eigenfunctions, and not
the whole spectrum, can be found. It occurs when the Hamiltonian ma-
trix has a special block structure, what of course is not a feature of every
Hamiltonian. However there is a method ensuring the block structure for
specially chosen cases. This gives a possibility to have a part of solutions of
the spectral problem with the new potentials.

In this paper the harmonic oscillator plays a special role, as it is the
simplest quantum system both from a physical and a mathematical points
of view. This statement is due to the fact that it is completely solvable by
means of the linear differential operators satisfying Heisenberg algebra. The
Hamiltonian of the harmonic oscillator written in the formalism of creation
and annihilation operators can be treated as a pattern for other solved differ-
ential equations (the Whittaker equation and the hypergeometric equation).
In order to make them equivalent it is necessary to accept the dependence
between the equations parameters and the natural numbers. Having such
the conditions the next step seems to be obvious: an appropriate change
of variable in the stationary Schrédinger equation reduces its form to the
known differential equation, and by comparison gives a family of solvable
potentials. The generalization of this problem is also possible by taking the
initial Schrédinger equation with a fixed eigenvalue equal to zero. This gives
an ability to solve the so called pseudo-eigenvalue problem H(E,)¥,=E, ¥,
(it means that the energy enters into the Hamiltonian as a parameter) with
the potentials in more general form than those, for which the exact solutions
of the Schrédinger equation are known.

2. The Heisenberg algebra

In this Section we deal only with a few aspects of the Heisenberg algebra
which are useful for our purpose. Let {¢,} be the functions defined by:

atay,(x) = Mo (2), x>0, (2.1)

with the scalar product

O

(¥nl2) (@) = [ U3 @)0n(0)de = 8y mm=0.1,2... (22)

0

where the linear differential operators @, a* satisfy the conditions:

[a,at] = 1, (2.3)
apg = 0. (2.4)
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The change of variable

x = f(q). q € [q0. 0] - (2.5)

where f is a given function of ¢, implies that the scalar product is trans-

formed into
q1

(80(2), Bn(2)) = [ 43 (2) () £9)dg (2.6)

and ’ denotes differentiation with respect to ¢. The general form for the
operator « is taken to be

o= 9l0) 55+ Wio). (2.7)

where g and ¥ are two arbitrary functions of ¢. Thus, the operator a™ is
determined by (2.6) leading to the form:

d q)g
o* = ~glg) & - LOIDL g (28)
dq f
where the condition
(@9 (@) emla) [iZi =0 (29)
has to be fulfilled. From (2.3) we get
L[ ds 1 @alg))
d=; [ Zr L her o)
2 z 2 f
and the operators a, a™ become
d 1 dq 1(f'g) v
= — = e + 20 — el 2.11
o= s+ 5| f o] + 5 1)
IS S Iy . TP B VA 5.12
a’t = g(q)dq+2[ gq)+Zb] 5T (2.12)
Combining (2.4), (2.9). (2.11) and (2.12) with (2.1), we finally obtain tl

solution (without normalization constant)

rnrr(0) = (F'9)" Honi [%( / g—‘fg—) + 26)}

dy¢
e VA St 01,23, (2.13)
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where

- d
/;£f+%20 (2.14)

and

A=2n+1. (2.15)

(Even eigenvalues and the even order Hermite polynomials Hj, are excluded
because of (2.9).)

Now from (2.10)—(2.15) it follows that the general form of equation (2.1)
is given by

N _ g o (fg)\ d
a"aonyq = (—(] W_ (g + 7 d_q

2 12 RN
L[ 4 . L{(f9) 1 1 (f9) ,
+ I[/ !/((]) + 21)} - I [ f: } - §g { ft jf ) P2n41

= (277 + 1)1’3271-4-1 . (21())

This plays an important role in connection with the Whittaker equation.

3. Whittaker’s differential equation

We now come to the central problem of this work. The equation (2.1) is
written in the model form (2.16) with all the above mentioned results. We
suppose that this model can be compared with other solvable differential
equations. The questions are: which differential equations should we choose
and what kind of dependence such comparison creates? As we shall see
in this Section it can be done with Whittaker’s differential equation in the
easiest way. Thus we start from the Whittaker equation

d? Ao ) o
{?133+5+4@2 -7 (v =0, (3.1)

where two linearly independent solutions are given by

My, (8) = #4365 (- A+ 120+ 153), (3.2)
My_p(#) = 3727 F F(—p - A+ L, —2u 4+ 1:8),  (3.3)

and 1F; is the hypergeometric function. The change of variable

2

. d

:L‘:'Z,u/—q——{—’Zb . ¢€lg,q], p>0, (3.4)
9(9)
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together with

Do

yla) = (f'9) [/ -g—‘%+2b]2$(q), (3.5)

gives the Whittaker equation in the form
2
1 1, d? 1 (f'9) / dg
- — g — - — s — +2b
‘2{ 4;19 dq? 4;z ( + f d G g +

1 1 “dg -
{4 - — — +2b
+4( K 4;t)[. g + }

_%ﬁ(&f_fﬂ)z “g((_f'_?).')'_zﬂ}é() (A - )dlg),

24p f
(3.6)
what can be symbolically written
Lhes.(p) =r.hs (A= ). (3.7)
The displacement of parameters
[l—-);[—f{:i, A= A—&K, (3.8)
implies
A—p =S A—K—p+r=A—p, (3.9)
and by comparison of {3.6) with (2.16) we get
A—p=302n+1)=n+1%, n=0,1.2..... (3.10)

Hence, the normalizable solutions of (3.6) are given, up to the normal-
ization constant, by

Z;A-I-l

% ’ 1 ) 7 4 s
olq) = (f g)‘?[/ (gq +2b} ol G2t)
2
. dq
x 1 (—n,?n-&— l.‘Zp{ +2b} ) (3.11)

The results obtained in this Section can be immediately used to investi-
gate the Schrédinger equation.
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4. The Schrédinger equation

Now we turn to the stationary Schrodinger equation in the form given
by:

L 5 .
{“m—’rb(‘l‘)—E}W(r) =0, (4.1)
where in general » € R. The change of variable and function
r=fl) @) =740, (4.2)

implies that equation (4.1) is transformed into

F

d? LN d 1w 1, LS
{ —92-@5—9(9 +U—?L>a—q——§yg + 309 )2—59[(—#)—]

f
T ) ()
+(F 9" U (fl9) - E]}«‘)(f]) =0. (4.3)

To simplify the future calculations, without loosing generality, we can
take

(f'g)’ /
7 = —g 4.4
7 (4.4)

and additionally
f” |4
~— = const., (4.5)
f

(9) = g9 . (4.6)

what means that we get the simpler forms of equations (3.6) and (4.3). Now
we are in a position to equate them. This gives

2 -2
(f o) U(f) - E]~ [[ % + 21)} + {/ % + ‘21)} + const. (4.7)

and the general form of the wave function

2;L+%‘
W(g) = (f'g)%[/‘—lg;—[+2b]

2
we~t S ‘—191+2b)21F1 (——n, 2u+1,2u (/ % + Qb) ) (4.8)
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up to a multiplication constant. Thus we get three independent equations

(f 9)* = const., (4.9)
2
gy = Const.[/%?-}-?b] , (4.10)
PRV dq 2
(f g)° = const. /?+2b , (4.11)

which lead us to the potential of the three-dimensional harmonic oscilla-
tor, the hydrogen atom potential and the one-dimensional Morse potential
respectively.

5. Generalization with b = 0
The conclusions emerging from (4.7) can be simply generalized if we take
E=0. (5.1)

Naturally, it means consideration of a Schrédinger equation with energy
equal zero, but taking (3.10) into account we can get the dependence be-
tween values of the potential parameters when the solution of a Schrédinger
equation (with a fixed eigenvalue) is in the form (4.8). This generalization
must also include Eqgs (4.9)—(4.11) as special cases. To simplify the calcula-
tions in this Section and the next one we take

b=0. (5.2)

Choosing generalization in the form

20
(fg)? (/ %{i) , o#F -1, (5.3)

means that the equation (4.11) is excluded from our considerations. (This
case will be discussed separately in Section 8.)
From (2.14), (4.7). (5.1), (5.2) and (5.3) we get

f:[/%]aﬂ, >0, (5.4)

Vv

and

l—o

U(f) =~ f21%e + f72 4 f 145 . (5.5)
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Thus we have the Schrodinger equation in the form
12 pl=z 9 20 .
——— - Ar“%Fe L Br = = Cr T4 3 W(r) =0, (5.6)

which can be reduced to the transformed Whittaker equation (3.6) taking

r=ael?t  P(g) = e%(”"'”qqﬁ(q) , a=const., g€R. (5.7)

Performing calculations we get 4 >0, B> 0, C >0, and for

T’2
B=_-"l(i+1), (5.8)
2m
we get
2
4 h2 (1 + %)
0THe = — > L 5.9
att 2m A (5.9)

From (3.10) it follows that

L ¢
—*U?:l(%)z ( :n.-}—.l“l—u, (5.10)

where we have two conditions:

(c+1)(I+1)

I3

o= for ¢4+1>0, (5.11)
(e+1)(+3)
2
Sach of them leads us to the different types of potentials, however the con-
dition (5.12) will not be considered in this paper. Thus the form of (5.10)

is given by

for ¢4+1<0. (5.12)

p=-

oc+1

1
2m\2 (' 1 1 1
—_—=n4+ -4 = — 1 , 5.13
1 ( ) ; n+2+2((7+1)(l+_2),a+ >0 ( )

%) 43
what enables us to specify two cases:

(a) for o = 0 we get from (5.6) and (5.13)

2mdr? 2m 2

2 2 2 ;
{ nod +4*2+Ll(l+l)—C}W(v‘):0, (5.14)
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and
C=E=Tw2n+1+32), (5.15)
where
A= %mwQ; (5.16)
(b) for o = 1 we have
wdz ¢ R Ii+1)
—— T — AbW(r)=0, 5.17
{ 2m dr? o 2m r? +AW(r) =0 (5.17)
and )
—A=E= mC (5.18)

i+l 1)2

As we see the separation of constant in equation (5.6) gives the energy
spectrum. The same situation takes place also for the other values of o, but
this time it leads us to the pseudo-eigenvalue problems. For

2
_ 2% _k, keN,o+1>0, (5.19)
140
we get
2
Ulr)y = Ap2l+l) ok g h—l(l+ 1) . (5.20)
2m  r?

Making the displacement of variable

r=>r-y, 27, (5.21)

we obtain the Schrodinger equation (dropping the caret over r) in the form

K@ 2 {20k +1) .
S _1)2(k+1) = 2(k+1)—3 .7
{ 2m dr? +A{ Z (=1) J 7 :

i/
—C i(_l)k—i k A,‘-’—iri + Eil_(l—i_—l) W(r) = EW(7)
3 o ’ i /! 2m (r — )2 - '
{5.22)
where
—E = A(_1)2(k‘+1)72(k+1) - C’(_l)kryk , (5.23)

with the quantum condition

1
1 1 2m\2 C 1 1
— — — =pt+ 4+ ——(1+1). 5.24
2/;—}-2(1;,2) 43 n+2+k+’2(+2> (5.24)
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The displacement parameter can be expressed by the potential coefficients

1
v=5(5)7 (5.25)
where § is a dimensionless constant. Combining (5.23) with (5.25) we have
E = (=520 4 (Z1)ksk)A-mr ot (5.26)
or, using (5.24),
2541 1
En~(n+4) " am7, (5.27)

The same result is obtained by means of virial theorem and WKB method
considering the potential given by

V(r)y ~ Ar?. (5.28)

Then the dependence between the energy spectrum and the quantum
number can be expressed in the form

E~ (n+ Ly5t2 475 (5.29)

In our case p = 2(k + 1) what changes (5.29) into (5.27).
In framework of this method we have another chance to construct the
solvable pseudo-eigenvalue problem. For

-0
o=k keN (5.30)
the potential is
2
U(r) = Ar¥ — Cra=2) 4 L B (5.31)
2m  r?
We proceed in a similar way as for the previous case. Thus we get
n* & : k=i K\ k=i k=2
{ _%W+‘4[§(‘1) ( A R e O
7+ 1) o
o () = B0, (5.32)

where r > v
—E = (-1)Fy*4, (5.33)
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and the quantum condition is given by

2
1 2m\ C
() = L 34
k+2(h2) ar e SR (5:34)

Expressing v by the potential coefficients in the following form

2
C\ 2

where § is a dimensionless constant, we get
E = (1)t gse orre (5.36)

what (together with (5.34)) is in accordance with the results obtained by
means of virial theorem and WKB method.

6. Schrodinger equation structured with the aid of a¥a product

As we see in Section 3, we are in a position to reduce the transformed
Whittaker equation (3.6) into the form (2.16) taking

p=1. (6.1)
By substitution
I=leo+1)(+1 (6.2)
we get
21
- >0. 6.3
o TSR 0+1>0 for >0 (6.3)

As a consequence we obtain the Schrodinger equation in the form

B d? 204l+1) _ v 4l ﬁl(H'l) _
{ Py + Ar Cr* 4+ Y U(r)=0 (6.4)

with the quantum condition (5.13) given by
C 7t \?
— == 204+ 1)(4n + 3). 6.5
Az (2m> (20 +1)(4n + 3) (6.5)
This form leads us to one special case. For

=0, A = Lmw? (6.6)

1
2
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we have )
he d? I 5,
[ —mwrc - ( = 6.’-7
{ S + 2mw 7 C¥(r)y=0, (6.7)
where
C=E=tw(2n+3). (6.8)

We can also proceed as in the previous Section. Making the displacement
of variable in equation (6.4) we get

72 a2 D g1 S dl1)—i i
i/

4/ o 52
—C [Z( 4[ )(_,\’/)41—.77‘.1:| + T M}lp(r) = EW(?‘), (69)

. Yo (1 — )2
n J 2m (r — %)
where

r>y, E=-Ay20H0 4 op (6.10)

Taking

C\ 7

=4 — 6.11
Y <4) : (6.11)

where ¢ is a dimensionless constant, and using Eq. (6.5) we have

ad-3
) o (20 + 1)%(471 + 3)3_51‘3(‘4)20111) . (6.12)

E= (_52(41—{—1) + 541) (_Ti
- ' 2m

what also stays in accordance with the results given by virial theorem and

WKB method.

7. Generalization with b #*0

The results of previous Sections can be easily generalized by taking b # 0.
It means that we have to take one more term in (4.7) into account, and
although the calculation method is the same as previously, it leads us to
new solvable problems. We start with

E=0 (7.1)

(f'9)? = (/ %)20 ., (7.2)

and
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where

f20, o#-1, /%‘1+2b20; (7.3)
thus we get |
/dq { 2b)0+1}mx b <0, (7.4)
and from (4.7)
U = {[F+ (2077 426} [F o (=2 )a+1]-f—+"1
+[j'+(-2,,)a+1]2%;1—? + 7+ o] e o [P+ o]
+[7+ (—2b)°+1}'?2‘+q?, 5)

Hence the exact form of Schrodinger equation arising from (3.6) is given
by

1=-2¢

1 d2 B g+1 21+a B o+1 Tis
(e o) T2
—2a
, B \°t1|+e (B _

with » > 0, A>0, B>0, C > 0, where

V(B ) w (I +1)

=1
(e}
~

.o

24

(B R+ 1)
V== 0 78
(55:0:7) = VOO, = L2, (75)
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2
21 )
N E IR N Y o
["’+ (#)

We also get the new quantum condition in the form
1 1
1 (2m B? 2m\ 2z C i .
‘E(h_g) (o +1)Zz—+ (hg) (U+1)E:n+§+lh (7.10)

where
p=to+ )0+ (7.11)

is greater than zero what means that
o+4+1>0. (7.12)

Now we can see the possibility to separate the energy spectrum for three
cases:

(a) o=0,
nlil+1) B?
(M= Ar? 4+ N0 2O 7.13
U(r)= Ar +2m 3 1A C, ( )
where
B? . 3
At C=E=tw(2mti+3), (7.14)
A = 1mo? (7.15)
(b) o=1
2 _% B 211
Ulry=A- B[:%—(ZA)} C[z%—(zA)] +‘/(—2—4 1,1) (7.16)
where
A=-F, (7.17)
and
1/2m B? 1/2m\z C
(¢)o =2

<
e
3
+
N
l\.:
;; o]
N
Nl
[ ISS———
s
|
('\
ey
-
._+..
P
-
N
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where
32/ 1 \? eI E
B=F= [—4AC’ + —3—<%) A3/? [n—&— 3 + Z(l + 5)]] (7.20)
with ‘ L
n+%<l+%)>§(%)2/§_%€—%. (7.21)

Naturally, we can also construct pseudo-eigenvalue problems using a dis-
placement in variable, but this method has been described in Section 5. We
only mention about the equations structured by means of the a*a product.
As in Section 6 we take
(7.22)

*

o i

u:

thuso = —-ﬁ%, o+1 > 0. Substitution ¢ into (7.6) we get the Schrédinger

equation in the form given by

1 42 LA +(B)5?§—a 2(4141) r+(8>ﬁ 6l1+1
2m dr? " 24 24

_1 4 2
_c[r+<§_)"“] L 0D agpy=0. (723)

Taking
I=0 (7.24)
implies the form
1 d2 , B?
. P - v(r)= 7.25
{ 2md7'2+Ar 4A C} (r)=0, (7:25)
where from Eq. (7.10) we have
B? 3
- = F = - 7.26
A TC=F m<2n+2), (7.26)

what is the expected result.
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8. Morse potential

According to equation (4.11) there is one more case to be considered.
This separate treatment is connected with the different dependence between
fand [ %Q, than that generated by Eq. (5.3) what in consequence leads us to
the quite new types of the solvable pseudo-eigenvalue problems. Naturally,
the method of obtaining the potentials does not change, what means that
using Eq. (4.7) we are looking for a Schrédinger equation which is reducible
to the form (3.6). Let us start with

E=0, b#0. (8.1)
From (4.11) we get
f~n (/ ﬂlﬂ) , (8.2)
g
where
/%‘4+2b20. (8.3)

We shall do the generalization in a way which preserves the logarithmic
character of (8.2). Taking

f~In (/ ﬁigﬂ) o = const., (8.4)

and additionally, to simplify the calculations ¢ = e~7 we obtain from Eq. 4.7)
U(f_) ~ fZ(a-l)_*_f‘Z(v—-l)e‘Zf”[ef"+2b]-‘2+f_2(a—1)(e4f6+63f“+62f”) , (85)

where

f > [In(=2b) + COIISt.]% , b<0. (8.6)

The exact form of the Schrédinger equation connected with this potential
is given by

2 .
{ _ he d? n ‘4(£>4l€4(5)2l+1 _ B(—C)MEB(%)QHI

2m dr?

a a
a a
) 2
@+ B P s 2 (5)!
* [6 QA} + 8ma? 2+ 1) (a)

2
+ﬁlu+”}mﬂ=0, (8.7)

2m 2
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where
A>0, B>0, C>0, D >0, (8.8)

1
r B i
— > {In{ — \ =21 . 8.9
a‘(ll(ZA)) o +1 (8.9)

The choice of ¢ as an odd number unrestricts the variable. We also get
the quantum condition arises from (3.10)in the form

and

1/2ma?\z 1 C B? 1 |

1\ 7 REvel ) 8.10

4( h? ) 2[+1[A,17+4A3/2 n+2+l‘ ( )

with p given by
1

1 12m a 2 ]2 \

Tl T IR 201 : 8.11

. [HS+A1ﬁ2(21+1> Lﬂ (8.11)

As we see from Eqs (8.2). (8.4) and (8.7) we can go back to the Schrédinger
equation with Morse potential putting

[=0, B=0 CA= Vo, C =2V, a— —2a. (8.12)

Thus

w o d? or . 1w
—— e /e “a — % Ta —_— ") = 13
{ 2m dr? + Voe 2Voe"s + D+ 16 2ma? ¥(r) =0, (8:13)

where r ¢ R

. . L 2

. 1 H h 2ma?Vy \ 2 1|~
D+ =" =F=- ‘ “nt+z)| . 14
( + 16 2ma2) 2ma? [( A2 n 2 ( )

Remembering that g > 0 we also have

1

1 2maVy \ 2
A+ = — ] 8.15
nt 5 < ( 23 ) (8.15)

what limits the number of the bound states.

To the end of this Section we will only mention the new possibilities
coming from comparison of the Schrédinger equation with the Whittaker
equation. If we do not take Eqs. (4.5) and (4.6) into account, then we are
in a position to get another condition binding f and g. Thus, for

b=0, E+0, (8.16)
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we have

(f9)~(g)*, (8.17)

what implies B
f=~1n(g), g>0 for ¢ €]qo,q] (8.18)

and [ dg—q >0.
Comparing Eqs. (3.6) and (4.3) we determine

we @O
+%+(g'>"2+(g’)*2[(/%) +(/%‘i) } (8.19)

The variety of potentials arising from this form and entering into the
pseudo-eigenvalue problems is depending on our choice of g. If we take
g = e~ 7 for example, then we get Morse potential, as the forms of (8.2) and
(R.18) are the same in this case.

9. Conclusions

As we have seen in this paper the results are obtained by the chain
of reductions, from the Schrédinger equation to the Whittaker equation
and next to the harmonic oscillator differential equation. The construction
like this enables us to replace the Whittaker equation by other solvable
differential equation, of course only this one, which is reducible to the form
of (2.16). For instance we can take the hypergeometric equation in the form
given by

d? d
{y(l—y)wﬂv—(a+ﬂ+1)y]@—aﬂ}U(y)=0- (9.1)

The change of variable

[ (V7 rdg\]? dq 7 .
y—[sm(T/?)}, o >0, /?E[O,E]v (9.2)

together with the change of function

-A1 - Az
u(q):(.f’gﬂ/z[sin(%; / %)] [cos(g / %)J v(g), (93)
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where .
n=1-d m=assrboy Loy
imply that Eq. (9.1) is transformed into
(12 1 " 1, . A (/\ — 1) g
2 2 1{A
+t599 - lg)°+
{ Vg 4 4 [sin(4 [ @)

A2(/\2 - 1) o (a+ﬂ)2 B
" 1 [COS(lzﬁf égi)]z h 4 "}U(Q) = —aBov(q). (9.5)

Now putting
k>0, (9.6)

o=

g s
we are in a position to reduce Eq. (9.5) to the form of (2.16) (A, = 1 and
B — oc), or to the form of (3.6) (A; > 1 and § — o). As a consequence we

get
Ay Az
v(q) = g“%[sin(—@ @)} [cos(—\/—E/ (_12)] o
2J 9 2J g
X 2
(—n,/} v; {sm(—[ﬁ ig-):l > (9.7)
2/ g

with (I — 1

M>1, Ag>1, a:l_%ll, (9.8)
and

a=-n. (9.9)

By comparison of {(9.5) with (4.3) we obtain equation in the form

-2 —2
(f'g)2[U(f) - F]~ [sin (?/ %({)} + [cos(—jz@/ (—i;)] + const.
(9.10)

which is analogous to (4.7), but more general (here b = 0 and £ # 0 are
taken). Three independent equations:

(f'9)* = const., (9.11)

—2
@H , (9.12)
g
dg 2

/3)} , (9.13)
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coming from (9.10) are not unique, as we can change them with the aid of
trigonometric unit. Taking for example

(/'9)? = const., (9.14)

we get from (9.10) the Poschl-Teller potential

U = B2 + kos(AI2. Fe o, 5] . (9.15)

2
(f'g)2 = [tan(%—c_’/ El;—)] , (9.16)

we obtain the Hulthén type potential in the form given by

_ e~ \2 -f _
U(f):<1_€_f)+1ie_f_, F>o. (9.17)

or, choosing

This manner of doing leads us to numerous solvable potentials but to catch
this method it is enough to consider only few of them.

We should stress significance of the unitary transformations in gener-
ating new solvable pseudo-eigenvalue problems what is also noticeable in
this paper (the form of Eq. (2.16) can be obtained with the aid of unitary
transformation acting on the same equation with & = 0). Joining those
transformations into this method gives new results which will be presented
soorn.

The author would like to thank Professors J. Migdalek, J. Olszewski, E.
Kapuscik, and Dr K. Koc for many helpful comments and suggestions.
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