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The Hilbert space of tensor functions on a homogeneous space with the
compact stability group is considered. The functions are decomposed onto
a sum of tensor plane waves {defined in the text), components of which
are transformed by irreducible representations of the appropriate transfor-
mation group. The orthogonality relation and the completeness relation
for tensor plane waves are found. The decomposition constitutes a unitary
transformation, which allows to obtain the Parseval equality. The Fourier
components can be calculated by means of the Fourier transformation, the
form of which is given explicitly.

PACS numbers: 02.30. Px, 02.40. Vh

1. Introduction

The harmonic analysis of a scalar field on a homogeneous space X =
G/K is well developed. There is a general theory and many particular cases
are completely solved. For details see, e.g., [1]. However, the harmonic
analysis of a tensor field on a manifold might be useful in various physical
applications. The manifold is often a homogeneous space. In the case of a
tensor field new problems arise because, apart from the theory of group rep-
resentations, differential geometry has to be involved. In terms of the group
theory new (irreducible) representations of the transformation group GG may
appear in the Fourier decomposition. Actually, vector bundles on homoge-
neous spaces can be used to investigate some classes of unitary representa-
tions, see ¢.g.. [2]. We are interested in the decomposition rather than in
the creation of representations. Until now several homogeneous spaces have
been studied in such a way on different occasions. Quantization of a massive
particle leads to spinor fields on the three-dimensional Lobatchevsky space
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of four-momenta [3]. Another example is the vector of the electomagnetic
field on the two-dimensional sphere, which was considered in [4].

The present paper gives a general and efficient method of producing
the harmonic analysis for a wide range of homogeneous spaces whose sta-
bility groups K are compact, provided that the harmonic analysis on the
transformation group is known, namely, the Plancherel measure and plane
waves (eigenfunctions of invariant operators in the enveloping algebra) on
the group G are given. As far as the plane waves are considered, one can
construct the maximal set of algebraically independent invariant operators
using, e.g., the generators of the one-parameter subgroups of G. Then the
eigenfunctions can be calculated as the solutions of linear differential equa-
tions. The Plancherel measure is of crucial importance since its explicit form
is still not known for all Lie groups. However, most of the interesting cases
are completed. For further details see, e.g., [1}.

We shall use the term “Fourier” or “harmonic analysis” precisely for what
follows:

1. “Tensor plane waves” on the homogeneous space X = G/K. These
tensor functions are supposed to satisfy the completness relation and the
orthogonality relation.

2. The spectral synthesis formula — the decomposition of a tensor func-
tion onto a sum (an integral) of the plane waves. The components have to be
transformed by means of irreducible representations of the group G during
a transformation of the function on X.

3. The Fourier transform, which allows to calculate the Fourier compo-
nents integrating the original function with the appropriate plane wave over X.

4. The Parseval equality, which expresses the unitarity of the Fourier
transformation.

2. Formulation of the problem

Let X = G/K be a homogeneous space and its transformation group G
be a unimodular Lie group. The action of ¢ € G on x € X is denoted in the
following way

g: Xz —>greX.

Formally speaking, ¢ is a function of coordinates on X.

Let K C G be the stability subgroup of G for a fixed point zo € X.
K is required to be compact. We identify elements from X and G/K:
X232 ~[gl=¢K € G/K. where x = gzo.

One can show that such a homogeneous space admits:

1. a positive definite metric 7, which is G-invariant;
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2. a G-invariant measure dz = d(gK’) given by the equality [5]:

[as 19 = [ dor) [k figh),
G X

K

where dg, dk are the Haar measures on G and K, respectively.

Consider the Hilbert space of square integrable (according to the measure
dz) tensor functions on X. This Hilbert space is equipped with the scalar
product. for u,v € H we have

me:/mwmmmmh

X

where (for a fixed point x € X) (u(z)|v(z))r, = u'(z)n(z)v(x) is the scalar
product in the tangent space T, and ! denotes the hermitian conjugation.
We shall use the same symbol for any tensor power of a matrix (here 7).
The multiplicity of the product is always evident from the context. The
functions from H can be understood as the components (in the coordinate
basis) of a contravariant tensor field. A (passive) transformation g € GG of a
tensor field defines a unitary representation U of the group G on H

1

U(g)u(z) = §lg~" z)ulg™"2),

where the matrix element [§(2)]! ;= gﬁ—;—(m). We shall find the decomposition
of a function from H onto irreducible (Fourier) components. Our method
is based on the well developed harmonic analysis on the group G. In accor-
dance with the standard procedure (slightly modified) from the theory of
induced representations one can move functions from X onto G. It is easy
to show that H is unitarily isomorphic to the Hilbert space H of square
integrable functions with domain in G and range in T ~ T, which fulfil the
following condition

Vke K,geG,ue H:alg) = L(k)a(gk), (1)
where )
L(k) = n'*(z0)k(z0)n™"/*(w0).
The scalar product in H has the form
(o) = [ dg (@lg)lo(@))r,
G

where (|)7 denotes the scalar product in the space T' with the unit bilinear
form

(@(g)|8(g))T = ul(g)v(g)-
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The isomorphism H — H is given by the formula

i(g) = n"/*(z0) g~ (geo)u(gzo)-

We define on H an (equivalent to U) representation U constructing the
commutative diagram

A U(g)u
I

One should make a few comments.
1. The unitarity of U (U) is the consequence of the fact that the metric
n is G-invariant. Namely,

n(z) = §7 (x)n(gz)§(=).

2. The representation [7 acts independently (!) on each component of i
as the left regular representation. In fact,

U(g)a(h) = a(g™"h).

It means that H is a subspace of @, H: and U ~ d x Uc|g, where

=dim T; H. ~ L*(G,dg); U; denotes the left regular representation of
G, and the restriction |5 corresponds to the condition (1)!. Hence to carry
out the decomposition of U one can treat each of its components separately
choosing the Fourier components so that the condition (1) holds.

3. L can be understood as a unitary (according to the scalar product
{|)T) representation of the group A acting on T'. The unitarity is due to the
K-invariance of 7.

4. U is the representation induced on G by the representation L.

5. We assume, without loss of generality, that L is an irreducible repre-
sentation of the group K. If L = @, L,, where L, denotes an irreducible
representation, we have U/ = &, Ua, U, being the representation induced
on G by L,. Then in what follows, we focus on one component U,. In that
case one should add an extra summation over o.

! We shall use the same letter for equivalent representations. It makes the notation
simpler and emphasizes their equivalence. On the other hand, for isomorphic carrier
spaces we shall use different symbols, which helps to differentiate spanning bases.
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3. Analysis on the transformation group

From the generalized Peter-Weyl theorem [1] one knows that, for

ut € H.
Up ~ @/ du(3) DU, (V)
é q
HE = @/ du(3) D Hi()
G q

#(9) = [ dnN) L e(X, )i (V).
% rq

Let us clarify the notation. G is the dual (the space of all irreducible repre-
sentations) of G. dp is the Plancherel measure on G. )\, p, ¢ are multiindices
which enumerate the eigenvalues of two-sided-, right-, and left-invariant, re-
spectively, operators on £?(G, dg). The exact assumptions about these op-
erators are given, e.g., in Ref. [1]. For the sake of simplicity we assume
that the left- and right-invariant operators have purely discrete spectra.
H ’(A)( H, ",(\)) denotes a G-irreducible subspace of H' - and forms the

carrier space of the representation Uy(A)(x~ Uy (X)) Ly (A), which is a
G-irreducible subrepresentation of Uz. e,4(A, ) is a plane wave on G and
simultaneously a matrix element of the representation U (as well as of the
right regular representation). It means that for a certain basis {e o(A)}p in

the space H ’(A) this function can be represented as foliows

(C’;q(A)‘{’YC(Q)fiq()\»H;(A) = epr(A, 9).

The right hand side of the above formula depends neither on ¢ nor on gq.
One can say that the bases in the spaces H;()\) for various ¢ and ¢ are
“adjusted” to one another or, formally speaking, there exists an intertwin-
ing operator from H‘i(/\) into H;z()\) which transforms the basic elements

H;()\) 3 e;q(/\) — em
tuting the Fourier transform of #‘. They are tra,nsformed (by an element
g € () according to the transformation law

) € Hé:(/\). Finally, u ,(A) are components consti-

C ) E (o)) Zep, X, 91ty (N).

Let us split every G-irreducible space Hl()\) onto K-irreducible compo-
nents. We have
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Nk =@ n(l.)) x Uy,

leR
n(l,\)

@ @ H(lu)q

leh o=

where K is the dual of the group K'; U; is a K-irreducible subrepresentation
of U(MN)|x: H(lla)q(/\), being a K-irreducible subspace of the space H,(A),

is the carrier space of Uj; | € K classifies (differentiates) non-equivalent
irreducible representations of K. n(l,A) > 0 is the multiplicity of U; in

|1\' and the index « enumerates isomorphic (in the sence of the action
of U(A)|x) subspaces H(h (A) of the space H;()\).

We choose the base {epq()\)}p in H,;(/\) demanding from each vector

e;;q(/\) to be completely included in one of the spaces H (ila)q(/\). Then the

index p (as well as ¢) can be represented in the form? p = (lam), where
m = 1,...,dim H(h)q()\) < oo enumerates the orthogonal directions in
H{ayy(A)-
spaces H('"la)q()\) with different o or A (not only 7 or ¢ as it is for the whole
1eplesentation Uz) but the same [ are undistinguishable. Thus we can “ad-
just” the bases in every space H(la) (A) (for different « or A) so as to obtain

()\). Moreover, from the viewpoint of the representation Ug|x the

Vk e N : <(j wm)q 'l E e(l’o 711’)q()‘)>H(§(,\) = €lam)| la'm’) ()‘ k)
- Oll’ooa’tmm (/‘)7

w hme tm s (k) denotes a matrix element of the l-representation of the group

. We insert this formula into the decomposition of #* using the Makey’s
(lecomposition of an element ¢ = sk € G, where s € S is uniquely determined
by ¢ for a certain Borel set .S C G. We obtain

dL(g) :/d“()‘) Z ep(lozm)()“S)tfnn(k)a;(lan)(/\)‘

& plaomn

Let us choose an orthonormal basis {e;}; in the space T upon which we
impose the following condition

(eilL{k)ej)y = t2(k),

? The features of the indices p. q are determined by the set of left- and right-invariant
operators in the enveloping algebra. Such a representation is possible if we include
K-invariant. operators into the set of left- and right-G-invariant operators, which is
natural.
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where Iy € K is the identifier of the representation L. Such a property
associates the basis {¢;}; in T with the basis {e(l Om)q(/\)}m in Hp (M)
(for any i, ¢. o, or A\) making them conjugate (up to a unitary isomorphism
of Hilbert spaces) to each other. Now, we introduce new Fourier components
basing on the vectors ¢;

7

upq(

A) = itd (A)e.

Py
Let us make a few notes.

1. Only when L is irreducible, as in our case, is the condition on {¢;};
consistent.

2. During a transformmation of the coordinate system on X the basis
{e;}; is transformed by means of an orthogonal matrix. Indeed, since the
matrix element ¢,,(\. g) does not depend on coordinates on X neither does
the element t’j‘}(k). Whereas the madtrix of the representation L does depend
on coordinates and in new ones 2’ = 2’ (z) it is expressed by

L'(k) = 'V k! (xh) ' 2 (),

where k' = 2’ o k o, which yields that

~ -~

= ¥'(xo)k(wo)E(2p)

and, by definition. [at’(ar)]ij = Z5-(z), €y = 2/(wo). On the other hand, the
transformation law of

" (20} (&) (z0) = (o)

implies ~
02 ag)a! (zo)n~ 2 (wo) = O,
where O is an orthogonal matrix. Cionsequently,

L'(k) = OL(k)O™ . ¢'; = Oe,

! "/
and (¢/;|L'(k) ,)p = (e;|L(k)e;)T.

3. A “rotation” of the Fourier transform in the space T' does not influence
the form of the transformation law (by an element ¢ € G) of the Fourier
components. One readily verifies that the transformation law for the new
components remains nunchanged:

( ( pq § :6])7 )‘ J Iq(/\)
Therefore, the new components are “good” Fourier components meaning they
are transformed (as the previous ones) by irreducible representations of .
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The essential condition (1) can be rewritten now as follows
T € K 1oy (X) = D o (K1 (5) & 15y (A):
jn

It can be fulfilled if and only if
& omy (A) = 472001, 8im tipar(A)

for a certain (normalized) d@,,(A). Thus

i) = a7 [ du(N) 3 €pptgom) (A, )2 ) (Vi
3 paim

where B
X={reG:n) Lnlio,N) 2 1}.

One should note what follows.

1. The above formula is an interesting connection (through é;,,) between
the geometrical structure (the index ) and the algebraic structure (the index
m).

2. Only if [ = Iy does the formula make sense. It is because, exlusively
in this case, the indices ¢ and m enumerate directions in isomorphic spaces.

3. The components i,,(A) reveal the interpretation of the condition (1).
This condition zeroes the components lying in all G-irreducible subspaces
H;(A) = H{,am)(k) for which [ # lp or 1 # m. What is more, it demands of
components from subspaces with various i (= m) to have the same values.

4. The components i,,(A) are independent (in the sense of the condi-
tion (1)).

5. Due to the isomorphism H — H ., the transformation law of Upa(A) 18
universal both for a transformation of @ and of u. Moreover, the represen-
tation {7 mixes neither components with different indices ¢ nor those with
different ¢. Hence during a transformation of @ by an element g € G the
independent components are transformed according to the already known
law:

U(9)8pa(X) = U(9)ipa(A) = D €pr(X g)iralN)

and in this sense they constitute “good” Fourier components.
6. The decomposition of the representation U is visible from the decom-
position of 4. We have

0 ~ @/ du(\) n(A) x U(A).
el
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7. The above decomposition of U is in perfect agreement with the result
straightly obtainable from Mackey’s generalization of the Frobenius Reci-
procity Theorem [6].

4. Analysis on homogeneous space

Let us inverse the isomorphism of functions on X and G and utilize it in
the decomposition of @. The dependence on k, as one could expect, vanishes
after taking into account the action of the matrix L(k) on the vectors ¢;. In
this way we obtain

u(z) = d‘1/2/(lu(/\) Z ep(lpam) (A s).§(a:0)77'“1/Z(xo)emam(}\),

X pom

where © = szg.
We define a tensor plane wave on X:

epa(A2) = d7V2 " e 0am) (A, 5)8(z0)n ™2 (o) em.

Then we have

u(x) = /d#(’\)zez’a(’\’w)ﬂpa()‘)-
X pe

In many applications the group of matrices k(zo), k € K, consists of
the totality of matrices preserving the form 7n(zg). In that case the general
solution of the G-invariance equation in the point z¢ is the matrix

§(z0) = 17 (gzo) M *(20) k(20)

for a certain & € K. Then one can choose the set S C G so that for a given
g=skeG ‘. .
$(xg) = 72 (s20)n' ¥ (20)

and a plane wave takes an elegant form:

Cpa ()‘ ‘17) = (]~1/2 Z ep(lo(xm)()"- '9)77—1/2(:5)6771-

We have achieved the main goal of this paper - the spectral synthesis
formula. Now. the Parseval equality is easy to obtain from the analogous
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formula for the group G called the Plancherel equality [1], which in our
notation has the following form

/{[J at(g)o(g) /du Zupq(/\
G

P pgi

Let us replace the functions on G and their Fourier transforms for the ap-
propriate quantities on .X. Integrating over K (as the dependence on k
vanishes) leads directly to the Parseval equality:

/dru /du Zupa

The Plancherel equality is equivalent to the orthogonality relation of plane
waves if the Plancherel measure dy is an absolutely continuous function of
the Lebesgue measure dA on the set G [1]. Namely, du(X) = p(A)dA and

one has

/ dgeps O glerar (N ) = 1= (VSN = X)pprbogr.
G

One can prove easily, by virtue of the G-invariance of 7, that the above
relation implies the orthogonality relation for tensor plane waves:

/ de et (0, 2)0(2)epar (N, 2) = 1 (N)SA = M)y
X

If the set of invariant operators contains an elliptic operator, which is typical
of many applications. one can invert the spectral synthesis formula [1]. For
the group & one has

iy (V) = [ dg X9 (9)
G

After a few obvious steps we get

/ D DETRIERY et /2 (20)s 1 () u(w),

where @ = s2g. Finally, utilizing the G-invariance equation for 7 one finds

iy (N) = /(lw eb (2 )n(z)u(z).

X
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The possibility of inversion aliows to formulate the completeness relation.
An elementary substitution of the spectral svnthesis formula into the Fourier
transform implies

/d,u ZGPO (A x pu()\ ) =6(z - 2"\ (2),

pCx
X F

where 4 is the Dirac distribution according to the measure dz.

5. Summary

We have constructed a set of functions on a homogeneous space called
tensor wave planes. They are transformed characteristicaly both for tensor
objects and for basic elements of irreducible representations of the transfor-
mation group. The algebraic and geometrical structures are closely related
to each other. Despite the crucial restriction which is the requirement of
compactness of the stability group. the obtained result is remarkable for
its generality. The compactness is an essential assumption in our approach
and the author can not see any easy modification of the construction which
would allow to abandon it.

Our method omits the necessity of finding the invariant operators on
L2(X.dx) which come from the outside of the center of the enveloping al-
gebra. This problem has to be dealt with in the standard approach to the
(scalar) harmonic analysis on homogeneous spaces [1]. Such additional oper-
ators may appear when the stability group K is “small” and they introduce
their own summation indices to the spectral synthesis formula. In our case
the role of those indices is played by the multiindex a.

To sum up. we recall the most important formulae. The spectral synthe-

sis formula
u(x) = /(1# pra (A upa()‘)
¥ po

The Fourier transform
i (N = [ de el (A 2)n(@)u(),
X

The Parseval equality

[ ettt = / AN S Ta (Ve (V).

X per
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The orthogonality relation

/d:c oA 2)N(@) eprar (N 2) = 7 H AN — N)Spprbaar,
X

and the completness relation

/d,u()\) 3 epal(A 2)el, (A, 0") = 8(z — 2"~ (2).
J

po
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