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Effects of final-state interactions in nonleptonic decays of charmed mesons

are studied in the framework of quark-diagram approach. For the case of u-
d-s flavour symmetry we discuss how the inelastic coupled-channel rescat-
tering effects (and, in particular, resonance formation in the final state)
modify the mput quark-diagram weak amplitudes. It is shown that such
inelastic effects lead to the appearance of nonzero relative phases between
various quark diagrams. thus invalidating some of the conclusions drawn
in the past within the diagrammatical approach. Applicability of quark-
diagram approach to the case of SU(3) symmetry-breaking in Cabibbo once-
suppressed D decays is also studied in some detail.

PACS numbers: 11.30. Hv, 11.80. Gw, 12.39. -x, 13.20. Fe

1. Introduction

Various theoretical models of nonleptonic decays of charmed mesons have
been developed over the years. The most general and complete one is the di-
agrammatical approach of Chau and Cheng [1-3]. The factorization method
[4] is just a special case of this approach. Another subset of diagrammat-
ical approach is singled out by large- N, arguments [5]. The basic problem
with the diagrammatical approach is the way in which final-state interac-
tions (FSI) and SU(3) breaking are treated. The importance of FSI has been
stressed by Lipkin [6]. Sorensen [7], Kamal and Cooper [8], Donoghue {9,
Chau |10]. Chau and Cheng |11]. Hinchliffe and Kaeding [12], and others.

Complete descriptions of nonleptonic decays must take into account final-
state interactions. Since full dynamical calculations of these effects are not
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possible at present, a meaningful comparison of theoretical models with
experiment requires at least a phenomenological estimate of FSI. Such an
approximate estimate may be obtained using e.g. unitarity constraints [13].
Alternatively, one may consider approaches based on approximate flavour-
symmetry groups. Their predictions include automatically all effects of those
FSI which are invariant under these symmetries [6]. The diagrammatical
methods of Chau and Cheng provide an approach complementary to that
based on flavour-symmetry group [6, 12]. It has been argued [9] that “it is
folly to proceed with the quark-diagram approach without considering these
(2.e. rescattering) effects” since “rescattering can mix up the classification
of diagrams”. Although the latter statement is obviously true, one should
realize that the quark-diagram approach — being complementary to that
based on flavour symmetry groups — “deals with effective quark diagrams
with all FSI included” [2].
The aim of this paper is:

1. to examine in some detail in what way the introduction of flavour-
svmmetric FSI in the form of coupled-channel rescattering effects renor-
malizes the input quark-diagram weak amplitudes (with particular em-
phasis on resonance formation in the final state) and to compare the
results thus obtained with the treatment of FSI adopted in the dia-
grammatical approach so far (Section 3), and

2. to discuss the applicability of quark-diagram approach to the description
of SU(3)-symmetry breaking D° decays into 7w and K K, (Section 4)).

2. General

In this paper we will consider how weak-decay quark-diagram amplitudes
are changed when final-state rescattering effects are added. The general ap-
proach to the treatment of final-state interactions is reviewed in Refs. [7, 14].
Consider a weak decay of charmed meson D into n two-body channels. Let
w be an n-dimensional vector formed by the relevant decay amplitudes in
the absence of FSI. We describe strong interactions in the final state by an
nxn matrix Sg:

So =1+ 2ip'/?4p'/?, (1)
where the diagonal matrix p contains the relativistic phase-space factor for
the relevant two-body channels

2 fpc-m.
Y _ .th ‘

/)J - \/g @(S S] )? (2)
ki™: = centre-of-mass momentum for channel j(j=1,2,...n), sﬁ-h = thresh-
old value in channel j. Final-state interactions may include quark-exchange
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[9], resonance formation [4], elastic scattering etc. Of these it is resonance
formation that is in general expected to affect naive approaches most signif-
icantly [6-9]. For our purposes we will use the K-matrix parametrization of
the strong-interaction matrix A:

A=(01-KM)K, (3)

with M = M(s) being the diagonal matrix given by the kinematic Chew-
Mandelstam functions M;(s) for various two-body channels, and satisfying
M;(s + i) — M;(s — ie) = 2ip;(s). The K-matrix has no singularities
other than isolated poles corresponding to ¢g bound states. The geometric
series of Eq. (3) describes then the coupling of such resonances to meson-
meson continuum states (see e.g. Ref. [15]). Let us denote by W the n-
dimensional vector describing weak decay amplitudes corrected for final-
state interactions. Vector W must be related to the original input weak
decay amplitude vector w by the matrix equation [7, 14]

W = Dw. (4)

Equation (4) admixes into a given decay amplitude contributions from all
coupled channels.

As discussed in Refs. [7, 14] there are various ambiguities in the deter-
mination of D. With our representation of strong S matrix in terms of the
K-matrix one has

D=(1-KM)™. (5)

Relationship given in Eq. (5) corresponds to the expectation that at high
energy the outgoing mesons behave like free particles (D — 1). Some impor-
tant features of Eqs. (4), (5) are seen already in the one-dimensional case.
Let n = 1. The Chew-Mandelstam function M has in general nonzero real
and imaginary parts. The real part leads to resonance mass shifts induced
by coupling to meson-meson continuum. If it may be neglected (compare
Refs. [7, 16] or absorbed into the definition of K-matrix (see Ref. [15]) we
have M = ip and we obtain

S=1+2 — = exp(2i4) , (6)

1—-:K

with i
K =pK =tané. (7)

Then Egs. (4)-(6) yield

1

W= ———
l—itanéw

= cos(6) exp(id)w (8)
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in agreement with the general requirements of Watson’s theorem [17]. Van-
ishing of the FSI-corrected amplitude (8) at the position of the resonance
(6 = 90°) should be understood as an effect related to the neglect of a “di-
rect” coupling between the decaying state and the final-state resonance. This
is a characteristic (though idealized) feature of “indirect” couplings to FSI
resonances [7, 16]. In the case when the real part of the Chew-Mandelstam
function is not neglected, Eqgs. (5), (8) lead to suppression (instead of vanish-
ing) of the FSI-modified decay amplitude at pole position. Such suppressions
would dissappear if “direct” couplings through the weak Hamiltonian were
allowed between the D-meson and the resonances (compare the discussion in
Refs. [7, 16]). In the factorization approach such “direct” couplings to final-
state resonances do vanish. For example, in the case of Cabibbo-allowed D°
decays the W-exchange amplitudes are argued to be negligible. In the more
general quark diagram scheme of Refs. [1-3] there may be some nonvanishing
“direct” coupling to a resonance. For the coupled-channel case Egs. (4), (5)
satisfy the requirements of the generalized (many-channel) Watson’s theorem
[14]). They describe “indirect” final-state interactions proceeding through a
formation of a resonance coupled to many meson-meson channels. As we
shall see in this paper explicitly, such inelastic rescattering effects have not
been included in the diagrammatical approach of Refs. [1-3] so far. For
reasons related to the introduction of FSI the diagrammatical approach has
been criticised by Donoghue [9], and, very recently, by Hinchcliffe and Kaed-
ing [12]. The question of how the inelastic effects change the overall picture
of quark-line approach was first examined in Ref. [9]. Here we will show
how the problem gets simplified conceptually, and — in the most impor-
tant case of final-state ¢g resonance contribution — also computationally,
through diagonalization of the K (S) matrix. Diagonalization will be dis-
cussed on the example of Cabibbo-allowed parity-conserving decays of DY
(and D}) into the PV (pseudoscalar meson + vector meson) final states.
Results of a similar treatment of the Cabibbo-allowed parity-violating de-
cays DY, D} — PP will also be presented. Finally, we will consider the
interesting case of Cabibbo-suppressed parity-violating decays of D° into
the 7x and KK channels where SU(3) breaking must play a significant role.
In all of our examples we will neglect complications due to possible presence
of coupled channels other than those listed above.
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3. Cabibbo-allowed decays of D° and D}
into PV and PP final states

3.1. Parity conserving PV decays

3.1.1. DY — PV The parity-conserving part of weak interactions induces
DP decays into eight possible final p-wave PV channels: K~ pt, Fopa., Rw.
nsfxo and K*— 7T, F*Ono, Tonns, SR°.

In the first four decay channels (below called PV') the strange quark from
the weak decay of the charmed quark ends up in the pseudoscalar meson P,
while in the latter four decay channels (called ¥ P) this strange quark ends
up in the vector meson. The decays proceed through diagrams (a), (b), (¢)
from Fig. 1.

:
)AK
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(f)
Fig. 1. Quark-line diagrams for weak meson decays: (a), (b) factorization;
(¢) — W-exchange: (d) -— annihilation; (¢) — “horizontal penguin”; (f) — “vertical

penguin’.
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Let us first consider the case when there are no final-state strong in-
teractions (S = 1). By a,b,c (a', ¥, ¢') we denote reduced matrix elements
corresponding to diagrams (a), (b), (¢), for PV (V.P) channels respectively.
(In factorization approach the contribution from diagram (c) is assumed
negligible.) Without FSI all these matrix elements are real. Evaluation of
contributions from the diagrams of Fig. 1 yields the following weak decay
amplitudes

(Bplapluwl D) = e +b).
(Fo)alulD?) = <=6 =20 =30),
(R olulD") = ~—(b+c).
(K |w|D°) = —c, 9)
and
(K m)ajafulDF) = ——z(af +1).
() alulDF) = =0/ =24 = 30).
(B ol D) = = +)
(6K °|w|D°% = —c'. (10)

Subscripts 1/2 and 3/2 denote total isospin of Kp and K 7 states. Depen-
dence on Cabibbo factors is suppressed both in Egs. (9), (10) and else-
where in this paper. That is, all expressions on the right-hand side of
Egs.  (9), (10) are to be multiplied by the Cabibbo factor of cos? O¢:
—(a+b)/V3 = —cos?Oc - (a+ b)//3 etc. The normalisation is such that
matrix elements a. b, ¢ etc. are identical with those used in [1-3].

As already mentioned in the previous Section we are interested in those
FSI in which there is an “indirect” ¢§ resonance formation, i.e. resonances
are accessed through an intermediate meson-meson state only. We do not
consider a “direct” coupling between the decaying state and the ¢g resonance
(such a coupling is zero in the factorization approach). If there is such a
coupling it should be included already in Eqgs. (9), (10). Later, it should
become clear that our general conclusions remain valid also when other in-
direct FSI as well as “direct” coupling to resonances are taken into account.
The final-state coupled-channel processes to be considered are visualised in
Fig.2.
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Fig. 2. Resonance contribution to final-state interactions.

Since the intermediate state is a pseudoscalar state (with kaon flavour
quantum numbers), the flavour structure of the K matrix may be easily
calculated from the product of two F-type (VP — P’) couplings. (In gen-
eral, one chooses symmetric(antisymmetric) D(F) coupling Tr(M;{M,, M3})
(Tr(M,[M2, M5)])) when the product of charge conjugation parities of the
three mesons is positive (negative).)

This gives the following SU(3)-symmetric strong K matrix for the PV
subsector:

3 2\
K=|% 1 L., (11)
\/—5 A
: 7

where the channels are ordered (Kp), /2> fow, nsf* and “k” is a func-
tion of s, which in the simplest case of a single resonance is of the form
k = g?/(m? — s). In the (Tfp)3/2 sector there are no ¢g poles and the K
matrix vanishes. Fixing our attention on this simple case is sufficient for our
purposes.

The eigenvalues and eigenvectors of matrix (11) are:

W mzﬁwwmm+mm+fmfﬁ,
=0 [2)= 7 (—V3(Ep)rje+ (K'w) + V20K ™)),
M= 0 [3)= = (VI(EW) - (K" (12)

Sl

Equations (9) may be easily rewritten in the new basis (for the I =1/2
sector):

(1]w]D%) = ——=(a+3c),

S=

(2wlD% = —=(a—b),

&I*‘

(3|w|D% = ——=b. (13)

o=
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Let all the SU(3)-related intermediate meson-meson states are degener-
ate. Then, we have

M]\"p = MI\"W = A/[’/]sR" = M (14)

In the new basis Eq. (4) reads

(JIW|D% = lw| D%, (15)

YL
1- M
with j =1,2,3. Eq. (15) is as simple as Eq. (8) of the standard one-channel
case. Going back from Eq. (15) to the old basis (and adding the expression
for the I = 3/2 decay amplitude) one obtains

((Kp)aplWID%) = (4 + B),

SI

(Kp)1j2lWID°) = —=(B ~ 24 ~3C),

élH

(Kw|W|D% = — (B+C)

i

(. K°|W|D%) = ~C, (16)
with
A=a,
B =,
a 1
= ¢ - (—— =1}, 17
C (+(C+3)(1_/\1M ) s (17)

where vanishing of A, and A3 has been taken into account.

From Eqgs. (16), (17) we see that the case with resonance-induced coupled-
channel effects differs from the no-FSI case by a change in the size and phase
of the C' parameter only:

MM

1—- MM’ (18)

C=c—-C=c+ <c+a)
In the case when M = ip the complex factor 1/(1~A; M) in the second term
is of the form cos(d) exp(id) and at the resonance position (6§ = 90°) one
obtains a net total contribution to C equal to —a/3. While the “indirect”
coupling to a resonance affects the second term in Eq. (18), the “direct”
coupling contributes to the first term.
[n conchision, after including resonance-induced coupled-channel effects,
the reduced matrix elements corresponding to diagrams () and (b) remain
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unchanged and real, while the matrix element of diagram (c¢) acquires new
size and nonvanishing (relative to (a) and (b)) phase. The coupled-channel
effects may generate a sizable nonvanishing effective (¢)-type diagram even
if the original (¢)-type amplitude was negligible as assumed in many papers
[4, 7, 9]. This is shown in diagrammatic terms in Fig. 3. Eq. (18) is a
mathematical representation of how FSI-modified quark-diagram amplitudes
are obtained. When rescattering reactions proceed by quark exchange. the
corresponding A matrix has three nonzero eigenvalues. The counterparts
of Eqgs. (17) are then less transparent and more complicated leading in
particular to the appearance of Zweig-rule violating “hairpin” diagrams [18].
In this paper we will not consider these quark-exchange contributions in
detail.

!
A
A

(a

—

Fig. 3. Generation of {¢)-type {exchange) amplitude from {a)-type (factorization)
diagram through {indirect) resonance formation

The procedure applied above to the PV sector may be repeated in the
V P sector. In this sector the K matrix has the form given in Eq. (11) (with
decay channels ordered (K ), /25 F*Oa)ns. @57{0) and the same is true for
the off-diagonal (PV — V P) part of the total K matrix. Introducing three
eigenvectors |j') (j' = 1,2,3) of the ¥ P sector (given by formulae (12) with
(Fp)l/-z. w, nsf*o replaced by (F’n)l/z, f*onns. qb[_{o respectively one
obtains the total ' matrix connecting all eight PV channels:

3 30
3 3 0 ..
K=|o000 .. |-~ (19)
with rows and columns ordered |1).]1%).]2),|2") ... . Diagonalizing the total
K matrix and repeating the procedure outlined earlier one obtains — in

addition to Egs. (16) — the following expressions for the FSI-modified V' P
decays:
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(K'm)3.,|lW|D°% = ——3(A'+B'),
(R m)ialWIDF) = (B =24 = 3C"),
7 1 ! '
(K 1,5|W|D% = ——ﬁ(B +C",
($K°|W|D% = —C". (20)

The reduded matrix elements of Egs. (16), (20) are now given by

A=ua,
A =d,
B = b,
B/ — b,,
C-C'=c-¢,
C+C" = c+c + (cosdexpid — 1) (c+c'+a+a/)» (21)

3

where tan § = 6xp and we have already assumed M = ip. Since this simpli-
fying assumption does not affect our argument (which rests solely on com-
plexity of 1/(1 — A; M) factors) we will assume M = ip in the remaining part
of this paper. In conclusion, including resonance-induced coupled-channel
effects in the SU(3)-symmetric case results in a change of size and phase of
matrix elements of diagrams (¢) only. Since in the diagrammatical approach
the size of (c)-type amplitudes was treated as a free parameter [1-3] anyway,
the only observable effect of FSI is the appearance of (in general different)
nonzero phases of (' and C’.

In Refs. [1-3] an attempt to include the effects of FSI has been made.
To permit easy comparison with expressions derived above we rewrite below
a few formulae from Table I of Ref. [3] (SU(3)-symmetry case):

(Rp)ayal WD) = —=(A+ B) expisls.

%I

((Kp)y2lW|D% = (2A-B+3C) expzélﬂ,

\/“
f
%

(Km)3alWID) = —=(A' + B) expidly”,

(K"m)1/2lWID%) = —(2A' = B'+ 3C") expid{};"
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(SRKCIW (DO = C expis®™
(7?*07)n5|W|D0) = (mixture). (22)

In papers [1-3] amplitudes A, B, C, etc. (Eq. (22)) were real while the phase
factors were allowed both real and imaginary parts in the hope of taking
into account all inelasticities and phase shifts possible. After comparing
Eq. (22) with Egs. (16), (20), (21) we see that resonance contribution does
not follow the ansatz of (2, 3]: In Eq. (22) the relative phases of contri-
butions from diagrams (a),(b),(c) are zero, while explicit consideration of
resonance-induced inelastic coupled-channel effects leaves relative phases of
A, B, A, B’ zero, but adds an important nonzero phase to C' and C’. Thus,
analysis of Ref. [2, 3] does not take into account effects due to the possible
formation of resonances in the final state even in the case of SU(3)-symmetry
(though elastic scattering is taken care of). (See also the paper of Hinch-
cliffe and Kaeding [12] for a general comment on the inclusion of FSI in the
diagrammatic approach.)

3.1.2. D} — PV. In this case one obtains the following FSI-modified
expressions:

((pm)2lW|DT) = 0,
((pr)|W|DT) = D - D',

(wrt|W|D}) = -—}—Q—(Dw'),

(pnt|W|DT) = -A',

1
WD) = ——(D+ D'
(pTmsIWIDT) \/5( )

(pT|W|DT) = —A,
(K*K°|W|D}) = -B - D',

(KK+|W|D}) = -B'— D, (23)
with
A=a,
A =d,
B =b,
BI — b,
D+D =d+d,
D-D" =d-d + (cosdexpid — 1)(d—-d - é—(b - b)), (24)
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with appropriate §. From Eqs. (23), (24) we see that, as before, matrix
elements corresponding to diagrains (), (b) are not affected by FSI, while for
(d)-type diagrams it is only the difference D — D’ that gets modified. Even if
one starts with d —d’ = 0 (expected on the basis of flavour « < d symmetry,
see Fig. 1), the coupled channel effects generate a complex, nonvanishing,
effective D — D’ proportional to b — V.

3.2, Parity-violating PP decays

In the parity-violating s-wave decays D% D} — PP the final-state inter-
actions are most probably dominated by formation of scalar resonances [19].
We accept here that in the S = —1 sector under discussion scalar resonances
are susceptible to a simple ¢§ description (see [15]) so that the treatment
of the previous section may be applied. Proceeding as before one can then
derive:

(Rm)3pW|D%) = — 4+B)

Sl

(K1l WIDY) = —(B—24-3C),

I
Si-

|
-
[

(K n,.s|W|D°% (B+C),

(K |W|D% = —C, (25)

with 4 =a. B=band ' = c+ (¢+ a/3)(cosdexpid — 1) and appropriate
0 . As noted in Ref. [7] one may justify the neglect of “direct” coupling
to scalar resonances also by the fact that the overlap of P-wave ¢¢ resonant
state with pointlike W -exchange is expected to be small. Even if the input
quark-model (¢)-type amplitude is negligible [7], the effective ¥ -exchange
amplitude may be significant.

Similarly. for D} decays we get

(xt7°|W|DYF) = 0,
<7T+77715“'V|D:-> = _\/§D7
(I WIDF) = -
(K*E°\W|D}) = —(B+ D), (26)
with A =a. B=band D = d+ (cosdexpd —1)(d+b/3) and appropriate 4.
Examples of Cabibbo-allowed DY and D} decays studied in this and pre-

vious subsections exhibit the way in which quark-line-diagram approach is
affected when (indirect) ¢ resonance formation in the final state is taken into



Nonleptonic Charmed Meson Decays:Quark Diagrams ... 1617

account. In phenomenological approaches in which sizes of matrix elements
constitute free parameters, the only observable effect of such contribution
from resonances in the final state is the appearance of non-zero phases of
the (¢) and (d)-type amplitudes. (Clearly, if “direct” coupling to resonances
is allowed the (c).{d) amplitudes are complex already at the input level).
Thus. the quark-diagram version of the general statement that “predictions
based on flavour-symmetry groups automatically include all effects of those
FSI which are invariant under these symmetries” [6] is that the amplitudes
corresponding to individual diagrams should be allowed independent nonzero
phases. Depending on what types of FSI are considered one can then have
various conditions imposed upon these phases.

4. Cabibbo-suppressed D° decays and SU(3) symmetry breaking

In this section we will analyze in some detail the application of the quark-
diagram approach to the case of Cabibbo-once-forbidden D° decays (where
SU(3) symmetry breaking must play an important role - as evidenced by
the I'(D® - KtK™)/ I'(D® = n*n~) ratio). In these decays there are 9

possible s-wave PP final states: nt=x~. #%7% K~R'*, K°K", 7)87r mnY.

Nz, WM. M- Each of these can be reached from the initial DY state by
appropriate linear combination of six reduced matrix elements corresponding
to diagrams (a)-( f) of Fig. 1. Omitting the Cabibbo factor of sin O¢ cos Oc¢
(see comment after E¢s. (9), (10)) we obtain the following expressions for
FSI-uncorrected weak decayvs of DY:

(rtn~|w|D® = —(a4+c—e—2f).
(797%w|D°) = —%(b—(‘—l—e%—'Zf),

(K"RHwlD% = —(a+cé+e+2f).

(]\'OFO]w]DO) = (—c+c+2f).
(7%nglw| DYy = —13~(13 —c—e),
(7% |w| D% = 7(b+ 2¢ + 2¢) .
(nang|w|D%) = —1—?:(1) —c— %e -2f)+ 3—.%(2& —¢)+(b-1b))
{nsmw|D®) = —1—_5(1)-1» 2c— %() + %(—4((‘ — &)+ (b-1b)),

(mmlw|D% = —V2( (:~+f)+T—(c'—é+b—13). (27)
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In Eq. (27) matrix elements with (without) a tilde correspond to a strange
(nonstrange) pair emitted in the original weak interaction process.

In standard approaches the (FSI-unmodified) contribution from diagrams
(e) and (f) is negligible [11] (it vanishes in the SU(3) limit). Accordingly,
we will neglect (e), (f)-type amplitudes in FSI-uncorrected D decays. In
the SU(3) limit we also have & = a, b = b, é = ¢. Our aim is to study if and
how final-state interactions reintroduce (e)- and (f)- type amplitudes and
lift equalities @ = a, b = b, & = ¢. (As discussed in Section 3.2 amplitudes ¢
and ¢ are expected to be small).

We will consider the contribution of PP coupled-channel effects only.
The two-meson s-wave PP state may interact strongly through formation
of neutral scalar resonances S. Assuming these belong to a ¢g nonet (see
discussion later on and Ref. [15]) we consider three resonances with flavour
quantum numbers of 79, ng, and ;. Their couplings to the PP-state are of
D-type.

The K-matrix splits block-diagonally into three submatrices in the isospin
I = 2,1, 0 sectors respectively:

1. sector I=2: , K(I=2)=0
for the (7w7) .4 state only.

2.sector [ =1

2

V3

22 | k5 (28)
4

3

with rows (columns) corresponding to states (KK )=y, 7%ns, 7%n;.
The eigenvalues and their corresponding eigenvectors are:

)\{:1 = ()'Hé:l

1=1) = LVBER) 1o + VEE ) + 2(%m)

A= 0
_ 1 —
2171) = S(VB(KR) 11 = (°n5) = Va(r°m)
ML= 0

31=1) = —\'/ig(ﬂm%s) — (x%n)). (29)

Vanishing of A=! results from the assumed nonet symmetry of cou-
plings, which relates the couplings of (K'K)—y, (7°ng), and (7;) in
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such a way that linear combination |2/=1) decouples from the scalar
I =1, I. = 0 meson (hereafter denoted 7%). State |2/=!) would couple
to w2 if SU(3)-breaking coupling Tr(]\/[,rg{Mgz\gl\/Iy, + M3AgM,}) were
introduced. Vanishing of A4{=! corresponds to the absence of hairpin
diagrams (|3/=1) = 7%,).

.sector [ =0

3 —v3 1 20
-3 3 -3 00

KI=0=2| 1 —v3 1 0 0]|&F° (30)
2 0 0 20
o 0 0 00

with rows (columns) corresponding to states (in that order): (KK)/=o,
(7”7)1:(% Mnstinss NsTss NnsTs-
The eigenvalues and eigenvectors are:

Af=0 = 126570

117=0y — %(_2(1{7(')1:0 — (Ms75) + V3(TT) 120 = (MnsTns))
/\5:0 = 6x50

|27=0) = %((I(?)I:O + 2(nsms) + V3(xm) 120 = (TnsTns))

)\ézo == 0
_ 1 — V3 1
131—0> = §(2(K K)f=0 - 2(??57?8) + _(7“7{')1=0 - §(nns77ns))

2
/\‘{:0 = 0
_ 1
|4I_0> = .'2'((7"77)120 + \/5(7771377715))
/\ézo = g
|5I=0> = TnsTls (31)

State |17=9) is SU(3) singlet, while |2/=9) is SU(3) octet. The couplings
of the remaining three states are zero as a result of the quark-level nonet
symmetry of D-type coupling. For example, A}=° may be nonzero if
(77) 120 and (sips) couplings to o, (i.e. to (u@ + dd)/V/2) are not
related as specified by D-type coupling. Similarly, deviation of the
scale of couplings involving strange quarks from those in which strange
quarks are absent would result in nonvanishing of the coupling between
the |37=0) state and the I = 0 mesons. Coupling of state |5/=°) to ¢g
mesons would be nonzero if hairpin diagrams were allowed.
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Let us reexpress the general FSI-modified formulae of type (27) in the
K-matrix approach:
a) sector [ =2

= ((77) 1=2|w| D) = (——\%)(aw) (32)

b) sector I =1

(KR)=1|WID%) = ——=(A+C + E)

%

T w| DO + (KK =1 |w| D)
(7r0773|I’V[DU> =

= L2 7= 0| DOy + (x0ng)w| DO

3
. 1 .
(7O |W| D% = —T(B+ZC +2F)
2 (), = .
= ; "]1(1)<11~1|’U)ID0> + <770771’w|D0>’ (33)
where ) } L
],[zl’,‘DO —_ “+3.+3 ) 'SUB)___ +3 34
({ [w| D) \/6((1 ¢+ 3¢) \/6((1 c) (34)
— . 1 SU(3)
KK)—|w]D% = ——=(a+c+e) —(> a+c 35
(N K)i=1]|w] D7) \/2( \/5( ) - (35)

and Tl(l) is a complex factor which in the idealized case is (6{=' corresponds
to AM=1):
T](l) = cos 0{=texpisf=t — 1. (36)

Solution of Eqs. (33) for SU(3)-symmetric input amplitudes is

A=a,

B=0b.
‘ -~ (1) a o=
CHE=c+T (c+ §)’ (37)
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c) sector [ =0

(KK)j=o|W|D% = —=(-A+C - 2C —~ E — 4F)

&IH

= %( 2T 0)(11 U]w|DO)+T(O)(ZI 0|w|D0>
+{((K'K)=0|w| D%
. 2 1. 3. 3 _
((77) 1=o|W|DP) = §(—_4 + 3B - 5C+SE+3F)
= —(TP(1=°|w| D% + TV (2/=0|w| D°
\/3 (1= |w|D%) + 157727 |w| D7)
<(7r7r)1 0|uv|D0)
YV DO = — — S B_B
- ; _TO 1= °|w;D°)+T(°)<21 00| D)
+{nsnsw|D°)
(mm|W|D%) = —==(-C+C — B+ B+ E+3F)
1 —
- ‘ET‘°’<1’—°1w|D°> + (] D%
2 1, -
(mns|W|D%) = 7 (B+20- B+ (C C)+3(B- B))
- ~§T2(0)(2’=0|w|D°)+ (muns|w| D) (38)
where
(11=%w| D% = —\/Tz(a —a+3(c—-¢)—3e-9f)
(21=0)w| D% = —%(—;—((t+2tt)+c+2c—e) (39)
and, in the idealized case,
TJ(O) = cos 51‘(:0 exp 5J1=0 -1 (40)

with j = 1,...5 (in Eq. (38) we have used T3 4 5 = 0).
Eqs. (38) are much simplified when one accepts the SU(3)-limit for input
weak decays:
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(11=0)w| D% *4 o,
21=0,1 DY su@E) _ 1 C
(2=} DY) *% T5la+30). (41)

From Eqs. {(41) it follows that SU(3)-singlet resonances do not affect
the final formulae since in the SU(3) limit the SU(3)-singlet state is not
produced through an FSl-unmodified weak process. Solution of Egs. (38)
for SU(3)-symmetric input amplitudes is then

B =,
A-2B =a-2b
A+B=ua+b,
B+C—-C—F—-3F =b,
C+F:c+ﬁm@+§. (42)

A look at how resonance-induced FSI (Fig. 3 and its counterparts) gen-
erate ['SI-modified diagrams from the input (a), (b), (¢) amplitudes confirms
that diagrams of type (@) and (b) cannot actually be generated. Thus, we
must have

A=A =a,
B=B =50,
C—FE-2F=C+F. (43)

From Eqs. (37), (42), (43) we see that in the case when stronginteractions
exhibit SU(3) symmetry, i.e. when the intermediate I = 1 and I = 0 octet
scalar resonances are degenerate and couple to PP with the same strength
we have k170 = k=1 so that

7 = 1M =71, (44)

and one obtains

1
E+F = §(T1(1) —Téo))(c+§) =0,

C-{-E:C’—i—F:c—}-T(C-{»%). (45)
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Thus, physically measurable amplitudes may be described with vanish-
ing effective penguin amplitudes E, F' and SU(3)-symmetric exchange am-
plitudes C' = C.

In reality, in the energy region below 1500 MeV the scalar resonance
sector exhibits peculiar SU(3)-symmetry breaking {15, 20]. The masses and
couplings of physical resonances are known to be different from those ex-
pected when these resonances are assigned a simple ¢g structure. Descrip-
tions of these resonances as qqqq states have been proposed. Despite years
of intensive efforts the questions related to the nature of these states have
not been settled as yet. The strangeness S = 0 sector under consideration
in this section is particularly troublesome as exhibited by conflicting inter-
pretations of the a(980), fo(980), and f5(1300) states [21]. One should
therefore expect that in the D-mass region around 1870 MeV the situation
is also complicated (see also [19]). A detailed analysis of the nature of reso-
nances affecting two-meson interactions at this energy is clearly far beyond
the scope of this paper. For our purposes the crucial point is the relative
size of amplitudes corresponding to diagrams of Fig. 2 and Fig. 4.

N >~
NN

Fig. 4. Contributions of four-quark intermediate states to FSIL.

If diagrams of Fig. 4 do not contribute significantly to the mechanism of
physical resonance formation, as is the case in the unitarised quark model
(UQM) of Térnqvist [15, 20], one should expect that the values of amplitudes
A. B may be taken from the § = —1 sector of D° decays or from Dt
decays, and subsequently used in the § = 0 sector. On the other hand, the
remaining parameters of the quark-line approach needed for the description
of the DY — 7w, KK etc. decays may exhibit significant SU(3)-breaking
within and between the 1=0 and I=1 subsectors of the S=0 sector (and, of
course, between the S=0 and S=-1 sectors) [20]. In the analysis of Térnqvist
[15] the scalar meson sector exhibits energy-dependent mixing of the two
I = 0 resonances. The value of the mixing angle undergoes a fairly rapid
change in the vicinity of the K'K threshold. Below 900 MeV the mixing is
nearly ideal while above 1.1 GeV one has nearly pure SU(3) eigenstates. The
fo(1300) appears then as a near-octet resonance. Although the analysis of
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[15] stops at 1.6 GeV there are no reasons to expect a qualitative change in
the mixing angle when energy changes from 1.6 to 1.87 GeV: The majority
of PP thresholds lie well below 1.6 GeV (see also [7]). Despite significant
SU(3) breaking incorporated into the UQM ({i.e. through realistic positions
of thresholds) this model confirms essentially that our use of pure SU(3)
eigenstates at DY energy is justified. SU(3)-breaking enters the K matrix
through the difference in the real parts of the vacuum polarization functions
I1(s) [15] which are different for each of the I = 1 and two I = 0 states.
Consequently, the I = 0 and / = 1 octet channels are affected differently
corresponding to strong SU(3) breaking between «¢(980) and f,(1300). In
our simplified treatment this means that the sizes of K- ma,tn:\ elements in
the / = | and [ = 0 octet channels are different: x1=0 # 1» . As a result
we should treat the isospin amplitudes in the I = 0 and I = ] sectors as
independent free parameters.

In terms of amplitudes with definite isospin the amplitudes of the four
measured D — KK, rr decays are given by

(KYK=|W|D% = ——(IC1+I\ ),

N

(K°K°|W|D° = (M Ko)

(et~ |W(D% = =(P2 + V2Po),

Sl

(77| W|DY) = {\/ipz - Po). (46)

a

where the amplitudes of definite isospin (specified by subscript) can be ex-
pressed in terms of quark-line amplitudes as follows

K| = 7_(4+C+E)
Ko = E(4+C+F)
0 3 2 2 V6 o

Note that (apart from the contribution of the FSI-unmodified (a)- and (b)-
type amplitudes) the isospin 7 = 0 (1) amplitude may be put in a one-to-
one correspondence with the C + F (C+ E) combination of quark-diagram
amplitudes respectively. Defining ¥ = ﬁ(hl Ko) and X = V2K, the
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amplitudes of the four considered decays acquire simple form given in Table I,
where the corresponding experimental branching ratios taken from [22] are
also displayed.

TABLE 1

Theoretical amplitudes and branching ratios of the four D° — KK, nm decays
measured.

decay amplitude branching ratio in %
K™ K~ X+Y 0.454 £ 0.029
KK’ Y 0.11 4 0.04

A X 0.159 £ 0.012
7970 ——1\/=(4+ B+ X) 0.088 £+ 0.023

The data of Table 1 permit us to establish that

X +Y] = (4.514£0.14) x 107% GeV,
Y| = (2.21£0.40) ¥ 1076 GeV,
|X| = (2.47£0.09) x 107° GeV

(

|[A+ B+ X| = (2.60£0.3) % 107° GeV . (48)
From the branching ratio of the Dt — R decay (equal to (2.744+0.29) %
1072 [22]) described by amplitude 4 + B one infers that

A+ B| = (1.35+£0.07) x 107° GeV, (49)

Equations (48) and (49) show that, contrary to the conclusions of Ref. [11],
it is still possible to keep SU(3)-symmetry in factorization amplitudes A, B
provided one takes into account coupled channel effects in the final state
interactions (SU(3)-symmetry of factorization amplitudes was used when
writing the last equality in Eq. (47)). In particular. even if the data were
consistent with ¥ = 0 (and |X 4+ Y| = |X| = 2.5 % 107¢ GeV), i.e. if the
amplitudes were SU(3)-symmetric, we would still have to conclude from the
values of | 4+ B|. |.X'|, and |A+ B+ X| that the relative phase of A4+ B and X
must be close to 90°. Since in the quark-diagram approach X = —4~C —F,
it follows that the relative phase of €'+ F and A, B must be significant,
in agreement with the message of this paper. Nonzero phase of C' + F'is a
direct result of inelasticity in FSL

The SU(3)-breaking ¥ amplitude is expressed through quark-diagram
amplitudes as Y = —3(C' + E — C' — F). Large observed size of Y means
that, when interpreted in terms of quark-diagram amplitudes, the data can
be described either by a strong breaking of SU(3)-symmetry in W-exchange
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amplitude (C' # C and E — F & 0) or by a large contribution from effective
long-range penguins (E — F # 0), or both. One has to keep in mind,
however, that in the SU(3)-symmetry breaking case the combination C' + F
(determined from the I = 1 sector) cannot be used in the I = 0 sector (i.e.
in Eq. (43)): The diagrammatic approach suggests more symmetry between
the I = 0 and I = 1 sectors than is actually present.

5. Conclusions

We have studied in some detail how inelastic coupled-channel rescatter-
ing effects (and, in particular, indirect ¢§ resonance formation in the final
state) modify the input weak amplitudes of the quark-line diagrammati-
cal approach. Through an explicit calculation it has been demonstrated
that such coupled-channel effects lead to the appearance of nonzero rela-
tive phases between various quark diagrams, thus invalidating the way in
which final-state interactions were incorporated into the diagrammatical
approach in the past. The case of SU(3)-symmetry breaking in Cabibbo
once-forbidden D° decays has been also discussed. It has been shown that
data may be described when inelastic final-state interactions (which must
be SU(3)-breaking as well) are introduced. On the other hand, contrary to
statements in literature, the data do not require SU(3)-symmetry breaking
in factorization amplitudes. Significant breaking of SU(3) symmetry in FSI
in charmed meson decays (in particular through the sector of scalar reso-
nances) and the possible importance of FSI-induced hairpin-like diagrams
make the usefulness of the strict quark-diagram approach to charmed me-
son decays quite questionable. I expect, however, that the diagrammatical
approach with coupled channel effects included through the appearance of
relative phases between various quarks diagrams should be quite applicable
to charmed baryon decays where various SU(3) symmetry breaking effects
typical of the meson sector are either absent or much smaller.
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