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A model of texture dynamics, initially constructed for charged leptons,
is now described in some detail for up and down quarks of three families.
1t nicely correlates and reproduces all six quark masses and four mixing
parameters in terms of nine constants which display some simple relations.
These, if assumed, may reduce the number of free constants {and so enhance
the number of predictions). Possible extensions of the model to neutrinos
are briefly discussed.

PACS numbers: 12.15. Ff, 12.90. +b

Recently, the quantum dynamics was introduced into the “texture" of
fundamental-fermion mass matrices by means of annihilation and creation
operators acting in the space of three fermion families [1]. A model of
such a texture dynamics was constructed for charged leptons, predicting the
tauon mass to be m, = 1776.80 MeV, when the experimental electron and
muon masses m. and m, were used as an input (the recent experimental
value is m, = 1777.001932 MeV [2]). In the present note, along similar
texture-dynamical lines, we discussed in some detail the masses and mixing
parameters for up and down quarks.

Our starting point will be the mass matrices M(*) and M? for up and
down quarks, both assumed to have the generic form given in Eq. (13) of
Ref. [1]:

- 1(0)p5 apopy €7 0 |
M =1 apopie™™® pWet (et B)V2eip2e | (1)
0 (4 5)V2p1pz e 1(2)p3
where, due to Eqgs. (17) or (31) and (16) of Ref. [1],

1 ‘ 1 .
n(0) =ty p(l) = p5(80+ %), p(2) = up (624 +25C +6%)  (2)
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! [ [: )
Po—m, P = 29 P2 = 29 "

Here, pt, €2, C', a, a + 3 and ¢ denote constants dependent on the label
or d, while pg, p1 and p; are the same for both labels v and d. The formula
(1) follows from our model of texture dynamics, where

and

M = php, h=pu(®)+ (al+ Bi)ae™ +a'(al + Ba)e

and

p() = [(T4+20)" = (1= ) (T+20) " +€]

with 5 = (po, p1. p2), 7 = diag (0, 1 2) = a'd and C' = diag (0, 0, C),
according to Egs. (11). (12) and (17) or (31) of Ref. [1]. Here, @ and a'
are the (truncated) annihilation and c:eamcn operators defined in Eq. {3)
of Ref. [1]. The universal form of p, as given in Eq. (16) of Ref. [1], is based
on an additional argument mentioned there.

Our aim is to diagonalize the mass matrix (1) i.e., to solve the eigenvalue
equation

Mé; = Mo (i=0,1.2) (M'!=M). (4)
Thus,
U'MU = diag (Mo, My, My) (Ut =01 (5)
and .
e =6 (i=0,1,2) (6)
with L
det(M —TM;)=0 (i=0,1,2) (7)

and €; = (4;;: j=10,1,2).
Writing M = (M;;; i,7=10,1,2) and & = (¢:i;3 7 =0,1,2), we obtain
from Eq. (4) (where Mgy = 0 = Moyg):

. — _ N M . Mos— M. __%1_
$oo = Ny, P10 = —Nigp Sy P20 = Mo H 23005
_ Mog—My SO _ Moy~ M,
Por = —No ===, $11 = Ny, $o1 = =Ny =H=2
Mg — AL ; /
ey = N Mog=My My — N, M - N
og2 = Ng Mor Moz, + Q12— Ny My, 2 P22 = N.
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Here,

. . —1/2
Ny = d1 4 (Moo — Mo)? 14 | M2 /
U [ Mo |2 (M — Mp)? ’

v, = |14 Mol 177
it (Moo — M1)2 " (Myy — M,)? "
. p —1/2
N (Myy — My)? | Mo |? '
Ny =41 1 . 9
i { " | M2 * (Moo — M3)? )

Note that [/ = (U 4,5 = 0,1,2) = (¢i5 1,7 = 0,1,2) since U;; =
€1U¢; = ¢Td; = ¢;;. Thus, the diagonalizing matrix for M is of the form

AN N 1\101 A Moy =AMy x‘"fol

‘\I 0 A\ 1 Moo — M, ‘\l 2 Moy Moo —M>
o + Mpg—M, . N May— M -
U= —N 'JW 1\'1 —[Vz—%—zi—l . (10)

7 Mog—Mg Moy N Moy A
N Moy My — My N 1375, =M, A 2

The Cabibbo-Kobayashi-Maskawa matrix is given as V= gwtgd),
From Eq. (7) we can see (due to My, = 0 = My) that

|A/[01|2 ’1\112]2 . .
My — M; = =0,1,2). 11
u ' A-Igo - z'\'lg 1\’[22 - A/{,' (1 ) ( )
Hence, for i = 0 and + = 2 we obtain
Moi|? M,.|?
;\[11 - A’[U = i Oli } ]2¥
A’IOO — A\[() .'\;[-22 - ‘\10
Moy |? Myy — M, M .
~ - | Mo or oo 0 10 ’ (12)
1\100 — 310 A\/IOI ;"V[n - 3/1'0
and
Mo;|? Mis)?
L\‘IU - A'IQ = { OII { 121
Moo — My My — M,
| M| Moy — M, M
~ 12 op 2 2 21 _ (13)
1\/[22 - 312 1\'112 A’{“ - ﬂ/{g
because | Moo — Mg| < |Mas — My and |Myg — Ma| > | My — M;| by a factor

that will turn out to be of the order O(10%) or O(10?) for u or d, respectively,
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while |My;|? < |My3]? by the factor 48 [(a 4+ 3)/a]* which weakens the ap-
proximation (12) and strenghtens the approximation (13) [we will assume
that [(a + 3)/a]* = O(1)].

From the approximative formulae (12) and (13) we get the second order
algebraic equations for My and Mj, -

MZ — (Moo + My1) My + MooMyy — | Mo |* =0 (14)
and A
A/f22 — (A’In + AIZQ){MQ —+ Afuzlﬁ[zg — tﬂflzgz =0, (1’3)
that give
1 1 . . IMcnlz
My~ —(M ] —\/— - 2 2~ Myg— ——— (1
0 Z(MOO—{- M) 7 (M Moo)? + [Mo1|? ~ Moo M1 — Moo (16)
and
1 1 : lA/Il2l2
My ~ —(M \/—- 99 — My1)2 2~ ——
2 2(1\ 11 + Maz) + 4(Mzz Miy)? + | Mya|? ~ Myz + My — My,
(17)
Hence,
My = Moo+ My + Moy — Mo — M,
1 1
~ *2-(5’[00 + M) + \/ﬂMu ~ Muo)? + | Moy |?
1
—\/1(M22 — M1)? + | My2|?
2 A/[ 2
~ My, + Mol | Mz (18)

Af’[ll - MOO - 1"1-22 - ]\/[11 '

Here, due to Egs. (1), (2) and (3), we have

y _ _#—62 — _/_L_..% 02 ; o i?f} ¢ 25 02
Moo= 55e?, M = 2o (80+L ) L My = oo (62.)+ 25C + ¢ )
(19)
and
4 0 V192 .
My = ng— e’, M= (——Q—_t—gg))—g e (20)

Thus, the second approximations in Eqgs. (16), (17) and (18) hold if (1/4)
(Mi1 — Moo)? > |Moy|* and (1/4)(May — My;1)? > |My|?. This is certainly
the case, when (a/2u)% = O(1) and [(a + B)/2u)* = O(1), what we will
anticipate.
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The explicit forms of Eqs (16), (18) and (17) are

fo| o 36(a/p)?] _ p 36(c/p)?
My ~ 2o o Z0URD ) o gy, - LR 21
fo [5 320 - 5c2| = M0~ 29350 52 (21)

. 2
B 2\, 36(e/p)®  10800[(c + B)/p]
M= 55 {9 (0+e?) + 320 — 52 31696 + 1350C + 29¢2

o k4 ~2) —
~ 555 (80+27) = My (22)
and
w2 10800 [(a + 3) /1)
My ~ 4

: 9{25 (6214250 + &%) + 31696 + 1350C + 29¢2
oM 24 . ;
~ o (624 +25C +¢2) = My, (23)

where it was anticipated that (o/2u)? = O(1) and [(a + 8)/2u])* = O(1).
From Egs (22) and (23) we can find ¢ and C (neglecting €2 in comparison
with 80):

261
24
b =M (24)
and _40M;, 624
' -2 . (25)
=M, 5

Then, from Eqs (21) and (24) we calculate £? (neglecting €2 vs 320/5=64):

My 9 (g)Q 9280 Mo 1280 (&)2
M)

~ 20— 4 — o~
4 +80 261 M1 7569

(26)

The constants al®), a(9) and &™) +3(*) | a(d) 4 3(d) 35 well as oW — o) will
be determined from the experimental data for magnitudes of the elements
Vus = Vo1, Vo = Vi and Vi, = Vg of Cabibbo-Kobayashi-Maskawa matrix
V.

* * *

Starting with the formula (10) for the unitary matrices U and (@
diagonalizing the mass matrices M%) and M%) of up and down quarks,
we calculate the elements V;; of the Cabibbo-Kobayashi-Maskawa matrix

V= (Vij5 4.j = 0,1,2) = UMW, Vii=3% Ué:‘)*b’,gzt). Then, making
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use of the approximations (12) and (13), we get

h7AR M —
M — g M
P ASII VAR ¥ A Ml )
YA VAL B VA GO VAL Vi

r () A
N (@ My, + Mo,
OO N D) )T ) ()
Mgy — M| My = My

(@) ()
N ) (3’151 My, )
MY

N«(u) r(d) \/I a(d) ‘,l'¢(ll) (l'(u) : Slu) -
= N, ]\"1 — | —¢ — e 7 . (2/)
29 \ my, m,

Vis = Vo = NN (

1

and similarly [with the use of Eqs. (12) and (13)]

vrid) 1)
"i"b = "12 ~ A/\,'I(U-)A/\r‘)(d) 1‘4‘12 _ ;\/[12
S\ Y
— N N(cﬂ) V192 [ ol 4 /3(‘1) ew(d) B M eiw(“)
M N2 5 o o
u V192 o(®) ald)
~ 1\‘7']( )A\’ygd) 9 o +/ E‘Lr‘p(d) (28)

29 my

and

) M Aty
Vip = Voo ~ —j\]é ‘)Nz(d) ol ( 12 12

(wy A S0
M, M, }tl[.z2
L V(u) ?\;(d) V4192 oo(w) 61'-.;‘«“] old) + ‘d(d) Fi,ﬁ““ B ol + ’3(u) 61.;(“)
o 292 ., e ' my
~ A\’(gu')A\’.Z(d) V192 a(u)(a.-(d) + }3((1)) Fi(go(“)+€(‘”—150°) ‘ (29)

292 m.my

In Eqs. (28) and (29) we anticipated that (a{® + ) /my > (¥ +
3t) /m;. Here, from Eqgs. (9) [with the use of Eqs. (12) and (13)]

g —1/2 5\ —1/2
) [1\/[01'2 4 CI'Z
No ~ [ 14+ —— =1+ = — ~1,
0 ( LT MSTINYE |
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-1/2 0\ —1/2
. | Moy | 1 ot
N~ (1 An =1+ == — ~1,
‘ ( MY 597 1

5\ —1/2 ; a\2 —1/2
. i:‘]l-_giz 192 (Cl‘ + ,lj) .
Ny ~ (1 , = |14 200 10 ~1. (30
: ( MY TRV (30)

when (a/2p)? = O(1) and [(a + 3)/2u}* = O(1). With the figures for al¥)
and a!?)| as they will be determined in Eqs. (32) and (33), we evaluato more
precisely from Eqgs. (30) the normalization constants \(g R \ ~ (.997.

N = XD~ 0.978 and N ~ 1.000, N{V ~ 0.999.

Takmg the e,\penmental values |\Lb] = 0.041 £ 0.003 and |Vy/Va| =
0.08 £ 0.002 [2], we obtain from Eqgs. (28) and (29) with m. = 1.5 GeV and
my, = 4.7 GeV:

1 29 :
ol 3~ ST Vo]~ 405 MeV (31)
A\rf‘(l):\:‘_()'d /192
and (
Vi) 29 V, »
Al ~ Iy ub = | 1740 MeV. (32)

V(“) Vi

Here, NV N{" ~ 0.996 and N /N{" ~ 1.000, so the latter coefficient can
be omitted in Eq. (32).

Let us conjecture for coupling constants o and 3 in our model of texture
dynamics (see Eq. (12) of Ref. [1}]) that

alt) sald) = 3t 5 — o QM) = 2. (33)

where Q) = 2/3 and Q¥ = —1/3 are up and down quark charges'. Then.
from Eqs. (32) and (31). we infer that

ol ~ 1740 MeV . al?) ~ 870 MeV (34)

and

309 ~ —930 MeV , 3% ~ —465 MeV (35)
(and hence 30" /o) = 34 /a4 ~ _0.534). In this case, with m, = 4
MeV. m,; =7 MeV and m, = 279 MeV (and the above m.). Eq. (26) gives

20322, D2~ 25q. (36)

! Here. the minus sign at Q¥ = —1Q'""| may be compensated by the rescaling 'Y —
2 4+ 180° 10 Eq. (12) of Ref. [1]. as then exp(ip'®) —» — exp(+ip'?).
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On the other hand, with m;, = 175 GeV (and the above m., m; and my), we
get from Eq. (25)
C™ ~ 148, ¢ ~90. (37)

Here, the particular value m; = 279 MeéV is chosen to imply C{%) ~ 0.00 with
my, = 4.7 GeV, what makes top quark exceptional among other fundamental
fermions, as then only for ¢ the constant C is (very) different from zero?.

Finally, Eq. (24) (with the above m,, and m;) leads to
p® ~ 1220 MeV, p{¥ ~ 228 MeV . (38)

From Eqgs (34) and (38) it can be seen that really (o{*)/2u()? = O(1) and
(ald /2442 = O(1),
With a{* and of? determined as in Eqs. (34), we find from Eq. (27)
that

VA [8T0 1740 . (w_ (9 (@
Vis = NSOND X2 [ (e ¢ )] v 39
0 27 1279 ~ 1500 ¢ (39)
and thus
u )y V4
Vi = NS NLD %\/11-07 — 7.23 cos(p®) — (@) . (40)
{

Here, Néu)Nl(d) ~ 0.975. Hence, taking the experimental value |V, =
0.2205 4 0.0018 [2], we calculate cos(®) — (@) ~ 0.0422 and

o — @ ~ 87.6°. (41)
Then, from Eq. (35) we evaluate
arg Vi, ~ —20.7° + (@ . (42)
By a quark rephasing ¢.e., rescaling of quark phases one may achieve that

argVyy — 0, argV,s = 0, argVy, — ~72.0°,
arg Vg — —180°, argV,, =5 0, argV, — 0.
argVyy — —21.0°, argV,; — —180°, argVy — 0. (43)

2 For a little smaller € ~ 144 one has m. = 1.53 GeV with m; = 175 GeV. Note
that the values C'*) = 144 and C¥ = 0 for up and down quarks as well as c¥ =9
and C{®) = 0 for neutrinos and charged leptons may be provided by the formula

N = diag (0, 0, cVy=2n2(H -T)NI (NP - 1) [N((,” QY +B<”)] :

where n = diag (0, 1, 2), while N(Cf), Q") and BY) are the number of colors, the
charge and the baryon number, respectively, all for f = u, d, v, e (in particular,

NS =N =3 and N = N = 1),
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In fact, the CP violating phases arg(V,5, V Vi Ves) =~ 87.6°— 180°4-20.7° -
0.3° = ~72.0° and arg(V} Vi Vig Ves) ~ —20.7° — 0.3° = —21.0° are in-
variant under any quark rephasing and reduce to argVy, ~ —72.0° and
argVyy >~ —21.0° in our special quark phasing. Here, the contribution —0.3
comes from argV,; ~ —0.3° as it will be given in Eq. (48).

As to the second half of nondiagonal elements of Cabibbo-Kobayashi-
Maskawa matrix, V.4, Vis and Vi4, we obtain the following formulae when
we proceed in a similar way as in the case of Egs. (27), (28) and (29) for
Vs Vo and Vi

(@ @
Vg = Vig~ —NI(“’NW)—@ (9— emietd L il ’) . (44)

Y29 \ m, me
Vie = Vyy =~ —N{IN@ \/‘Fa(d)n;ﬂ @) e (45)
and
Vot = Vg oo NN YT D@D 1 BD) oo ssry e
292 M My

They were used in Eq. (43). Thus, we can infer that, both in our old and
new quark phasings, the relations

N
N

*

Vo = =V, Vie > V3,

us

al®) m, 1\/'2( ©)

Vig ~ ———— — —=—
! olv) my Nz(d)

Vi exp [0 — o + 2argV,, — 0.6°)] (47)

hold. Here, Néu)/Nz(d) ~ 1.001 and (cy(d)/a(“))(chéu)/msNz(d)) ~ 2.69.
Finally, for diagonal elements, when making use of Egs. (30), we get
Via = Voo = N{IN{De03" ~ 0.975693°,
Ve = Vi1 [\f’l(u)Nl(d)e‘io'3° ~ 0.975¢0:3°
Vi = Vip = NSINID ~ 0,999 . (48)

These formulae also were used in Eq. (43).

Of course, due to the unitarity of matrix ‘7, the elements V.4, Vs and
Vup determine the rest of its elements [in our approximation, three of them
are given as in Eqgs. (47) and three — as in Eqgs. (48)].
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* * *

To summarize, the predicted Cahibbo-IKobayashi-Maskawa matrix has
approximately the form:

~ 0.975 0.221 0.003¢~*7*
Ve~ —0.221  0.975 0.041 (49)
0.009 e~*21"  —0.041 0.999

(where our convenient quark rephasing, leading to all argV;; = 0 except
for ij = wub and td, was carried out). Here, the input |V,,| = 0.2205,
|V = 0.041 and Iif’ub/’i | = 0.08 as well as m./m,; = 1500/279 was actua,lly
used. In fact, we derived from the proposed texture-dynamical model the
approximate formulae (27), (28), (29), which can be rewritten as

) A I1m o (u) _ () (ol
pu,s = Afl(u)N§ ) I Ubl s— - e!({) o) €'
Vi 12mg,
- , Fold) - {4 (u) (d) _180°
‘/cl) >~ l‘/cbl e’ y ‘/ub ~ “ ub| (P4 ) (50)

(all valid before quark rephasing), and (47)

N . A N(u)
fed = =V Vis = -%
N,

Tx
ch o

A7 (1)
3 I m. N, . .
g ~ e 7 o n(“‘)—;ﬂ(d) ¢ o - °
Vid =~ > N.z("” Vi, exp [1((,-/ o\ 2argV., — 0.6 )} .

Here, NN ~ 0.975 and N{*)/N{? ~ 1.001. Hence, we determined the
model constant ¥ — H(0 ~ 87.6° and then predicted the CP violating
phases argV;, ~ —72.0° and argV;y ~ —21.0°. Beside four quark mixing
parameters, all six experimentally suggested values of quark masses are the
physical quantities we were also able to fit to our model by determining all of
its nine free constants (the CP violating phase argV,,;, implying also argVig,
was a prediction). Note that, for the approximate matrix 1% given in Eq.
{49), some deviations from the unitarity condition Piv=1=vV¥t appear
in the order O(1073) and so, are irrelevant in our approximation.

It is interesting to compare our predicted Cabibbo-Kobayashi-Maskawa,
matrix (49) (in particular, the CP violating phases argVy,, >~ —72.0° and
arghiy >~ —21.0° there) with its Wolfenstein approximate parametrization
[3]. To this end, let us take as the input our prediction for the phase argV,; ~
—72.0° and determine the parameters p and 7 as well as A and A from the
Wolfenstein formulae:

Vus ~ A '_‘/czl v Vo A )‘2 _vas1 (51)
Vb >~ AN p—in), Vg AN} (1 - p —in) (52)
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and )
Vg~ 1— §x2 ~ -V, V1. (53)
Also the experimental values |V,s| = 02205, [Vu| = 0.041
and |V,,/Veb| = 0.08 will be included in the input. Then, since Eqgs. (52)
imply
[Vipl ~ A /\3\//)2 + %, Vg ~ A A3 (1=p)2+n? (54)
and , 1
argVys >~ — arctan Ui , argVyg > — arctan - , (55)
p L—p

we obtain

Vb Vid (1-p)24n? .
~/p? 42, | T 56)
|y, 1= AV | T | o (

Combining the first formulae (55) and (56). we calculate

-1/2
P % | tu: | [tan (argVup) + 1] / ~0.112 (57)
and 12
1 Vi o .2) )
U e e o~ 0.34! 58
0= (5172 P - 345, (55)

as well as /p? + 2 ~ 0.363 and /(1 — p)? + n? >~ 0.953 (since argVy,;, < 0,

both p and 7 are of the same sign that we choose positive). The present
experimental data, when analyzed jointly with theoretical errors of lattice
QCD results, give the limits [3]

~0.35< p <035, 0.20 < 5 < 0.52 (59)

which confine the values (57) and (58) (it is interesting to mention that the
data prefer | arg V5| smaller but not much smaller than 90°). Finally, Egs.
(51) imply A ~ 0.2205 and 4 ~ 0.843.

Now, with the figures (57) and (58), we evaluate from the second equa-
tions (55) and (56) the quantities argVyy ~ —21.2 and | Viq/Vip |~ 2.63,
the latter value giving | Viy |~ 0.00086 when |V, = 0.08 | Vi, |= 0.0033.
These numbers are to be compared with our previous, a little larger esti-
mates argVyy ~ —21.0 and | Vig/Vip |~ 2.69, the second figure implying
| Vig |~ 0.00088 when | V,;; |= 0.0033. Thus, we can see that our approx-
imate form (49) of the Cabibbo-Ikobayashi-Maskawa matrix is still valid
in the Wolfenstein parametrization. This consistency of our work with the
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structure of Wolfenstein parametrization verifies nicely the approximation
used here to solve the proposed model of texture dynamics. The model it-
self may be confirmed or refuted (perhaps, in a near future) by a precise
measurement of, at least, two of four quantities argV,;, argVia, |[Vis| and
[Vial-

Concluding, we can say that our texture-dynamical model for mass ma-
trices of up and down quarks, described in Egs. (1), (2) and (3), correlates
neatly and reproduces reasonably all six quark masses and four quark mixing
parameters (and so all elements of Cabibbo— I\obayabhl Maskawa matnx) in
terms of the model constants ;L(”). /L(d), cla), cld) g2 o(d)2 ol gl
and o(*) — (@ These take the values as determined in Eqs. (38), ( 7,

(36), (34), (35) and (41). They display some relations (or correlations) such
as C'9) ~ 0 and a(® /p(®)\/2 ~ 1. If all quark (current) masses were better
known, in particular the mass mg, the fixing of free constants within our
model would be more certain and, perhaps, would uncover new illuminating
relationships for these specific constants.

It is worthwhile to stress that the mass matrix described in Ref. [1],
working successfully for charged leptons, has the same generic form as those
discussed in the present paper for up and down quarks.

* * *

How to extend our generic form of mass matrix also to neutrinos is
evidently an open question. A proposal, how to do it, can be found in
Ref. [4]. If m,, # 0, that leads to an “inverted" order of neutrino masses:
m,, =~ 2m,, =~ m,, or more precisely m,, :2m,, :m,, >~ 1:(4/9):(24/25)
(possibly, with “=" instead of “~").

However, this proposal is not in the spirit of the extension of charged-
lepton mass matrix to up and down quarks, considered in the present paper.
A natural extension to neutrinos, following this spirit. may be based on
our generic mass matrix of the form (1), where now 2 = 0 W =0
and o) ~ 0 ~ 302 or more naturally, o) = 0 = d ). where the
latter more restrictive condition would exclude neutrino oscillation (note
that for charged leptons (92 # 0, €1 = 0 and (9 ~ 0 ~ 3¢) or even

(&) = 0 = 3()). Then, in place of charged-lepton spectrum

_ e ke ()2
e = vl ~ & y
Me M, 9
— e ~ 4 ple) /g ~(e)2
m, = M; 9 ——29 (?30%—& ) .

24 ple)

m, = 1\/155 ~ S 50

(6'24 4 £00) 2) (60)
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predicting
my >~ 1766.80 MeV , (9?2 ~ 0.172329, p(9) ~ 85.9924MeV  (61)

from the experimental values of m. and m,, one obtains the neutrino spec-
trum

My, ~m,, = M ~0,
. 320
my, ~m, = ]\/[1( ) ~ '—Zg(l)‘u(l ),
v 1437
m,, ~m,, = M, o ”;56 p (62)
7

or. more naturally, with “=" instead of “~". If m,, 0,
v "

12106

my,, tm, ~1:
# i 125

(63)

or with “=" in place of “~". Here, the mass scale (%) must be tiny enough to
provide small mass differences between neutrinos of three kinds, what seems
to be consistent with cosmic neutrino experiments (cf. e.g., some citations
in Ref. [4]).

Another, perhaps the most natural, extension may consist in putting
) = 0 and o) = 0 = 8 in our generic mass matrix of the form (1).
Then,

my,, =m,, =m,, =0, (64)

what, at the present moment, seems not to be a popular option as excluding
neutrino oscillations, though it is still possible. A less natural version of
this option may be ) = 0 and af*) ~ 0 ~ 3(*) where the second relaxed
condition would allow for neutrino oscillations. In this case, the neutrino
mass matrix of the generic form (1) gets the shape

0 a popyeie™” 0
A’I(U): Q'(U)p()ple_iw(w 0 (a(1/)+ﬂ(u))\/§plp2eiv(lﬂ

0 (a'(”)+/3(l’))\/‘§p1p2€'i“’(") 0

(65)
leading to three eigenvalues
4 .
M) =0, :}:£\/a/(”)2 + 48(al¥) + g(¥))2. (66)
e 29

Thus, for neutrino masses squared, one obtains mZ, = 0 and m2 = m?,

2 g{v)2 . 4 . .
where m; = Mi( ) (# = 0.1,2). Here, the smallness of neutrino masses
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is measured by the smallness of o) and 3(*) compared to a(®) and 3¢
that also are tiny or even zero (note that, however, for charged leptons me

as given in Fq. (61) is large). The eigenvectors 5(") = (o; ('/) 17 =0,1,2)
corresponding to the eigenvalues ;Wi(y) evaluated in Eq. (66) can be presented
in the form:

() _ (o) (1) _ Mg () _ () M)
@go = Ny , 9’)(10 =N @20 =N, I
N 21
RZE v (1) dvy A} r’li{.(u)
oy, =0 . 11) =N, . Oy =N, Mj({') (67)
y Ay M ( () M) v v
ng) = "1\(5 ) wor 4’(12) = f\"l(l)l,”(u) 1 "’gz) = "’VZE )
R 4 ]
where
14 l gy 1) * 7 192 - itd 1) *
MY = V) gist) _ M M) = Y20 4 g0 e = gy
29 29 -
(68)
with e = (AL /M) = (1/VA8)al¥) /(o) + 34)). Evidently, the diago-
nalizing matrix U = (Ui(f)) for neutrino mass matrix M) = (z\;fl-(;/))
|[compare Eq. (5)] is given as r = (oﬁ'l/) i, 7 =0, 1,2). If the ratio ¢
happens to be small enough, then from Eq. (67)
1 _ O(¢) O(¢)
o)~ 0 )L~ 1 8y~ 0L+ ¢/2)
Ole) O(1 - €%/2) 1
(69)

This shows that, in such a case, among the neutrino mass eigenstates
gy, 1. vy, the first is dominated by the electron—neutrino weak-interaction
state »,. while the second and third are nearly equal-weighted superposi-
tions of muon—neutrino and tauon—neutrino weak—interaction states v, and
vr. In fact, the relations

1201 N Ve
v | = U v, (70)
1] Ve

and Ut = (U(f’)*> = <(/)E.Iil)*) imply the superpositions

Jt

(v)

vi = ¢y Ve + c,bg-;/)*uu + @gg)*v; {(z=0,1,2), (71)
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where coeflicients form the vectors 5; = (c)x) T =0,1, ‘2>T with c/)s;') as
given in Eq. (67).

Concluding the last part concerning neutrinos, we can see that in the
framework of our generic mass matrix (1) there are two, more or less nat-
ural, options for neutrino masses: when <(*)2 = 0 or u*) = 0. If neutrino
oscillations can take place (when a(*) and 3(*) are small, but at least one of
them differs from zero), these options are:

my, ~ 0, my,, ~m,,/16.85> 0 (72)
(Eqgs. (62) with vy ~ ve. vy >~ v, and vy ~ v;) or

2 2
my, =0, my,

=m? >0 (73)

vy

(Egs. 66) with vy =~ v., but not vy ~ v, nor vy ~ v,).
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