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1. Introduction

The problem of critical storage capacity in neural network memories has
attracted much attention recently. A new rhethod of investigation was pro-
posed by E. Gardner in 1988 [1]. Gardner’s idea has been greatly extended
since then (see, for example, Refs. [2-9]). Only recently, however, it has
been applied to the problem of storage of correlated data (see Refs. [10-13]).
In this paper we continue the line of research of Refs. [10,11] and treat the
problem of optimal storage capacity of “spatially” correlated patterns in a
diluted Hopfield neural network. This problem for fully—connected network
was studied in Refs. [11,14,15]. In those papers the assumption was made
that the states of neurons, and consequently patterns stored in the network
take binary values. This leads to serious difficulties in performing the proper
averages over the memorized data. Only the approximate result for the case
of short range correlations of patterns could be derived. Here we overcome
these difficulties by considering analog attractor networks that are simple
generalizations of the Hopfield model and by assuming that patterns to be
stored are Gaussian distributed random variables. In particular, we treat
here analog clipped-sign (CS) networks that have very similar properties to
the standard Hopfield one. The variables describing stored patterns in the
CS networks can, however, take any real values. We choose them to be sta-
tistically correlated and associated through the correlation matrix C. There
are many reasons why such correlated data are of general interest. Obvi-
ously, visual data encountered in our everydays experience are of that sort.
Advanced theories of visual information processing stress that very often vi-
sual patterns consist of locally correlated blocks (see, for instance, Ref. [16]).
Local organization of visual data is discussed in cognitive psychology and
cognitive science [17].

The main aim of this paper is to study storage of “spatially” correlated
patterns in diluted networks and to look for optimal network architectures
at a given level of dilution. Dilution seems to be a very important and gen-
eral property of neural networks. Biological structures in the brain are very
strongly diluted (see, for example, Refs. [18.19]). From the viewpoint of ap-
plied sciences, learning in a fully-connected network with N nodes requires
N{N — 1) connections, t.e., is very exhaustive. In information processing
applications, it might be difficult even to store such large connection matri-
ces in a computer memory. Thus it is obvious that one should study diluted
networks, and search for optimal means of dilution that would not degrade
the desired properties of the network. An important step in this direction
has been accomplished in Refs. [20,21]. On the other hand there are sugges-
tions from cognitive science that the structure of the information processing
network reflects the structure of processed data. Therefore, one expects that
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optimal architectures for networks should depend on correlations in the data
set.

In the present paper we show that this is indeed the case for “spatially”
(2.e., locally) correlated data. We compare storage capacity of two kinds
of networks with band and random dilution. We show that for the first
case the storage capacity « depends simply in a linear way on the dilution
ratio B. For the second case such dependence is much more complex but
evidently random dilution degrades storage capacity much more drastically.
This result illustrates in a quantitative way the intuitive expectation that
local correlations of data induce local associations of synaptic connection,
and thus select optimal means of dilution.

2. Fractional volume in the interaction space

Let us first review the result of Gardner’s method applied to the problem
of fully—connected discrete networks. In the standard approach, one consid-
ers a network of the Hopfield type [2,22,23] with N discrete nodes {o; = £1}
which follow deterministic dynamics described by a simple updating rule

o;(t + At) :sign[z .]ijcrj(t)}, (1)
it

with {.J;;} denoting the synaptic connection matrix. The rows of this matrix

are, for each 7, normalized according to the spherical constraint

S Ji=N. (2)

I
One then defines, following Gardner [1], the fractional volume in the
interaction space

vy - U T 01 8T 75 = V) T1, 0 (& Ty 65— )|
IL [f I1;2:dJs; 5(2#1- JE - ’\7)]

where the set {f? = :tl} denotes the so—called patterns stored in the mem-

, (3)

ory of the considered network, i.c., the stationary states of the dynam-
ics (1). Note that the index j = 1,..., ¥V enumerates the sites, whereas
p = 1,...,aN - the patterns (memories), and « is a storage ratio (z.e., a
number of patterns stored per neuron). Note also, that for the attractor Hop-
field networks with binary nodes, the stored patters must necessarily be also
binary. The quantity « designates a stability parameter which determines

the size of the basins of attraction of the stored memory configuration {EJ”}
One sees that V7 = []; V;, where V; are volumes referring to the node 1.
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3. Analog clipped-sign networks

It is easy to generalize the results of discussed above to the case of analog
networks which we call clipped-sign (CS) ones. To this aim we consider a
network with V analognodes {o;}, where o;, j = 1,..., N, are real numbers.
We define the deterministic dynamics now by

o:(t + At) = o,(t) sign [ai(t) Z Jijo;(t) — K:‘ . (4)
J#

Note that this dynamics allows for stationary states, i.e., describes an attrac-

tor neural network. These stationary patterns {f;‘ } are in general defined

as sequences of real numbers such that

sign [éf‘ ZJ,;J{;-‘ - /{] =1, (5)
J#
fore,7=1,...,N, u=1,...,aN. One can formulate Gardner’s program

for the CS networks in the full analogy with Eq. (3). In particular we can
ask what is the storage capacity of the CS networks for a set of patterns
with given statistical properties. Obviously, a CS network that memorizes a
given set of patterns will typically store much more patterns, z.e., have much
more stationary states. The standard Hopfield networkhas also spurious
memories, but the proliferation of the stationary states for CS networks
is much more dramatic. For instance, for « = 0 the stationary states of
the dynamics (4) are rays in the vector space of patterns, iz.e., if 5‘;-‘ is a
stationary configuration then hff , with arbitrary h, is also. Nevertheless, it
is legitimate to ask questions, whether a given statistically sample of patterns
may be stored in the CS networks, and what is the critical size of such a
sample, or in other words what is the critical capacity of the network in such
a case.

In particular, if the memorized patterns are chosen to be statistically
independent and binary, the critical storage capacity of the CS network is
exactly the same as for the standard Hopfield model. In general, one can
consider any kind of real (analog or discrete) patterns {E;‘}, and use the

same Eq. (3) to calculate the fractional volume in the interaction space for
CS networks. In this sense, CS networks provide an elegant generalization
of the standard Hopfield model with discrete neurons.
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4. Storage of “spatially” correlated data

We shall deal with “spatially” correlated patterns, and require that the
proper quenched averages over the {f;-‘} fulfil

e -o o

{ere2 ) = b Cipr = Sy ™07 )

where C;;» denotes elements of a correlation matriz. The specific expo-
nential form of those elements (7) is quite generic for correlated patterns
[10,11,13]. The parameter b can be viewed as an inverse of the correlation
length, b = 1/L.. Exponentially correlated patterns may be easily generated
in numerical simulations.

In this paper we assume that the patterns {f;‘ } are not binary, but

and

rather are distributed according to a correlated Gaussian distribution

Pr{¢)}) = ——~ dc>,N expq — }:5" g ®
<H 7 17

[(27") det C] u g7

where C;; are the elements of the positively defined association matrix C.
This assumption allows one to perform all the quenched averages over the
patterns exactly.

As usual in the theory of disordered systems we need to calculate the
quenched average of (In V). For N — oo due to the self-averaging: In V7 =
YilnV; 2 N{InV;), and the calculation reduces to the evaluation of the
fractional volume at an arbitrarily chosen node i. This is achieved with the
help of the replica method {(In V;})) = lim,_0 (((Vl”» —1)/n. We first calculate
{V;") for natural n and then perform an analytic continuation to n = 0.

To this aim, we introduce, as usual, the order parameters

7 == > Ciy 1”.11],. (9)
m Ji#

QY == > Cid3Ji, (10)
7762,7 #i

m® = ——-Zcij.lg?; (11)

VN Z
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and their conjugated counterparts { "‘5} {F*}, and {M°}. Note that

a,B = 1,...,n designate here the replica indices [1]. The average of V"
then reads

(vry=c / DE°D¢* DQD f* DI Dm DM e~ N1 (Ba QL Fim M) (1)

where {E®} assure the spherical normalization constraint (2), and C is a
constant.
In order to calculate the free—energy density F, that is to perform the

integrals over {J;j} analytically, we assume that neurons are located on a

torus (see Ref. [11]). Note that in such a case the correlation matrix can be
diagonalized using a Fourier transform.

To proceed further one makes a replica-symmetric Ansatz ¢*° = ¢, Q* =
Qr*=r,RR=R, foP = f, F*=F, m“=m, M* =M, and E* = E,
for each «, 3. The quantity F thus takes the following form

1 1 1 1
= —qy — (] = - — _ = 1
F aly NG;; 2fq+2FQ+]Wm 2E, (13)
where the functions G'1, G, are given by
t
G = /Di nH{ il \q (14)

VQ -4
. ’ 1 JCk
Gy = —Q—Zk:ln(E+ka“Fck)+Q;E-{-fck—FCk

di
~M? i
M e~ G

——<< [E+fC¢ - FC(a)]),

O )

(G fC’({iZE;b?- FC(9) >>¢ ‘ (15)

Here k = 1,..., N denotes the Fourier index, whereas {C}} are eigenvalues
of the correlation matrix. In the thermodynamic limit N — oo (see Ref. [11]
for more details) we replace sums over the Fourier components by integrals

27 2
Sk = 3= [ do. Thus, () = 5= [ dé () defines the average with respect
0 0

to the matrix C' eigenvalue spectrum [11,12,24]. The eigenvalues of C reads

1 —e 2

1—2e"bcosgp+ e 2

Clo) = (16)
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for ¢ € [0,27]. On the other hand d(¢) is given by

2
2¢ b cosp — 2~

17
1—2ebcosgp+e2b (17)

d(¢) =

Note that this result holds provided the correlation length in not extensive,
i.e., L./N =1/(bN) — 0 as N — oo. The Gaussian measure

pt= -2 -or2, (18)
2%
and the function H is defined as usual
H(c) = /Dt. (19)

The integral (12) can be evaluated using a saddle-point technique. After
some calculations (see Refs. [11,15]) we obtain seven saddle-point equations
which we then solve numerically. From the condition ¢ = ) we determine
the critical capacity of the network. It is worth stressing, however, that the
saddle-point equations can also be used in the perturbative approach for the
case of a short correlation length (i.e., when C};» =~ §,;:). The approximate
value of the storage ratio a, for the minimal stability parameter x = 0 (see

Refs. [11,14]) is <<#%>>
C(8)//4

a2 49 (20)

(etar)),

This formula holds for the arbitrary positively defined matrix C.

The results of numerical analysis for the fully—connected network are
plotted in Fig. 1. Gardner’s original curve is recovered in the limit b — oo,
i.e., when correlations vanish. It is worth stressing that for small values of
the parameter b (i.e., for the large correlation length L) the critical storage
ratio greatly exceeds Gardner’s result. In the limit & — 0 the quantity
a. (for K = 0) tends to infinity. Note that this result (which is caused
by approximations that cannot be applied in the limit & — 0) does not
have sense for binary networks, but is legitimate for the analog CS systems
considered here. One should also notice that a similar situation (a. — co
for K — 0) occurs in the case of strongly biased (discrete) patterns [1],
and for “semantically” correlated binary data in a perceptron [10,11]. In
the Hopfield network with “semantically” associated patterns, however, the
capacity remains finite (see Ref. [11]).
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Fig. 1. Critical storage ratio a. as a function of the stability parameter x for
b =0.5, 0.6, 0.8, and b — oo {from uppermost to lowest curve, respectively).

5. Band dilution

Let us turn now to a discussion of the main subject of this paper — diluted
networks. First we consider a band dilution. In that case we set J;; = 0 for
all j’s which fulfill | — j| < N(1 — B), with 0 < B < 1. We also modify the
spherical normalization (2) to the form

> Jf=AN (21)
I
for arbitrary positive constant A. It is easy to observe that the free-energy
density F remains invariant with respect to the transformation £ — E/A,
F— F/A, f — f/A, M - M/A and a = o/B (B # 0). This fact implies
simply that the storage ratio

a.(k) = Bal(K), (22)

independently of A, where &/, is the critical capacity for B = 1.

6. Random dilution

One can also dilute the network in another way. A random dilution can
be realized in a following manner: For a given dilution ratio B, if B € [%, 1},

one cuts (1/[1 — B]);~th successive synapse .J;;, where the function (-); takes
the integer value closest to its argument. In another words, J;; # 0 for

j..—-.1,...,6—1,€+1,...,(l—_lg)ﬁf—l,(ﬁ)ﬁ“l»-w(%)1”‘
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1, ('I—LB)I +€+1,..., etc., where £ € {1, U (1715)1} This proced.ure is
then averaged over all possible choices of the starting point of the dilution, ¢.
A very similar procedure is used for B € [O, 2], but here one drops every
(1/B);~th successive coupling and sets all the others to zero. In this case
J,-]-#Oforjzf( ) +IZ( ) +4,..., etc. Wherefé{l (%)I}
Random dilution lea,db to the followmg modification of Lhe eigenvalue

spectrum of the correlation matrix c (see Eq. (16)) and the quantity d
(Eq. (17)). For B > 1/2

1—e~2
¢le) = 1 —2e~btcos¢p + e 2t
] —e 0B
- (1-8) b » 26
1—2e"1-F cos [1——73'] +e” T-F
(Z5) g-br (2 cos[ré] — 2" TF COS[('I—_I—B - T) ¢3D
+ —— - — (23)
r=1 1 — 2" T-B cos[l-B]+e -5
. 2e7 cos ¢ — 2%
d =<B
(©) { 1 —2e~bcos¢d + e~

(25), o-br (2cos[r¢] — 2~ TB cos[(r_% - r)(ﬁD 2 (24)

- (1-B) Y,

r=1 1—26_-‘_%COS[%§} + e TR
and for B < 1/2

C(¢) = B 1%

1 — 2e~ B cos [%] -%
(1‘ _br (2COS[7¢] 2e” Fcos[(% —T)¢])
* - , (25)
r=1 1—-26‘§cos[ ]+e“ﬁ

(%))’ e—br 2(;05{7'(7’)] — 26_7% cosl (L — 7’)(1) 2

d(¢) = B (2cosl [(& - r)¢]) -

r=1 1—2e” F(Os[ ]-{-—e“?a"

Numerical solutions of the corresponding saddle-point equations are pre-
sented in Fig. 2. Here we have plotted the relative values of the critical
storage capacity ol (B) = a.(B)/a.(B = 1) as a function of the dilution
ratio B for several values of the association strength b. It is easy to see that
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an increase of the correlation length L. decreases significantly the relative
storage properties of randomly diluted networks. This is caused by the fact
that random dilution destroys strong local associations between the synaptic
couplings. Note that J;; might be of the order of V/N for j close to i. On the
other hand, the straight “diagonal” line in Fig. 2 corresponds to the case of
the band dilution. Here the relative storage capacity al(«) does not depend
on the correlation parameter b at all. All the curves in Fig. 2 are plotted for
the stability parameter & = 1. For the other values of « the situation is, of
course, qualitatively similar.

1
1 s
B e L
0.8 - r
) . [
] - -
06 e L
r b - [
o 1 s
0.4 s g B
1 e
] e r
0.2 s r
| . F
e
I T SR —
0 0.2 0.4 0.6 0.8 1
B

Fig. 2. Relative critical storage ratio ol as a function of the parameter B in the
case of random dilution for & = 0.5, 0.6, and 0.8 (lower to upper solid curve,
respectively). All curves are plotted for « = 1. The dashed line corresponds to
band dilution for arbitrary (non—negative) b and to the random clipping for b — co.

Summarizing, we have analyzed storage capacity of diluted neural net-
works that store “spatially” correlated patterns. We considered a new type
of analog systems, the so—called clipped-sign networks which provide a gen-
eralization of the standard Hopfield model. The main result of the paper
concerns optimal architectures for CS networks with “spatially” correlated
stored patterns. We have shown that band dilution in CS networks changes
the capacity proportionally to the dilution ratio whereas random dilution
affects it in a more complex manner, but much more significantly. These
results clearly indicates quantitative advantage of the band dilution for the
storage of “spatially” correlated data.
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of JILA during his visiting fellowship.
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