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Using statistical physics methods we investigate two-layered percep-
trons which consist of N binary input neurons, K hidden units and a sin-
gle output node. Four basic types of such networks are considered: the
so-called Committee, Parity, and AND Machines which make a decision
based on a majority, parity, and the logical AND rules, respectively (for
these cases the weights that connect hidden units and output node are
taken to be equal to one), and the General Machine where one allows all
the synaptic couplings to vary. For these kinds of network we examine two
types of architecture: fully connected and tree-connected ones (with over-
lapping and non-overlapping receptive fields, respectively). All the above
mentioned machines have binary weights. Our basic interest is focused on
the storage capabilities of such networks which realize p = aN random,
unbiased dichotomies (« denotes the so-called storage ratio). The analysis
is done using the annealed approximation and is valid for all values of K.
The critical (maximal) storage capacity of the fully connected Committee
Machine reads o, = K, while in the case of the tree-structure one gets
ac = 1, independently of K. The results obtained for the Parity Machine
are exactly the same as those for the Committee network. The optimal
storage of the AND Machine depends on the distribution of the outputs for
the patterns. These associations are studied in detail. We have found also
that the capacity of the General Machines remains the same as compared
to systems with fixed weights between intermediate layer and the output
node. Some of the findings (especially these concerning the storage capac-
ity of the Parity Machine) are in a good agreement with known numerical
results.
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1. Introduction

One of the most important problems in the theory of neural networks
concerns the storage capacity. For several years many attempts have been
made in order to investigate properties of networks with synaptic couplings
(weights, or strengths) which are constructed according to a definite rule,
such as Hebb’s rule, the pseudo-inverse one, and many others — see Refs. [1,
2] for a detailed review. A new and powerful line of research in the field of
learning a rule has been introduced by Gardner [3], who proposed that one
should look for the optimal configuration(s) of couplings in the space of all
possible network weights.

Gardner’s original idea has been extended widely since then; see, for
example, Refs. [4-10]. However, most of the results which were obtained
using this approach concern only a simple perceptron that consists of a
single layer of input units connected directly with output node(s). It is well-
known that computational capabilities of such a neuronal structure are very
limited. A single-layer perceptron cannot realize, for example, the so-called
nonlinearly-separable rules such as, for instance, the exclusive alternative
— XOR one [11]. Its memory capacity seems also to be relatively small in
comparison with numerical results obtained for more complicated systems.
It then seems very sensible and strongly recommended to extend Gardner’s
method in order to investigate multi-layered, at least two-layered, networks.
Such structures that contain, besides input and output units, also the so-
called hidden nodes can solve problems that are not linearly separable, and
have better computational capabilities than a simple perceptron. This is
due to the freedom in the choice of the internal representations, which one
does not fix a prior.

The adaption of Gardner’s method to multi-layered networks has in fact
been done in a recent series of papers [12-20]. They contain both numerical
and theoretical results. The latter have been obtained by the aid of the
so-called replica method [21]. In order to evaluate the quantity (In Z)),
one estimates the average over the memorized data-patterns distribution
of the n-th power of the partition function X In{(Z")) where n is a natural
number, and takes the n — 0 limit afterwards. Most of the theoretical
results have been obtained after quite complicated calculations and take into
account the replica-symmetry-breaking effects as well. They are, however,
obtained only for some limited cases as, for instance, small values of K (as
K = 3), or K — o0 and for simplest network architectures (as the tree-one).
This suggests that one should look for another way to estimate the storage
properties of the investigated systems, even if it would allow us to get only
approximate results.
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In this paper, we try to solve the problem of the maximal capacity in
multi-layered networks using, among others, a generalization of the method
developed in Ref. [6]. It consists of a straightforward evaluation of Gardner’s
integral (denoted in the literature by V [3]) without any replica method
impact. Instead, we employ in the present work the annealed approximation
[21]. We investigate four well-known types of two-layered perceptron: the
so-called Committee, Parity, and AND Machines which make a decision
based on a majority, parity, and the logical AND rule, respectively (for
these cases the weights that connect hidden units and output node are taken
to be equal to one), and the General Machine, where one allows all the
synaptic couplings to vary. For these networks two kinds of architecture are
considered: a fully connected structure (with “overlapping” receptive fields)
where every hidden neuron is coupled to all the inputs (Fig. 1), and a tree-
structure system (with “non-overlapping” receptive fields) where different
hidden units do not share the input nodes (Fig. 2). We consider networks
with binary weights only. All our results have been obtained for the general
case of any number of hidden (K) units. The theoretical predictions for
the investigated machines (especially for the Parity Machine) are in a good
(or even very good) agreement with numerical findings presented in the
literature; see, for instance, Refs. [13,17]. We should, however, add that our
annealed-approximation results concerning Commattee and Parity Machines
may be obtained using other, well-known and simpler methods, than the
one presented in this paper. Nevertheless, our approach seems to be quite
generic and could be applied to each kind of network with any activation
rule, architecture, or couplings. Therefore, we present it in detail.

Fig. 1. Two-layered perceptron with fully connected architecture. All the input
nodes {£;} are coupled, through the couplings {Ji;}, with all the hidden-layer
neurons, {nx}. These, in turn, are connected to the output = by means of the
synaptic weights {W}.
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§

Fig. 2. Tree-connected two-layered perceptron. The distinct groups of input neu-
rons {£;} are connected, through the couplings {Jx;}, to the distinct hidden nodes,
{nx}. Every hidden neuron is coupled, by the synaptic strengths {Wy}, with the
output r.

The paper is organized as follows: In Section 2 we present a short but
general description of the statistical approach which is adopted in this work.
In Sections 3, 4, 5 and 6 the Committee, Parity, AND and General Ma-
chines are, respectively, considered in detail. Section 7 contains some final
conclusions and remarks.

2. The model

In the present paper we investigate networks which consist of NV binary
inputs £ = +1, with 1 < j < N, connected by a set of binary neuronal
couplings {J; = £1} with K hidden units 7, = £1, 1 < k < K. The
synaptic signal is then sent to the single output node 7 = *1 with the
help of synaptic weights {Wj = £1}. Usually, the strengths connecting the
intermediate layer with the neuron 7 are fixed to be equal to one (with
the exception of the case of the General Machine, where one allows these
couplings to vary), and the state of the output is determined by performing
a specified Boolean function of the states of the hidden units. Here we do
not define in detail the architectures or possible dynamical equations of the
systems as this will be done in the next Sections.

The problem of learning in such a structure may be formulated as fol-

lows: Having a certain number of input-output relations {5‘-‘} — {r#}, for

1 < p < p input patterns with prescribed output 7# and 1 < 57 < N
input neurons, can one find a set of synaptic connections (to be called a
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“solution”) for a network which performs each pair of the input-output as-
sociations {f;“ } — {7#} correctly? We try to answer the question of how

many patterns { :

has a specified architecture and follows a definite updating rule that deter-
mines dynamics of the system. In another words, we want to know what
is the number of memorized dichotomies for which one can find a set of
synaptic couplings that can perfectly implement all the rules {f;‘ —{T#}.
One should add that a large number of learning algorithms has already been
constructed; see Refs. [1,2]. These, then, assume that the existence prob-
lem has been solved. Existence of solutions is a corollary of the present
work. The problem of learning multi-layered perceptrons is, in general, a
very hard task, which takes much computer time and memory. In fact, no
learning algorithm has been proven to converge to the desired solution, if
the latter exists; there are many local minima and metastable states in the
configuration space, etc.

In order to solve the problem of determining the maximal storage capac-
ity, we use statistical mechanics methods. In so doing, we define the cost,
or energy function

7'“} can be maximally memorized in a network which

£({shiwiy{€}) =ie[—-r({m},{m},{§f}) I CY)

which corresponds to the number of ill-memorized patterns. The partition
function reads then

Z= Tr{Jk]}’{Wk} exp[—ﬂg ({ka},{Wk}»{f;L})] ; (2)

where 3 = 1/T is the noise measure, and T denotes the temperature. Note
that the trace Tr{ka},{Wk} should be performed while taking into account

the binary character of synaptic connections {Ji;} and {W}.
The free energy of the model can then be determine as follows:

F=-T{InZ) , (3)

where ((-)) denotes the quenched average over the probability distribution of
the patterns {f;.‘},
1 1
mY _ : NI

Pr(gj) - 55(5;‘ T 1) + 50(53. ~ 1) , (4)
for all j and . We perform our calculations for statistically independent,
unbiased and uncorrelated patterns {f;‘ }, which are, in addition, also inde-
pendent of {r#}. The probability distribution of the “output part” of the
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data, {r#}, has not any influence on the final result —— apart from the case
of the AND Machine; see Section 5.
The entropy function can be obtained by differentiation,

s=-2= . (5)

We are, in practice, interested in the noiseless limit T = 0, or # — oc. For
such a case one gets

5= ({0 el @ made) 1)) - o

Note that the limit 8 — oo should, in fact, be taken after performing the
average ((-)). It is easy to see that this procedure gives us exactly Eq. (6).

The average over the logarithm function is especially hard to evaluate.
In order to simplify our calculations we then make use of the annealed ap-
proximation [21] and assume

S = 1n<<Tr{Jk]}’{Wk} f:[ Q[T({ka},{Wk},{E;‘}) T“} >> . (7)

We will show that this approach provides quite reasonable results for the
presently studied cases.

Further procedures depend on the particular form of the entropy function
for each of the investigated systems and will be described in detail in the
following Sections.

3. Committee Machine
3.1. Fully connected architecture

We consider the fully connected Committee Machine which follows the
two-stage (inputs — hidden units — output) dynamics of the form

N
M = sgn !iz kafj:l foreachk=1,..., K (8)

7=1

with the output
K
T = sgn [Z Wk] (9)
k=1

representing a majority rule.
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The entropy function (7) for such a case reads

S = 1n<< > H 2] {ru > sgn (Z ka§”)} >> =In{(A) . (10)

{Jx, =21} =1

One straightforwardly evaluates the quantity A4 in a manner similar to
the one described in Ref. [6]. First, we observe that the transformation
§¢ — rrE! (for each j, p) in the case of the patterns distribution given in
Eq. (4) will not change the properties of the model, and, at the end, of the
final results. In further calculations we then simply omit {r#}.

In order to evaluate the entropy function (10) we introduce the new
variables

Jri€;

DY (11)
G
for each k and p, which gives
d/\;w
A= Z /deku/n ngnwku
{Ji;=%1} o kot —oo K ” k
, Ak €
X exp l:zZz;w)\k,, "’ZJkJZ # (12)
kop

The sum over {Ji; = £1}, and then the Gaussian integral over {\y,} in
Eq. (12) can be performed exactly. As a result we obtain expression

QK'N
oS
‘MMM) —o0
Xexp[— Z xkuMl;},zkw} , (13)
k!

where o = p/N denotes the so-called storage ratio and the overlap matrix
1 '
My = N Z 5?5; (14)
j

is a non-negative definite one.
In order to derive expression (13) we have made an approximation which,
actually, has no influence on the final result. We have dropped the terms
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higher than second-order from the series expansion of the cosine function
which was obtained after taking the trace over all possible binary couplings
configurations; c.f. Refs. [3-5]. An easy analysis shows that the sum of these
clipped higher-order terms is, on the average, much less than the last which
remains — the second-order element. This already holds for smallest values
of N. For example, if N = 2, the relative error in the final result, which
is caused by cutting of the mentioned above series, can be estimated to be
not greater than a few percent. For growing IV the error tends, of course, to
zero. It is then obvious that in such a case the storage capacity, which takes
the value of the natural number closest to p = «.N, remains without any
change after this approximation. For instance, if p = 1.51 or p = 2.49, the
number of memorized patterns is for both cases, on the average, equal to 2.
Similar considerations are true for all the following Sections, and hence we
will not repeat them any further.

Next we should consider the Heavyside @ functions which appear in
Eq. (13). Signum functions appear in their arguments. The quantities {zy,}
in these expressions can take all possible values. It is obvious that either for
Tky € (—00,0) or for zy, € (0, +00), the function sgn (zj,) remains constant
(either —1 or +1, respectively). On the other hand, the multiple integral

+oa -

J Tlk,, dzky can be expressed as the sum of VAL

—o0

belonging to the interval (—o0,0) or to (0,+00). We have to estimate how
many of these integrals take a nonzero (identical) value, which occurs for

©(-) = 1. This means that we are to investigate, for each u, the condition

ngn Tk, > 0. (15)
k

partial ones with zj,

It is easy to calculate the number of nonzero partial integrals for every p. A
straightforward combinatorics gives for odd K

- _ K + K n K n n K (16)
TETAER) T \ER ) TA\ER 2] T )

and for even K

1/ K K K K
o= - .
o 2<1~> +(%+1)+ <%+2)+ " (K> 1

The prefactor 1/2 in front of (A{\/Z) in (17) reflects the for the network
somewhat confusing situation where half of the hidden units has a plus, the
other half — a minus sign. The output node can then take both values
+1 with probability 1/2. Of course, for such a case Y ;sgnzy, = 0 but
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©(0) = 1/2.! Both sums X, and ;; equal 25!, We now return to our
original problem, evaluating (13).
The entropy function (10) is given by

2KN
S=1n<< KT /HdmkuHQ(ngnxku)
T 2
(detMW) —oo fo

xexp[ Z Thy W,xku]>> . (18)

ko,

The integrals over {zx,} can be written as a sum over 2°K¥ partial ones
with the variables {xy,} belonging either to the interval (—o0, 0) or (0, +00),
for each k, 4. However, because of the above combinatorial investigations,
only 1/2N (since 22(K—1N/2aKN = 1 /90N) of the terms of the sum of these
partial integrals are nonzero. We shall now prove that

<<(detM )E /Hdwku?"NH@(ngnzku)

—00 vﬂ'

x exp|— Z $kuM;,}/-’I3ku' >>

LNTNTY

+00 i i
<<(detMW /Hdzkuexp - Z wkuM;;/il?ku' >>7 (19)

oo ki AT

for any value of K and N. To this end we evaluate the right-hand side of
Eq. (19), assuming the pattern {f;‘ } distribution given by expression (4),

(((207% [Tos - & rniis )

ko,

_ <<7r KN ( 1+a)/HdakJ exp[ Zazjjl
Ik

Jik

+ o0
' A consistent definition requires @(0) = [ O(z)§(z)dzx = [O(z)O(z)]IL -

+oa
[ 8(z)0(z)dz = 1 - ©(0).

-0
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/Hdbku/Hd’Lku exp[ szak] Z kusj + QszkuiL';m] >>
kop kop
.5 €XP {— Zaij;}
Js ok
< 3 [ Tdbw / I] d.

{zru} kou {z),E(~0oc,0)or(0,4+00)} kou
biu
X exp [21 Zbkul‘/«u} Hcos (QZ QkyUkp ) , (20)
J7“

where the sum {(x,} is with respect to all 225V nonzero multiple integrals

Hk# dxg,. For any value of the index k = kg, and for
{zku€(—0,0)or (0,+00)}
all # =1,...,aN, in any elements of the sum Z{xk“}, we readily verify that

the following transformation

Qky; — —Chyj foreach y =1,..., N, (21)
bkou - ‘"bko.u ) (22)
Thow —F ~Thop > (23)

leaves expression (20) without any change — with only one exception: For
every value of u, in appropriate terms of the sum Z{xw}v the integration lim-
its of {x,,} are altered: either (—co,0) — (0, +o0c) or (0, +00) — (—00,0).
[t is easy to verify that another transformation (for fixed u = pg, with

respect to every value of £ =1,..., K),
bkp,o - —bku,o s (24)
Thuy = —Thkug » (25)
changes the integration intervals of {zt,} (kK = 1,..., K) while keeping

the right-hand side of Eq. (20) constant. We should stress that the trans-
formations (21)~(23) and (24)—(25) may be, of course, performed for each
component of the sum 37, 4 in Eq. (20) separately. It is now easy to see
that the averaged values of integrals over different “octants” of the {zy,}
space — see Eqgs. (19) and (20) — are all equal to one another. This ends
the proof of Eq. (19).
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One can now return to Eq. (18). The entropy function may be rewritten

K
S:ln<<2k éje“g{%) [/Hdr,ze‘cp( qu quﬂ >>

!

=KNIn2—-aNln2. (26)

On the other hand, in the maximum capacity limit, we expect only one set
of couplings to exist, and the critical-storage condition & = In1 = 0 will
give the capacity ratio (per input)

o =K. (27)

As our calculations are done within the annealed approximation, the above
result should be thought as an upper bound on the real (“quenched”} critical
capacity.

3.2. Tree-connected architecture

We now turn to investigating the tree-connected Committee Machine
which is characterized by the dynamics

Nk/K :
T = sgn [ Z Jk]fj:| forevery k=1,..., K, (28)
=N (k—1)/K]+1

K
T = sgn lz 771«7] . (29)
k=1

where we assume that N/K is a natural number.

For our problem the synaptic connections {Jx;}, 7 = [N(k—1)/K]+
1,....,Nk/K with k = 1,..., K, take binary values Ji; = %1 for each k
and j. The entropy function for this problem reads

S:1n<< S e Tuzsgn( 5 kaff)]>>51n<<A>>-

{J,=£1} =1 J=[N(k—-1)/K]+1
(30)
This leads to
2N
o (det M,0)* 4 Lo H@ (Z e mk”)

xexp[— Z TpuM ,$kﬂ} . (31)

ke, !
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We note that here the index j can take, for each value of k, only N/K values
(instead of N, as in the case of a fully connected system).

After straightforward calculations similar to those in Section 3.1 we arrive
at

S=Nh2-aNIn2, (32)

which gives (with the maximal-storage condition § = 0) the critical capacity
a.=1. (33)

This is independent of K and N. The result (33) is, apparently, the same
as that already obtained within the annealed approximation, and remains
somewhat in contradiction with both numerical [22] and theoretical results
— obtained using the replica method — known from the literature [5,17].
In the limit N — oo, namely, one gets for K = 1, which is the simple
perceptron case, o, = 0.833 [5]. If K = 3, a. = 0.92 [15,17]. When K is
sufficiently large, a. = 0.95 [17]. On the other hand, for small values of N,
computer simulation findings [22] indicate that the value of the storage ratio
is very close to 1. It is easy to check that, actually, for N =1, 2, 3, 4, 5,
a, = 1 (we can simply consider all the possible configurations of couplings
and binary unbiased patterns). One then should stress that all these results
are quite close to the findings obtained using a relatively simple method
described in this paper.

4. Parity Machine
4.1. Fully connected architecture

The fully connected Parity Machine is driven by the following dynamics,

N
Nk = sgn [Z kafj] foreachk=1,..., K, (34)
i=1

T = sgn[H | - (35)
k=1

The evaluation of the entropy function

» [ K N
S = ln<< > TIe|™]]sen (Z Jk,-g;‘)] >> =In((A) (36)
| k=1 7=1

{Jkj=%1} #=1
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is very similar as in Section 3.1. Thus we find

A= 21\"1\’ ) / Hdiﬂku H@ (’r“ Hsgn :c;w)

xexp[ Z Thy leku] , (37)

NTHT

where the overlap matrix is given by
M, = THrH — 25”5“ (38)

As one sees, all the calculations which we must perform are very similar
to those of Section 3.1. The only difference is that, because we cannot use

the transformation {f;‘} — {T’f?}, the condition (15) should be
T Z sgnzg, >0, (39)
&

whatever y. The analogues of sums £, and X, may be evaluated easily
according to the sign of 7#. For 7# = 41, odd values of K imply

e () ()

and for even K one obtains

e ()3 ()

If 7# = —1 and K is an odd number,

)+ )

whereas for even K

() 3)-2)

K
+ (K) ’ (42)
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Nicely, all the above sums equal 251, Similar considerations as in Section
3.1 (while taking into account the presence of the variables {7#} here) lead
us to the conclusion

+o0
<< (det MW/)_% / H deg, H@ (T“ Hsgn x;W)
oo k. [z k

[oe]

X exp [— Z $kuM;,}"’3ku'J >>

Kyt
+0co
{4 K N ol M- 44
= ( etMuu’) Hd.’]jku 2 exp Z Thky Mli’xku’l . ( )
o Kk ENTHTY

Further considerations, which are identical to those in Section 3.1, give us
the same result as for the Committee Machine. We then end up with

o, = K | (45)
whatever V.
4.2. Tree-connected structure

In the case of a tree-connected structure the dynamics of a network takes
the form

Nk/K
M = sgn I: Z kagj:l for every k= 1,..., If, (46)
7=[N(k-1)/K]+1

-
- sgn[n ”kJ , (47)
k=1

where N/K is an integer. The case of binary couplings can now be handled
straightforwardly.
The discrete weights imply the following form of the entropy function

S=1n<< 3 ﬁ@[r”isgn( N\k;/K kag;*) >>

{Jp;=%1} n=1 k=1 J=[N(k-1)/K]+1
=ln{{(A4)) , (48)

and here
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2N

A= /Hdmkuﬂe(r“ﬂsgn%)

(detM )_ s

X exp |:— Z xk“M;l},:vku/] . (49)

ko, !

The storage ratio reads
a. =1 y (50)

for all values of K and N. This result agrees with both theoretical and
numerical findings of Ref. [13], where the tree-connected Parity Machine
with binary connections was studied in the thermodynamic limit N — o
using the replica method. One then could expect that the result of Section
4.1 for the fully connected Parity Machine, see Eq. (45), is also exact.

5. AND Machine
We now consider the so-called AND Machine. The output unit in such
a network takes the value +1 when every hidden node is active (+1), and

—1 in all the other cases. Below we study both the fully connected and the
tree-connected structure.

5.1. Fully connected structure

The dynamics of a fully connected network can be defined by

Il

N
Nk = sgn [Z kafj} foreachk=1,..., K, (51)

=1

K
T = sgn [Z e+ 1-— K} . (52)

k=1
TH Z sgn (Z kaf”) +rH— KTk >>

=In(A) . (53)

Taking {Jx; = £1} one can write the entropy function,

S:ln<< > H@

{Jp;=F1} =1
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Proceeding similarly as in previous Sections we obtain

oKN

T (T T r——

(det M, )

LNINTY

X exp [— Z :vkuAM;ul,xkuf} , (54)

with the matrix {M,,/} given by expression (14).
Here the distribution of the “output-part” of the patterns, {7#}, plays an

important role. We note, however, that the transformation {ff} - {T"f]‘-‘}
can be done. Let us assume that the data{7#} are uncorrelated but biased,

1—-m 1+ m

Pr(r#) = ST+ 1) + S+ — 1) (55)

for each p, with —1 < m < 1. The average () is then with respect to the
distributions of both {f;‘} and {7#}.

Preliminary calculations in this case are similar as in Section 3.1, but
instead of the condition (15) we have here

ngn Ty + 7 - K7* > 0. (56)
k

Further combinatorial arguments depend on the signs of {7#}. For the case
7" = 41 the analogue of expressions (16), (17) and (40)-(43) is simply
Y4 = 1, whereas, if 7# = -1, &4 = 28 — 1.

The quantities {7#} do not depend on the index & and one can perform
the average over {7#} in an easy manner. Straightforward calculations lead
to the final expression for the entropy function,

i—m
KN 15N (2}\-_1)( o
S = 1In2 +In Ga N
. 1+m 1 1-m 1
:I&Nln?—l—ozN[ 3 ln<21\>+ 5 ln<1-—27>J, (57)
so that
2K 1n2

YT om2K —(1—m)In(2k 1)
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5.2. Tree-connected structure

The dynamics of a tree-connected structure can be written

NK/K
M = sgn[, 2. kafj] forevery k=1,.... K,  (59)

=[N (k-1)/K]+1
P

T = sgn [Z e+ 1~ K] , (60)
k=1

with N/K being an integer.
The entropy function takes here the form

5:1"<< 2 HQ{T“ngn( Nﬁ/:k. R ) e Krp} >>

{J,=£1} #=1 =[N (k—1)/K]+1
=In(A) (61)

and, after some calculations, we arrive at

2N

A= / dek“ HG (Z sgn g, + T — KT")

(det M, )2 —o0

xexp[ Zxkﬂ W,xk“} . (62)

1#;”

The final result reads

2In2

2In2K — (1 —m)In(2K - 1) ° (63)

. =

The capacities per adaptable synapse for fully connected and tree-structured
networks are then identical; see Eqgs. (58) and (63). The same holds obviously
also for the Commuittee and Parity Machines studied in Sections 3 and 4.
Note that if m = +1, we have 7} = +1 for all k, 4 and the storage ratio,

O = +— , (64)

decreases with K. This can be interpreted by saying that it becomes in-
creasingly difficult for all the hidden units to assume the value +1 as K
increases.
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6. General Machine

In the case of the General Machine one allows all the synaptic couplings
to vary, including the {Wj} which connect hidden units with the output.

The dynamics of the fully and tree-connected General-Commitiee Ma-
chines can be described by

N
N = sgn I:Z Jk]f]} foreach k =1,..., K, (65)

J=1
K

T = sgn [E Wknk] ) (66)
k=1

and

Nk/K
M = sgn l; Z Jk]f]} forevery k=1,...,K, (67)
=[N (k-1)/K]+1

K
T = sgn [Z Wkﬂk:l , (68)
k=1

respectively. The fully and tree-structured General-Parity Machines are
driven by the updating rules,

N
N = Sgn [Z kafj} foreachk=1...., K, (69)

Jj=1
K
T = sgn[H W/knk} , (70)
k=1
as well as

Nk/K
M = sgn Z Jk]f]} for every k= 1,..., K, (71)
J=[N(k=1)/K]+1

K
T = sgn [H W’knk} . (72)
k=1

In the case of the fully and tree-connected General-AND Machines the dy-
namics takes the form

N
Nk = sgn [Z kafjj! foreachk=1,..., K, (73)

i=1
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K
T = sgn [Z Wi +1 — K} , (74)
k=1
and
Nk/K
Nk = sgn |: Z ka@} forevery k=1,...,K, (75)
F=[N(k—-1)/K]+1
K
T = sgn [Z Wi +1 — 1'{} , (?6)
k=1
respectively.

The basic form of the partition function (2) for the fully connected
General-Committee Machine with dynamics given by (65) and (66) and bi-
nary strengths {Ji; = +1}, {Wj = £1} reads

P K N
Z = Z exp{—ﬁZ@[—T“ZVVk sgnZkaff} } . (77)
{Ji, =1} {Wy=21} u=1 k=1 7=l

It is obvious that here one can introduce the auxiliary variables T; = Wi Jy;
for each k and j. The partition function can then be written

K N
z=2K % exp{—ﬁi@ —T“ZSgHZTkjE;}} : (78)
k=1 1=1

{T,=1} u=1

The annealed entropy in the noiseless limit 3 — oo is thus given by

p K N
S:I\"ln2+ln<< Z H@ T“ngn( Jk]f;‘)}>> . (79)
k=1 J=1

{Jg,=%1} #=1
The second term in above expression is exactly the same as the right-hand
side of Eq. (10); see Section 3.1. In order to evaluate the entropy in a second
manner (as the Boltzmann function) we should take into account the follow-
ing degeneracy: For any value(s) of £ = ko and any solution {Wg,,{Jk,;}}
also the configuration {-Wj ,{—Jk,;}} can perfectly remember the same
set of data. In the saturation limit we then end up with

S=1m2kK. (80)

Thus the storage capacity takes the value

a. =K . (81)



1726 W. TArRKOWsKI, J.L. vaAN HEMMEN

We can also investigate all the other machines and architectures — for the
proper dynamics equations see the beginning of this Section — with adaptive
weights which connect the hidden layer with output unit. In such cases one
has to add to all the entropy functions given by expressions (30), (36), (48),
(53) and (61) the term K In 2, but also the critical-storage condition § = 0
is changed to be S = K In2. We obtain that the maximal capacity of the
fully connected General-Parity Machine is also given by (81). The storage
ratio for the tree-structured General-Committee and Parity Machines reads

a.=1. (82)
The fully connected General-AND Machine can store per input

2K 1n2

= - _ , 83
T Sm2K — (1 - m)In(2X — 1) (83)
and for this network with the tree-architecture one has

o 21n2 (84)

T 2m2F —(1-m)ln(2K — 1)

All the above results are valid for any value of K. We conclude that machines
in which the couplings connecting the intermediate layer with the output
node are allowed to vary, cannot store more patterns than networks with
fixed a priori values of the weights {Wj}. This general conclusion also holds
for the calculations done with the “quenched” entropy, Eq. (6).

We can generalize the results of this Section in an easy way to more-
than-two-layered networks which can have any architecture and any kind of
connections (continuous or two-valued) between input and the first hidden
layer, but are tree-structured, with binary weights, between the first inter-
mediate layer, any number of further hidden ones, and the output node.
The methods to handle such a case are very similar to those described in
this Section. One now has to introduce “super-weights” — {T};} — for the
whole network. Our calculations demand here a slightly more complicated
combinatorics than that in Sections 3, 4 and 5 but give the same result as
in the previous parts of this work. The only difference for the final result is
caused by the fact that in the expression for the partition function (78) one
now encounters, instead of the term 2%, the factor 2F where R is the total
number of all the hidden connections between the first intermediate layer
and the output unit; see also Ref. [15]. On the other hand, in the saturation
limit, the Boltzmann entropy should have the form & = RlIn 2. The storage
capacity ratio, checked against the results of parts 3, 4 and 5 of this paper,
thus remains unchanged.
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7. Conclusions

In this work we have investigated four basic types of two-layered network
with two kinds of architectures as well as with binary synaptic couplings.
Our interest was focused on the storage capabilities of these associative
machines. In order to estimate their maximal memory capacity we have
adopted a statistical mechanics approach. It is worth stressing that the
calculations done in this paper are valid for any number of the hidden units.

We have compared our results with both theoretical and numerical find-
ings which are known from the literature. In some cases {K — 0o, networks
with tree-architectures, and especially the Parity Machine and structures
with small numbers of input neurons N) a good (or even very good) agree-
ment with computer simulations has been found. In the limit K — oo, our
results are also very close to the theoretical findings obtained within much
more complicated, from the mathematical point of view, replica method (we
should stress that there does not exist, to our knowledge, any attempt to
apply replica method to the case of fully connected networks}. The results
obtained for the Parity Machines seem to even be exact (for any value of
K). We would like, however, to add that our annealed-approximation results
concerning Committee and Parity Machines may be obtained using other,
well-known and somewhat simpler methods, than the one presented in this
paper. Nevertheless, our approach seems to be quite generic and could be
applied to each kind of network with any activation rule, architecture, or
couplings. Therefore, we have presented it in detail.

At the end of this paper, we would like to attract reader’s attention to
two points:

1. All of our results have been obtained using the annealed approximation;
see Eq. (7). One can conclude that this approach may sometimes give
better (closer to reality) results than the replica method, especially if
the replica-symmetry-breaking effects are hard to incorporate. It is also
well-known [23] that in some cases the logarithm of specified random
functions (of the form very similar to the ones investigated in this work)
is a self-averaging quantity.

2. We might wish to try a further attempt to study networks with more
than two layers. After Section 6 we may, however, conclude that the
storage capacity of many-layered networks need not be much greater
than that of two-layered perceptrons or, strictly speaking, may be close
to this value. In fact, the connections between inputs and the first hid-
den layer play the most important — decoding role for sending synap-
tic signals by associative machines. Other (further) connectijons mainly
provide the execution of the proper Boolean function which has to be
performed by the network.
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