Vol. 28 (1997) ACTA PHYSICA POLONICA B No 8

BURGERS VELOCITY FIELDS
AND ELECTROMAGNETIC FORCING
IN DIFFUSIVE (MARKOVIAN) MATTER TRANSPORT"

P. GARBACZEWSKI, G. KONDRAT, AND R. OLKIEWICZ

Institute of Theoretical Physics, University of Wroctaw
M. Borna 9, 50-204 Wroctaw, Poland

(Received October 4, 1996)

We explore a connection of the unforced and deterministically forced
Burgers equation for local velocity fields with probabilistic solutions (here,
Markovian diffusion processes) of the so-called Schrodinger boundary data
problem. An issue of deducing the most likely interpolating dynamics from
the given initial and terminal probability density data is investigated to
give account of the perturbation by external electromagnetic fields. A suit-
able modification of the Hopf-Cole logarithmic transformation extends the
standard framework, both in the Burgers and Schrédinger’s interpolation
cases, to non-gradient drift fields and forces.

PACS numbers: 02.50. -1, 05.20. +j, 03.65. -w, 47.27. -1

1. The Burgers equation in Schrédinger’s interpolation problem

The Schrodinger problem of deducing the detailed microscopic dynamics
from the given input-output statistics data is known to admit a particular
class of solutions in terms of Markov diffusion processes, [1-8]. That espe-
cially pertains to an explicit modelling of any unknown in detail physical
process solely on the basis of the available statistics (conditional probabili-
ties and averages, invariant measures, time-dependent probability densities,
density boundary-data) presumed to refer to random motions with a given
finite time of duration.

At this point, let us invoke a probabilistic problem, originally due to
Schridinger: given two strictly positive (usually on an open space-interval)
boundary probability densities po(z), pr(z) for a process with the time of du-
ration 7 > 0. Can we uniquely identify the stochastic process interpolating
between them?
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The answer is known to be affirmative, if we assume the interpolating
process to be Markovian. In particular, we can get here a unique Markovian
diffusion process which is specified by the joint probability distribution

m1(A4,B) = [ @z [@ymr(,9), (1)
B

A

where
mr(F, §) = uo(¥) k(z,0,y,T) vr(Y) (2)

and the two unknown functions uo(Z), vr(§) come out as solutions of the
same sign of the integral identities (1). Provided, we have at our disposal
a continuous bounded strictly positive (ways to relax this assumption were
discussed in Ref. [4]) integral kernel k(Z,s,7,t),0 <s <t <T.

We shall confine further attention to cases governed by the familiar
Feynman-Kac kernels. Then, the solution of the Schrédinger boundary-
data problem in terms of the interpolating Markovian diffusion process is
found to rely on the adjoint pairs of parabolic equations. In case of gradient
forward drift fields, the process can be determined by checking (this imposes
limitations on the admissible potential) whether the Feynman-Kac kernel

4

K75, 5,0 = [exp |- [ e(@(r), 1)dr| dufls) ) 3)

8

is positive and continuous in the open space-time area of interest (then,
additional limitations on the path measure need to be introduced, [3]), and
whether it gives rise to positive solutions of the adjoint pair of generalized
heat equations:

Oru(T,t) = vAu(d,t) — o, u(, t),
Hv(T,t) = —vDu(Z, t) + (&, t)v(a,t) . (4)

Here, a function ¢(Z,t) is restricted only by the positivity and continuity
demand for the kernel (3), see e.g. [2]. In the above, d,ugf)) (w) is the condi-
tional Wiener measure over sample paths of the standard Brownian motion.

Solutions of (4), upon suitable normalization give rise to the \Iarkm ian
diffusion process with the factorized probability density p(&,t) = u(:L tyo(Z,t)
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which, while evolving in time, interpolates between the boundary density
data p(Z,0) and p(&,T). The interpolation admits a realization in terms
of Markovian diffusion processes with the respective forward and backward
drifts defined as follows:

Vou(Z,t)

(1'3'

S

(Z,t) =20————

)’
g - ( t)
b (%, t) = —2v—=
u(@ )
in the prescribed time interval [0, 7.

The related transport equations for the densities easily follow. For the

forward interpolation, the familiar Fokker-Planck equation holds true:
p(.1) = vp(, 1) = VIB(E, )p(7,1)], (6)
while for the backward interpolation we have:
Oip(Z,t) = —vAp(E,t) — V[ba(Z, t)p(7, )] . (7)

We have assumed that drifts are gradient fields, curl b= 0. As a conse-
quence, those that are allowed by the prescribed choice of ¢(Z,t) must fulfill
the compatibility condition

) b2
(&)= 0P + 1 (-ﬂ + vz;) (8)

which establishes the Girsanov-type connection of the forward drift 5(9?, t) =
2uVP(Z, t) with the Feynman-Kac, c.f. [2,3], potential ¢(Z,t). In the con-
sidered Schrédinger’s interpolation framework, the forward and backward
drift fields are connected by the identity b, = b — 20V In p.

One of the distinctive features of Markovian diffusion processes with the
positive density p(Z,t) is that, given the transition probability density of the
(forward) process, the notion of the backward transition probability density
P« (7. 8, T,t) can be consistently introduced on each finite time interval, say
0<s <t LT

P(E, t)pu(F, 5, 5, 1) = p(7, 5, Z, t)p(F, 5) , (9)

so that

and
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The transport (density evolution) equations (6) and (7) refer to processes
running in opposite directions in a fixed, common for both, time-duration
period. The forward one, (6), executes an interpolation from the Borel set
A to B, while the backward one, (7), executes an interpolation from B to
A, compare e.g. the defining identities (1).

The knowledge of the Feynman-Kac kernel (3) implies that the transition
probability density of the forward process reads:

o

(7, ¢
v(y,s

St

2)(§7S’;§7t):k(gvs’fvt) (10)

5)
while the corresponding (derivable from (10), since p(Z, t) is given) transition
probability density of the backward process has the form:

(s 7.0 = k(7,5 50 5. (1)

Obviously. [2.6]. in the time interval 0 < s < t < T there holds:

w(F ) = /uo(g')k(g,s,f,e)dffy
o(d,s) = /k 7,5, 7 T)op(@)dz (12)

Now, we are at the point, where a connection of the previous probabilistic
formalism with an issue of the Burgers velocity-driven matter transport, [5],
can be disclosed.

The prototype nonlinear field equation named the Burgers or “nonlinear
diffusion” equation (typically without, [9,10], the forcing term F(Z,1)):

9T + (TsV) g = vATE + F(,t) (13)

recently has acquired a considerable popularity in the variety of physical
contexts, [5].

Burgers velocity fields can be analysed on their own with different (in-
cluding random) choices of the initial data and/or force fields. However,
we are interested in the possible diffusive matter transport that is locally
governed by Burgers flows. ¢.f. [5]. In this particular connection, let us point
out a conspicuous hesitation that could have been observed in attempts to
establish the most appropriate matter transport rule, if any diffusion-type
microscopic dynamics assumption is adopted to underlie the “nonlinear dif-
fusion™ (13).

Depending on the particular phenomenological departure point, one eij-
ther adopts the standard continuity equation, [11,12], that is certainly valid
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to a high degree of accuracy in the so-called low viscosity limit v | 0, but
incorrect on mathematical grounds if there is a genuine Markovian diffu-
sion process involved and simultaneously a solution of (13) stands for the
respective current velocity of the flow: 9,p(Z.t) = —VI[#(Z, t)p(F.1)] .

Alternatively, following the white noise calculus tradition telling that the
stochastic integral

1 t

X = [ oS s).0)ds+ [ A()ds
0 4]

necessarily implies the Fokker—Planck equation, one is tempted to adopt:
Op(Z,1) = vQAp(&,t) — V[Tp(Z, t)p(Z, t)] which is clearly problematic in view
of the classic Mc Kean’s discussion of the propagation of chaos for the Burg-
ers equation, [13-15} and the derivation of the stochastic “Burgers process”
in this context: “the fun begins in tryving to describe this Burgers motion as
the path of a tagged molecule in an infinite bath of like molecules”, [13].

To put things on the solid ground, let us consider a Markovian diffu-
sion process, which is characterized by the transition probability density
(generally inhomogeneous in space and time law of random displacements)
p(7.s.7.t). 0 < s <t <T. and the probability density p(Z.t) of its random
variable .f(t) .0 <t <T. The process is completely determined by these
data. For clarity of discussion, we do not impose any spatial boundary re-
strictions, nor fix any concrete limiting value of T which, in principle, can
be moved to infinity.

Let us confine attention to processes defined by the standard backward
diffusion equation. Under suitable restrictions (boundedness of involved
functions. their continuous differentiability) the function:

9(F,5) = E{g(X(T))

X(s)=Fs<T)= /'p(f-, 5. 7. T)g(7. TPy . (14)
satisfies the equation
—D5g(T,8) = vAG(F.s) + [b(£. 5)V]g(Z. 5) . (15)

Let us point out that the validity of (14) is known to be a necessary condition
for the existence of a Markov diffusion process, whose probability density
p(Z.t) is to obey the Fokker-Planck equation (the forward drift (.)'(f.[) re-
places the previously utilized Burgers velocity (T, 1)).

The case of particular interest, in the traditional nonequilibrium statisti-
cal physics literature. appears when p(g, s, Z,t) is a fundamental solution of
(15) with respect to variables g, s. [16-18], see however [2] for an analysis of
alternative situations. Then. the transition probability density satisfies also



1736 P. GARBACZEWSK!, G. KoNDRAT, R. OLKIEWICZ

the second Kolmogorov (e.g. the Fokker-Planck) equation in the remaining
Z,t pair of variables. Let us emphasize that these two equations form an
adjoint pair of partial differential equations, referring to the slightly counter-
intuitive for physicists, though transparent for mathema,tlcna,nb [6,7.19-22],
issue of time reversal of diffusions.

We can consistently introduce the random variable of the process in the
form

- / b(X(s),5) ds+ V2OW (1)
0

Then, in view of the standard rules of the 1t6 stochastic calculus. [6,7,22,23],

we realize that for any smooth function f(Z.t) of the random variable )Z(t)
the conditional expectation value:

leltl},loA_ [/p? t, gt + A (7t + At)d>y — f(T, t)]
= (D4 )(X(t),1) = (8, + bV + vD) f(Z,1), (16)

where X (¢) = &, determines the forward drift l;(:z':', t) of the process (if we set
components of X instead of f) and, moreover. allows to introduce the local
field of (forward) accelerations associated with the diffusion process, which
we constrain by demanding (see e.g. Refs [6,7.22,23] for prototypes of such
dynamical constraints):

(D2X) (1) = (DyB) (X (1), 1) = (0 + (BV)b + vAB)(&,£) = F(&.1). (17)

where {(1) = 7 and, at the moment arbitrary, function F(&,t) may be
interpreted as an external forcing applied to the diffusing system, [3].

By invoking (9), we can also define the backward derivative of the process
in the conditional mean (c.f. [3.24,25] for a discussion of these concepts
in case of the most traditional Brownian motion and Smoluchowski-type
diffusion processes)

1 = ' = = 13 _ hd . 2 N
kg}@ N, [z, /])*(y.t - AL Z gyl = (D-X)(t) = b.(X(t),t) (18)

(D_)(X(1),1) = (0 + 5,V — vD) F(X(2),1) -

Accordingly, the backward version of the acceleration field reads

(D2X)(t) = (DFX)(t) = F(X(t),1), (19)
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where in view of b, = b — 2vV In p we have explicitly fulfilled the forced
Burgers equation:
0tby + (b.V)by — vAb. = F (20)

and, [3,6,22], under the gradient-drift field assumption. curl b, = 0. we deal
with f(i’ t) = 2vVe(Z, t) where the Feynman—Kac potential (3) is explicitly
involved.

Let us notice that the familiar (linearization of the nonlinear problem)
Hopf-Cole transformation, [10, 26], of the Burgers equation into the gener-
alized diffusion equation (yielding explicit solutions in the unforced case)
has been explicitly used before (the second formula (4)) in the framework of
the Schrédinger interpolation problem. In fact, by defining ., = log u, we
immediately recover the traditional form of the Hopf-Cole transformation
for Burgers velocity fields: b, = —2vV®,. In the standard considerations
that allows to map a nonlinear (unforced Burgers) equation into a linear,
heat, equation. In the special case of the standard free Brownian motion,
there holds b(&,t) = 0 while b,(&,t) = —2vV log p(&,1).

2. The problem of electromagnetic forcing in the Schrédinger
interpolating dynamics

It turns out the crucial point of our previous discussion lies in a proper
choice of the strictly positive and continuous, in an open space-time area,
function k(7,s, &, t) which, if we wish to construct a Markov process, has
to satisfy the Chapman—Kolmogorov (semigroup composition) equation. It
has led us to consider a pair of adjoint parabolic differential equations, as an
alternative to more familiar Fookker—Planck and backward diffusion equa-
tions.

In the quantally oriented literature dealing with Schrédinger operators
and their spectral properties, [27-29], the potential ¢(z, t) is usually assumed
to be a continuous and bounded from below function, but these restrictions
can be substantially relaxed (unbounded functions are allowed in principle)
if we wish to consider general Markovian diffusion processes and disregard
an issue of the hound state spectrum and this of the ground state of the (self-
adjoint) semigroup generator, [16,17]. Actually, what we need is merely that
properties of ¢(&,t) allow for the kernel £ which is positive and continuous
function. By taking for granted that suitable conditions are fulfilled, (2,27],
we can immediately associate with equations (4) an integral kernel of the
time-dependent semigroup (the exponential operator should be understood
as time-ordered expression. since in general H(7) may not commute with
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H(r") for 7 # 7'):

i
k(7. s, 7, ) = exp(—/H(T)dT) 7, 7), (21)
where H(7) = —v/A + ¢(7) is the pertinent semigroup generator. Then, by

the Feynman—-Kac formula, [30], we get a standard path integral expression
(3) for the kernel, which in turn yields (5)—(8), see e.g. [2]. The above formal-
ism is known, [3], to encompass the standard Smoluchowski-type diffusions
in conservative force fields.

Strikingly, an investigation of electromagnetically forced diffusions has
not been much pursued in the literature, although an issue of deriving the
Smoluchowski-Kramers equation (and possibly its large friction limit) from
the Langevin-type equation for the charged Brownian particle in the general
electromagnetic field has been relegated in Ref. [31], Chap. 6.1 to the status
of the innocent-looking exercise. On the other hand, the diffusion of realistic
charges in dilute ionic solutions creates a number of additional difficulties
due to the apparent Hall mobility in terms of mean currents induced by the
electric field (once assumed to act upon the system), see e.g. [32,33] and [34].

In connection with the electromagnetic forcing of diffusing charges, the
gradient field assumption imposes a severe limitation if we account for typi-
cal (nonzero circulation) features of the classical motion due to the Lorentz
force, with or without the random perturbation component. The purely
electric forcing is simpler to handle, since it has a definite gradient field re-
alization, see e.g. [35] for a recent discussion of related issues. The major
obstacle with respect to our previous (Section 1) discussion'is that, if we
wish to regard either the force F, or drifts b, b, to have an electromagnetic
provenience, then necessarily we need to pass from conservative to non-
conservative fields. This subject matter has not been significantly exploited
so far in the nonequilibrium statistical physics literature.

Usually, the selfadjoint semigroup generators attract the attention of
physicists in connection with the Feynman—Kac formula. A typical route to-
wards incorporating electromagnetism comes from quantal motivations via
the minimal electromagnetic coupling recipe which preserves the selfadjoint-
ness of the generator (Hamiltonian of the system). As such, it constitutes
a part of the general theory of Schrodinger operators. A rigorous study of
operators of the form —A + V has become a well developed mathematical
discipline, [27]. The study of Schrodinger operators with magnetic fields,
typically of the form —(V — 'iff)z + V', is less advanced, although specialized
chapters on the magnetic field issue can be found in monographs devoted
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to functional integration methods, [27,36], mostly in reference to seminal
papers [37,38].

From the mathematical point of view, it is desirable to deal with mag-
netic fields that go to zero at infinity, which is certainly acceptable on physi-
cal grounds as well. The constant magnetic field does not meet this require-
ment, and its notorious usage in the literature makes us (at the moment)
to decline the asymptotic assumption and inevitably fall into a number of
serious complications.

One obvious obstacle can be seen immediately by taking advantage of
the existing results, [37]. Namely, an explicit expression for the Feynman-
Kac kernel in a constant magnetic field, introduced through the minimal
electromagnetic coupling recipe H(A) = —%(V — iA4)2, is available (up to
irrelevant dimensional constants):

o 8] .0 = i) (am)

x exp{—%(—ts —y3)?— g coth <§*t>{(l‘2—y2)2+($1 —y1)2}—,5§(&‘1y'3—$391 )} :
(22)

Clearly, it is not real (hence non-positive and directly at variance with
the major demand in the Schrédinger interpolation problem, as outlined in
Section 1), except for directions g that are parallel to a chosen 7.

Consequently, a bulk of the well developed mathematical theory is of no
use for our purposes and new techniques must be developed for a consistent
description of the electromagnetically forced diffusion processes along the
lines of Section 1, i.e. within the framework of Schrédinger’s interpolation
problem.

3. Forcing via Feynman-Kac semigroups

(9:5)

The conditional Wiener measure du( t)( &), appearing in the Feynman-—

Kac kernel definition (3), if unweighed (set ¢(&(7), 7) = 0) gives rise to the
familiar heat kernel. This, in turn, induces the Wiener measure Pw of the
set of all sample paths,which originate from ¥ at time s and terminate (can
be located) in the Borel set A € R> after time t — s

Pw[A /d3 /du( (3) = /du

where, for simplicity of notation, the (7,t — s) labels are omitted and ,u(
stands for the heat kernel.

()
#)
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Having defined an [t6 diffusion
t
‘;(t) = /1;(5, u)du + \/QVW’(l)
0

we are interested in the analogous path measure:
g S)
/ dx / (lu(x 0 (@ /

Under suitable (stochastic, [3]) integrability conditions imposed on the
forward drift. we have granted the absolute continuity Py <« Pw of mea-
sures, which implies the existence of a strictly positive Radon-Nikodvm
density. Its canonical C('ameron-Martin-Girsanov form, [3,27], reads:

(7,5, &,t) = exp 5 /1) {(u), )d,/‘?(u) — % [5(‘2(11), u)]du

k3

du(X)
du

(23)

If we assume that drifts are gradient fields, curld = 0. then the It6

formula allows to reduce, otherwise troublesome, stochastic integration in
the exponent of (23), [27,36], to ordinary Lebesgue integrals:

:21—/13‘ X(u), w)dX () = S(X(t),t) — B(X(s). s)

¢
- /du [0:P + %\“E}(‘Z(u) u. (24)

After inserting (24) to (23) and next integrating with respect to the condi-
tional Wiener measure, on account of (10) we arrive at the standard form
of the Fevnman-Kac kernel (3). Notice that (24) establishes a probabilistic
basis for logarithmic transformations (5) of forward and backward drifts:
b=2vVinev=20V®, b. = -2vVIn u = -2vVP,. The forward version is
commonly used in connection with the transformation of the Fokker—Planck
equation into the generalized heat equation, [3,39,40]. The backward version
is just the Hopf-Cole transformation, mentioned in Section 1, used to map
the Burgers equation into the very same generalized heat equation, [10].
However, presently we are interested in non-conservative drift fields.
curl b # 0, and in that case the stochastic integral in (23) is the major source
of computational difficulties, [22,27.36], for nontrivial vector potential field
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configurations. It explains the virtual absence of magnetically forced diffu-
sion problems in the nonequilibrium statistical physics literature.
At this point, some steps of the analysis performed in Ref. [41] in the

—

context of the “Euclidean quantum mechanics”, c.f. also [7], are extremely
useful. Let us emphasize that electromagnetic fields we utilize, are always
meant to be ordinary Maxwell fields with no Euclidean connotations (see
e.g. Chap. 9 of Ref. [36] for the Euclidean version of Maxwell theory).

Let us consider a gradient drift-field diffusion problem according to Sec-
tion 1, with (2), (24) involved and thus an adjoint pair (4) of parabolic
equations completely defining the Markovian diffusion process. Further-
more, let A(Z) be the time-independent vector potential for the Maxwellian
magnetic field B = curl A. We pass from the gradient realization of drifts
to the new one, generalizing (5), for which the following decomposition into
the gradient and nonconservative part is valid:

b(T. 1) = 2wV B(F,t) — A(F), (25)

We denote 0(Z,t)=exp [@(Z,t)] and admit that (25) is a forward drift of an
[t6 diffusion process with a stochastic differential

0

On purely formal grounds, we deal here with an example of the Cameron—
Martin-Girsanov transformation of the forward drift of a given Markovian
diffusion process and we are entitled to ask for a corresponding measure
transformation, (23).

To this end, let us furthermore assume that 8(Z,t) = 8 solves a partial
differential equation

dX (1) = Pyy_e - fi} dt +V2wdW (t).

1 - 2
08 = —v [v - 5;.4(:1?)} 6 + c(7, )8 (26)

with the notation ¢(Z, t) patterned after (8). Then, by using the It6 calculus
and (25), (26) on the way, see e.g. Ref. [41], we can rewrite (23) as follows:

dp(X) -
(4,s. %, t)
du
R T . F V0 o -
= exp% {f(b/% - A (X (u),v)dX(u) — %/(21/% — A) (‘X(u),u)du}
IO (O IR ST (. u)d
= 72 0o). o) exp { 5 s/[A(u)(LX(u) + v(VA) (X (u))du + 2(X (u), u)du]:] ,

(27)
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where X(s) = 7, X(t) = & and 2(Z.t) = 2ve(d, t).

More significant observation is that the Radon-Nikodym density (27), if
integrated with respect to the conditional Wiener measure, gives rise to the
Feynman-Kac kernel (21) of the non-selfadjoint semigroup (suitable integra-
bility conditions need to be respected here as well, [41}), with the generator
Hzp=-v[V - %;,/I(f)]'z + ¢(Z,t) defined by the right-hand-side of (26):

QO(%,t) = H 18(Z,1)

_ [ VA + A7)V +%(v4( ) - 4%[/1‘(5)]2“(5,0 0(3,1)
= —v(F,t) + AZ)VO(Z,t) + c 4(T,1)0(&, 1) . (28)
Here: ]
caldt) = c(@t) + 5 (VA)(:F) 47{1(5)12- (29)

An adjoint parabolic partner of (28) reads:
Ob. = —HH. = v2b, + V[A(£)6.] — cal(Z, 1)0.

. 2

Consequently, our assumptions (25), (26) involve a generalization of the
adjoint parabolic system (14) to a new adjoint one comprising (26), (30).
Obviously. the original form of (14) is immediately restored by setting A=0.
and executing obvious replacements . — u, § — v.

Let us emphasize again, that in contrast to Ref. [41], where the non-
Hermitean generator 2vH 3, (26), has been introduced as “the Euclidean

version of the Hamiltonian” H = —2v%(V — 2%5)2 + 2, our electromag-
netic fields stand for solutions of the usual Maxwell equations and are not
Euclidean at all.

As Jong as the coeficient functions (both additive and multiplicative) of
the adjoint parabolic system (28), (30) are not specified, we remain within a
general theory of positive solutions for parabolic equations with unbounded
coefficients (of particular importance, if we do not impose any asymptotic
fall off restrictions), [16,43-45]. The fundamental solutions, if their existence
can be granted, usually live on space-time strips, and generally do not admit
unbounded time intervals. We shall disregard these issues at the moment.
and assume the existence of fundamental solutions without any reservations.

By exploiting the rules of functional (Malliavin, variational) calculus,
under an assumption that we deal with a diffusion (in fact, Bernstein) pro-
cess associated with an adjoint pair (28), (30), it has been shown in Ref. [41]
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that if the forward conditional derivatives of the process exist, then
(D1 X)(t) =202 — A=b(%,t), (32) and:

(D2 X)(t) = (D4 X)(#) x curl A(Z) + VQ(F,t) + veurl (curl A(%)), (31)

where ’?(O) =0, X(t) = 7, X denotes the vector product in R3 and 2vc = £2.

Since B = curl _‘/i’ = ltoﬁ , we identify in the above the standard Maxwell
equation for curl H comprising magnetic effects of electric currents in the

system: curl B = ugiD + 0oE + Jext} where D = eoF while j;xc represents
external electric currents. In case of E = 0, the external currents only would
be relevant. A demand curlcurl A = V(VA) AA = 0 corresponds to a
total absence of such currents, and the Coulomb gauge choice VA = 0 would
leave us with harmonic functions A(Z).

Consequently, a correct expression for the magnetically implemented
Lorentz force has appeared on the right-hand-side of the forward accelera-
tion formula (31), with the forward drift (25) replacing the classical particle
velocity ¢ of the normal classical formula.

The above discussion implicitly involves quite sophisticated mathemat-
ics, hence it is instructive to see that we can bypass the apparent compli-
cations by directly invoking the universal definitions (16) and (18) of condi-
tional expectation values, that are based on exploitation of the Ité formula
only. Obviously, under an assumption that the Markovian diffusion process
with well defined transition probability densities p(¥, s, Z,t) and p.(¥, s, Z, 1),
does exist.

We shall utilize an obvious generalization of canonical definitions (5) of
both forward and backward drifts of the diffusion process defined by the
adjoint parabolic pair (4), as suggested by (25) with A= A( )

V.
0.

We also demand that the corresponding adjoint equations (28), (30) are
solved by 6 and 8. respectively.

b=2w—— A, b.=-2w - A. (32)

—

Taking for granted that identities (D4 X)(t) = b(&,t), X(t) = & and
(D_X)(t) = b,(Z,t) hold true, we can easily evaluate the forward and back-
ward accelerations (substitute (32), and exploit the equations (28), (30)):
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(D4b)(X(1).1) = db+ (BV)b+ vAb
—bxB+vcul B+ VR (33)

and

Il

O¢b + (5 V )by — D,
by x B—vecurl B+ V0. (34)

(D-b.)(X (1), t)

Let us notice that the forward and backward acceleration formulas do
not coincide as was the case before (c.f. Eq. (17)). There is a definite time-
asymmetry in the local description of the diffusion process in the presence of
general magnetic fields, unless curl B = 0. The quantity which is explicitly
time-reversal invariant can be easily introduced:

F(&t) = 10+ 0.) (@) 22D+ D)X (1) =Tx B+VR. (35

As yet there is no trace of Lorentzian electric forces, unless extracted from
the term V (%, 1).

For a probability density 6,68 = p of the related Markovian diffusion pro-
cess, [2,6], we would have fulfilled both the Fokker—Planck and the continuity
equations: dip = vAp — V(bp) = —V(8p) = —vAp — V(b.p), as before (c.f.
Section 1).

In the above, the equation (34) can be regarded as the Burgers equation
with a general external magnetic (plus other external force contributions if
necessary) forcing, and its definition is an outcome of the underlying mathe-
matical structure related to the adjoint pair (26), (30) of parabolic equations.
Our construction shows that the solution of the magnetically forced Burgers
equation needs to be sought in the form (32).
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