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The morphological characterization of patterns is becoming more and
more important in Statistical Physics as complex spatial structures now
emerge in many systems. A suitable family of morphological measures,
known in integral geometry as Minkowski functionals, characterize not only
the connectivity but also the content and shape of spatial figures. The
Minkowski functionals are related to familiar geometric measures: covered
volumne, surface area, integral mean curvature, and Euler characteristic. In-
tegral geometry provides powerful theorems and formulae which makes the
calculus convenient for many models of stochastic geometries, e.g. for the
Boolean grain model. The measures are, in particular, applicable to random
patterns which consist of non-regular, fluctuating domains of homogeneous
phases on a mesoscopic scale. Therefore, we illustrate the integral geomet-
ric approach by applying the morphological measures to such diverse topics
as porous media, chemical-reaction patterns, and spinodal decomposition
kinetics: (A) The percolation threshold of porous media can be estimated
accurately in terms of the morphology of the distributed pores. {B} Turing
patterns observed in chemical reaction-diffusion systems can be analyzed
in terms of morphological measures, which turn out to be cubic polynomi-
als in the grey-level. We observe a symmetry-breaking of the polynomials
when the type of pattern changes. Therefore, the morphological measures
are useful order parameters to describe pattern transitions quantitatively.
{C) The time evolution of the morphology of homogeneous phases during
spinodal decomposition is described, focusing on the scaling behavior of
the morphology. Integral geometry provides a means to define the char-
acteristic length scales and to define the cross over from the early stage
decomposition to the late stage domain growth.
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1. Introduction

A large variety of complex spatial structures, z.e. patterns arise nowa-
days in many systems considered in Statistical Physics. For instance, Turing
patterns in chemical reaction-diffusion systems (see Fig. 1(b)) and spatial
structures of homogeneous phases evolving during spinodal decomposition
(Fig. 1(c)) exhibit an enormous amount of information. Physical science
faces the problem of reducing the spatial information to a finite number of
relevant order parameters in order to find the dynamical equations or the
governing laws of spatial structures. Also for the comparison of experiment
and theory relevant quantities have to be identified. The morphology of the
spatial structure plays an important role not only in porous media as shown
in Fig. 1(a), where it determines physical properties such as percolation
thresholds or diffusion coefficients, but also in many other composite mate-
rials the knowledge of spatial inhomogeneities is essential for an understand-
ing of physical phenomena. As a rule, the bulk properties of a composite
material depend on the chemistry and on the supramolecular morphology
of its constituents. Therefore, the statistical theory should include geomet-
rical as well as topological descriptors to characterize the size, shape and
connectivity of the aggregating mesophases in such media.

Integral geometry provides mathematical means to describe spatial struc-
tures in a morphological way. This allows not only for a characterization of
complex patterns and for a definition of spatial order parameters but also
for the formulation of effective theories of mesophases on a mesoscopic scale
in terms of geometric quantities.

Stochastic geometries are morphological structures in space which are not
periodic or in anyway regular. They emerge whenever the process generating
the spatial structure is random or too complex to describe it in an easy way.
Consider for example a couple of needles thrown at random on a table or
the distribution of oil droplets in an emulsion. The Boolean grain model
generates random structures in space by overlapping bodies or ‘grains’ (e.g.
spheres, rods, discs) each with arbitrary location and orientation. In this way
the whole space is partitioned in covered and uncovered regions divided by
pieces of the grain surfaces. In Fig. 1(a) a typical configuration is shown for
2-dimensional discs, that is used to simulate a porous medium. Although
differences to realistic three-dimensional configurations are obvious some
similarities in the morphological structure do occur.

Before 1 introduce the concepts of integral geometry and the Boolean
grain model as an example of stochastic geometries let me first give some
examples of patterns in physical systems and possible applications of mor-
phological measures in Statistical Physics. The examples are considered in
greater detail in Sec. 4.
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Fig. 1. Three examples of spatial patterns which have been studied extensively in
recent years: (a) — A porous medium can be represented by overlapping balls dis-
tributed uniformly in space. Percolation is a typical physical phenomena addressed
in such systems. Increasing the density of the pores, above a certain density thresh-
old they form an infinite cluster spanning through the whole system, i.e. water can
flow through the pores. How does the percolation threshold depend on the mor-
phology of the pores? (b) — A turbulent pattern in a chemical reaction-diffusion
system. Is there a unique way of characterizing the emerging structure, of distin-
guishing it from the regular Turing patterns, and of describing their transitions
in a morphological way? (c) — Snapshot of spinodal decomposition kinetics. An
homogeneous fluid phase separates instantaneously into an inhomogeneous distri-
bution of coexisting liquid and vapor domains after quenching it into the spinodal
region. The characteristic length scale grows with time, but does the morphology
change with time too or does it scale?
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1.1. Porous media

In Fig. 1 we show a sketch of a porous medium where pores (black re-
gions) of different size and shape are distributed in a solid material (white
region). For practical purposes one wants to know whether the pores per-
colate or not, i.e. if water can flow inside the pores through the system
from the upper edge to the bottom. Generally, one observes a threshold in
the density of the pores above which the system supports water flow. For
densities below this threshold the pores do not percolate. Certainly, this
threshold depends on the size and shape of the pores and on their statistical
distribution. Therefore, we have to study the relevance of the morphology
of the stochastic spatial structure on the percolation behavior. In Sec. 4.1
we calculate an estimate of the percolation threshold depending on the mor-
phology of the pores. A final goal of this morphological approach is the
description of macroscopic transport properties such as the diffusion con-
stant of the material in terms of the morphology of the porous medium. In
other words, an effective theory of porous media in terms of the morphology
of the spatial structure [1,2].

1.2. Chemical reaction-diffusion patterns

A .M. Turing predicted in 1952 the existence of inhomogeneous spatial
patterns in chemical reactions when diffusion of the species plays a role [3].
These patterns consist of regular and stationary spatially structured concen-
tration profiles of the reactants. Thus, if diffusion is important the homo-
geneous solution of reaction-diffusion equations may become unstable and
hexagonal patterns or stripes emerge. It was only in 1991 a group in Bor-
deaux followed by another in Austin could report the first experimental re-
alization of such Turing patterns. Moreover, also a turbulent irregular and
time-dependent pattern was found which is shown in Fig. 1(c). A pattern
converts reversibly into another depending on system parameters, such as
the temperature or the concentrations of the species. For example, defects
occur in the hexagonal structure when the parameters are changed in such a
way that the turbulent pattern becomes stable. Because of the proliferation
of defects when the system is turning into the turbulent pattern, it is hard to
tell whether the intermediate state of the pattern is hexagonal or turbulent
already. The typical length scale or the correlation function do not change
drastically [4]. Naturally, the question arises how one can describe irregu-
lar patterns in order to characterize the patterns in a unique way and, in
particular, the transitions between them. There is a need to find measures
which are capable to describe the morphology and topology of the patterns
and which are sensitive to the transitions. In Sec. 4.2 we use the concepts of
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morphological image analysis, in particular the morphological measures de-
fined in integral geometry, to characterize the patterns and their transition
in a unique way.

Introducing the concept of level contours the measures turn out to be
polynomials of low order (cubic and fourth order) in the grey-scale level of
the images. Thus the dependence on the experimental conditions is reflected
only in a finite number of coefficients, which can be used as order parame-
ters for the morphology of patterns. We observe a symmetry-breaking of the
polynomials when the type of the pattern changes from hexagons to turbu-
lence or stripes. Therefore it is possible to describe the pattern transitions
quantitatively and it may be possible to classify them in a similar way to
thermodynamic phase transitions.

1.3. Spinodal decomposition

Phase separation kinetics is probably the most common way of obtain-
ing irregular spatial patterns on a mesoscopic scale. A fluid system above
the critical temperature is usually homogeneous. But after a sudden quench
below the critical point into the two-phase coexistence region the fluid sepa-
rates into the coexisting liquid and vapor phase. Inside the spinodal regime
the homogeneous fluid phase is unstable and thermal fluctuations in the den-
sity are growing instantaneously yielding an inhomogeneous distribution of
vapor phase in liquid and the way around. One can distinguish two different
time regimes in the process of phase separation: the early stage of spin-
odal decomposition kinetics and the late stage of domain growth. During
the spinodal decomposition regime the density fluctuations grow and form
finally homogeneous domains well separated by an interface. The typical
length scale of these homogeneous domains of coexisting phases increases
in the late stage driven by various mechanisms. A typical example of the
pattern that emerges during spinodal decomposition in a two-dimensional
liquid system is shown in Fig. 1(c).

The density correlation function from which one can extract the typical
length scale, is the standard tool employed in describing the spatial structure
of the system. However, it is not possible to obtain information about the
morphology of the structure from the correlation function. The morpholog-
ical measures introduced in Sec. 2.1 provide a mean to define not only the
characteristic length scale but also to consider the time evolution of the mor-
phology in a convenient and fast way. In particular, it is possible to define
the cross over from the early stage decomposition to the late stage growth
due to a change in the time dependence of the morphological measures.
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1.4. General features

The patterns shown in Fig. 1 share the common features of complexity,
randomness, and mesoscopic, which make integral geometry in particular
important. One may formulate goals related to the application of morpho-
logical measures in Statistical Physics according to the common features of
the patterns described above:

e Complexity: The spatial patterns are neither ordered nor structured

in a simple way. Therefore, they can neither be characterized by the
order parameters used for regular phases nor by usual means such as
structure functions or defect statistics. It is necessary to reduce the in-
formation contained in a pattern and to find relevant measures as order
parameters capable of describing spatial structures in a morphological
way. For this purpose we introduce in Sec. 2 the Minkowski functionals
as morphological measures for complex structures.
Since physical phenomena in inhomogeneous systems depend on the
morphology of the spatial structure one should be able to calculate
physical properties in terms of relevant morphological measures. For
instance, percolation thresholds and also transport coefficients, such as
the diffusion constant, depend on the shape of the pores. In Sec. 4.1
we derive an estimate for the percolation threshold depending on the
shape of the single pores.

e Randomness: The spatial structures are random in nature, u.e. the

domains are fluctuating thermally or are generated by a stochastic pro-
cess. Therefore, measures characterizing the shape should be applica-
ble, accessible and calculable for various stochastic models. We present
in Sec. 3 the Boolean grain model as a standard model for stochastic
geometries.
The typical method to describe the spatial structure of randomn sys-
tems is the structure function, namely the 2-point correlation function.
However, in general this approach fails to characterize the geometric
shape of the structures. Additionally it turned out that in many sys-
tems higher correlations are essential. Moreover, due to the small size
of the systems it is often very difficult to obtain accurate structure
functions. On the other hand, it might be time consuming to calculate
them in large systems. for instance, in computer simulations of spinodal
decomposition kinetics (Sec. 4.3). Thus there is a need for statistical
measures which includes higher correlations, i.e. not only 2-point func-
tions, and which are fast and reliable even in small systems, in order
to characterize random structures in a morphological way.

e Mesoscopic: In general, the domain size of the patterns is larger
than atomic lengths, typically several nanometers. Thus each domain
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contains a large amount of molecules so that we must not look for a
microscopic model but for an effective theory on a mesoscopic scale. In
Ref. [14] we argue, for example, that on a mesoscopic scale the physics
is governed by morphological thermodynamics formulated in terms of
morphological measures.

The paper is organized as follows. In Sec. 2 we introduce the concepts
of integral geometry in order to provide the mathematical tool to describe
spatial structures in a morphological way. We define a complete family of
morphological measures, the so-called Minkowski functionals, including the
Euler characteristic as a prominent topological quantity.

Since most of the patterns considered in physical systems are stochastic
in nature we introduce in Sec. 3 the Boolean grain model as a convenient
way of generating stochastic geometries, i.e. spatial structures. The random
patterns can be characterized by the morphological measures introduced in
Sec. 2.1.

In Sec. 4 we apply the concepts of integral geometry and the Boolean
grain model to various physical phenomena and in particular to the examples
1.1 — 1.3 mentioned above. The aim of this paper is neither to review these
various topics nor to give a complete list of references. Also, it is not intended
to cover every interesting phenomena within these fields but only to apply
the concept of integral geometry and the notion of morphological measures
to selected problems among them.

2. Integral geometry

Since the methods of integral geometry are not widely known among
physicists in this section we compile some pertinent facts [5-7]. First, we
introduce the Minkowski functionals as morphological measures of homoge-
neous domains, well known in digital picture analysis [8] and mathematical
morphology [9]. We then proceed on to presenting the important theorems
and the formulas for these measures which enables us to calculate, for exam-
ple, mean values analytically in Sec. 3. Finally, we demonstrate with three
examples the usefulness of the Minkowski functional for many applications
in the field of Statistical Physics.

2.1. Morphological measures

First, we define what we want to call a morphological measure. Let us
consider a homogeneous domain such as the ellipsoid shown in Fig. 2. Let
the domain K be a compact convex set in R% The class of closed bounded
convex subsets of R% i.e. domains, is denoted by K. We consider patterns
A = U;K; resembled by compact convex sets K; € K. Let R denote the
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class of subsets of R¢ that can be represented as a finite union of sets from
K,ie A€ Rifand only if A = Uf\éllﬁ, N < oo, K; € K. The class R also
includes the empty set . An examples of such a type of pattern is a porous
medium shown in Fig. 1(a). But the continuous patterns shown in Fig. 1(b)
and (c) can also be decomposed in convex subsets. For instance, due to a
finite resolution of the experimental equipment (b) or due to simulations on
a lattice (c) one has often an underlying pixel structure. Each pixel (squares
or hexagons in two dimensions) is a compact, convex set and the whole
pattern is the union of all of these pixels. In Fig. 6 we show an example of
such a lattice structure.

L_Additivity I1. Motion Invariance III. Continuity
F(AYB) F(A) = F(gA) FC) = FA)

F(A) + F(B) - F(A ~ B)

Fig. 2. The three defining properties of a morphological measure: The area F'{A4)
of a domain A, for instance, does not depend on the orientation and location of A
(motion-invariance) and it changes continuously if A is approximated by another
shape C. Furthermore the area F(A U B) of the union of two domains A and B is
additive with respect to the subtraction of the overlap AN B.

Let us now define three general properties a functional W : R — R
should possess in order to be a morphological measure:

(i) Additivity: The functional of the union AUB of two domains A, B € R
is the sum of the functional of the single domains subtracted by the
intersection

W(AU B) = W(4) + W(B) - WANB). (2.1)

This relation generalizes the common rule for the addition of the volume
of two domains to the case of a morphological measure. The voluine, i.¢.
the measure of the double-counted intersection has to be subtracted.

(1) Motion invariance: Let G be the group of motions, namely transla-
tions and rotations in R%. The transitive action of g € G on a domain
A € R is denoted by ¢A. Then

W(gA) = W(A). (2.2)
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¢.e. the morphological measure of a domain is independent of its loca-
tion and orientation in space.

(i11) Continuity: If a sequence of convex sets K,, — K for n — oo, K,
K € K converges towards the convex set K (with convergence defined
in terms of the Hausdorff metric for sets), then

W(K,) = W(K). (2.3)

Intuitively, this continuity property expresses the fact that an approxi-
mation of a convex domain by convex polyhedra K, for example, also
yields an approximation of W(K) by W(K,). We emphasize that we
require this condition only for the morphological measure of convex sets
K € K and not for unions A € R.

In three-dimensional space we can give easily examples of morphological
measures which obey the three conditions (¢)-(#2): for instance. the volume
V' and the surface area S of a domain in three dimensions are continuous,
motion-invariant and additive. In two dimensions we mention the area F
and the boundary length U of a domain as morphological measures in the
sense described above.

Naturally the question arises if there are other measures which obey the
conditions (i)-({#1) and if there is a systematic way to find such measures.
In order to answer this question we introduce the Euler characteristic x as
a prominent member of the family of morphological measure.

2.2. The FEuler characteristic x

Since the Euler characteristic y is not a widely used quantity we intro-
duce here some useful relations. In two dimensions the Euler characteristic
for a spatial set A is defined in algebraic topology by the difference of the
number of connected components #¢ and the number of holes #y, i.c.

X(A4) = #c — #H - (2.4)
Thus, the Euler characteristic of the pattern shown in Fig. 6 is zero, i.e.
X = 1 -1 = 0, because the configuration exhibits one connected black

components and one white hole. The Gauk—Bonnet theorem states that this
quantity equals the integral of the curvature x along the boundary 0A of A

X(A) = %;/dl k(). (2.5)

A

Thus, for a disc Br of radius R one obtains £ = 1/R and y(Br) = 1 in
accordance with Eq. (2.4). Similar definitions and relations hold in three
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dimensions though distinction between two different kinds of holes must be
made. The Euler characteristic is defined by the sum of the number of
connected components #¢ and the number of cavities #p subtracted by
the number of torus-like holes #7, i.e.

X(A) = #c — #1r+#K . (2.6)

Integral geometry [5.6] provides in the context of overlapping grains a more
useful definition of y. The Euler characteristic can be introduced first for
convex sets ' € X by

: KeK,K#90, .
X(Ig):{(l) &e}:’,zla.#@ 27)

and then extended to R via the additivity relation (2.1),

X(AU B) = x(4) + x(B) - x(AN B) (2.8)
for any A, B € R. In particular, one finds for the union Uf-\_f:lKi of convex
domains

VUK Z\ (K) =) X(KinKj)+... (2.9)
i<j

+(-HN (K N K, n...0nKN),

that follows from Eq. (2.8) by induction. The right hand side of Eq. (2.9) in-
volves only convex sets and may be used together with Eq. (2.7) to compute
x(A) for any A € R, as illustrated in Fig. 3. We also note that y : R — Z is
motion-invariant and it can be shown to agree with the Euler characteristic
as defined in algebraic topology. In the physical literature the Euler charac-
teristic is usually associated with the surface 34 of a domain A. For closed
(d — 1)-dimensional surfaces in R? one has the simple relationship

\(04) = x(4) (14 (-1)7) (2.10)

especially y(0A) = 2x(A) for d = 3. Since the Euler characteristic is con-
stant and equal one for convex sets, it is also continuous as required by
the condition (2.3). Therefore the Euler characteristic is a morphological
measure in the sense given by the conditions (z)-(111).
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d=3:

Fig. 3. Examples of the Euler characteristic for typical structures: in a two di-
mensional space the Euler characteristic x = #¢ — #ux 1s equal to the difference
of connected components #¢ and holes #g. In three dimensions (d = 3) one
has to distinguish between cavities #x (which count positive) and torus-like holes
#7 (counting negative) in order to obtain Euler’s formula x = #¢ — #r + #k.
Generally, negative Euler characteristics indicate netlike structures. Using the ad-
ditivity relation (2.8) one can calculate the Euler characteristic recursively for any
configuration of overlapping shapes.

2.3. Minkowski functionals

Now we are able to define the Minkowski functionals for domains A € R
by

W,,(A):/X(AOE,,)du(E,,) Cv=0,...,d=1 (211

and Wy(A4) = wqx(A). Here, E, is an v—dimensional plane in R% The
integral runs over all positions (induced by translations and rotations) of E,,
weighted with the so-called kinematical density du(E,) [5,6] which is related
to the invariant Haar measure on the group of motions G and is normalized
such that for a d-dimensional ball Bg of radius R, W,(Bgr) = wa RV,
The volume of the unit ball V(Bp=y) is wg = 7%2/I'(1 + d/2), namely
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wy = 2, wy = 7w, and w3 = 47 /3. Sometimes it is convenient to normalize
the functionals

M,(4) = 2w, (4), v=0,....d. (2.12)

wywy

In d = 3, for instance, one obtains for balls of radius R

4 2 3

Mo=—R®, Mi=2R!, My=—R, Mo=—.  (213)
3 2 s 4ir

The definition (2.11) of the Minkowski functionals is a generalization of the

common determination of the volume V = Wy(A) of a domain A by the

integral

Wo(A) :/ IA(%)dZ (2.14)
Rd
over the characteristic function

. . 1 ifFeA
14(%) ::X(Anx)z{o ;f;;A . (2.15)

The volume Wj equals the number of possible intersections of a point
with the domain A. Generally, the functionals W,(A4) count the possible
intersections of v-dimensional planes with the domain A.

We are primarily interested in the two- and three-dimensional cases,
where the Minkowski functionals are related to familiar measures, i.e. the
functionals M, can be expressed in well-known geometric terms for d < 3. In
particular, in a three-dimensional space the family of Minkowski functionals
consists of the Euler characteristic y, the covered volume V, the surface area
F' of the coverage, and its integral mean curvature H, i.e.

Wo(K) = V(K),  3Wy(K)= F(K),
3Wa(K) = H(K),  3Ws(K)=4rx(K). (2.16)

In two-dimensional space we obtain the Euler characteristic x, the covered
area F', and the boundary length U of the coverage, t.e.

1
F = VV(), U= 2W1, X = ;Wg (217)

According to the definition (2.11), the Minkowski functionals on R inherit
from the Euler characteristic the property of additivity, i.e.

W,(AU B) = W, (A) + W, (B) - W,(AN B), (2.18)
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as well as motion-invariance. These features together with their “condi-
tional continuity” (the W, are continuous when restricted to K) specify the
Minkowski functionals as morphological measures, i.e. as a distinguished
family of geometrical and topological descriptors.

We emphasize that the Minkowski functional W, is homogeneous of order
d — v, 1e. for a dilated domain A4 one obtains

W,(AA) = A4TVW,(A). (2.19)

This relation enables us, for instance, to extract a time-dependent scaling
length from the morphological measures in the case of spinodal decomposi-
tion considered in Sec. 4.3.

One can calculate explicit expressions for the Minkowski functionals for
various domains in R%, namely for an j-dimensional ball B}, of radius p, with
d>73>d~-v,

vty .
W,(B)) = (U_;-ﬁj)u_“’”—%-pd-", (2.20)
( ; ) Wytj-d

an j-dimensional cuboid Qf; with edge length p,

v47
W,(Q) = ( dj)vad"", (2.21)

")

a d-dimensional cylinder Z¢ of radius p and height h,

W, (24) = 4L (i"—”—pd'-" +(d- V)hpd_”_1> : (2.22)
d Wyt

Originally the Minkowski functionals derive from the theory of convex
sets and therefore many theorems are restricted to the class K of convex do-
mains. Nevertheless, the extension to unions of convex sets can be achieved
in the described way using the Euler characteristic as starting point [5].
Then we can apply these measures to investigate the spatial pattern of cov-
erage models, as described in the introduction, by taking the values for single
convex shapes (ball or cube, for instance) and using the additivity relation
(2.18) in order to calculate them for the more complex, non-convex patterns
shown in Figs 1(a)-(c).

The definition of morphological measures by integrals over the motion of
v-dimensional planes is unusual but nevertheless very instructive and con-
venient. A different approach to Minkowski functionals starts with the well
known differential geometry of surfaces. Minkowski functionals generalize
curvature integrals over smooth surfaces to the case of surfaces with singu-
lar edges and corners. In the example of the covering shown in Fig. 1(a)
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such irregularities arise from the intersections of the overlapping balls. Let
A be a compact domain in R?% with regular boundary A € C? and d — 1
principal radii of curvature R; (¢ = 1,...d — 1). The functionals W,(A),
with v > 1, can be defined by the surface integrals

_ 1 i 1
W1 (A) = TESTIRS /s,,(Rl,..., SO0, (223

where S, denotes the v-th elementary symmetric function and dQO the
(d — 1)-dimensional surface element [5,6]. Especially in three dimensions
one obtains

1 1 1
with the Gaussian )
G = 2.25
RR (2.25)
and the mean curvature
1/ 1 1
S R R 2.26
=3 (5 w) (220

One disadvantage of this differential geometric approach to the Minkowski
functionals is the need of ‘smooth’ surfaces in contrast to the definition given
by Eq. (2.11). However, one can avoid the condition of smooth surfaces by
using the concept of the parallel body K. of a convex grain K, i.e. the convex
domain K, parallel to K at a distance ¢:

K. = Upex B. (). (2.27)

Thus, the parallel body K. consists of all points within a distance smaller
than ¢ from the domain K. For a convex domain with a piece wise smooth
boundary like a polyhedron the parallel body K, is sufficient smooth and
therefore we can perform the surface integral (2.23). Using the continuity
relation (2.3) of W, (K.) one can define the Minkowski functionals W, for
K by

W, (K) = lx_r}% W.(Ke), (2.28)

i.e. by surface integrals of curvatures on the parallel body K.. Thus, the
continuity (2.3) of the functionals W, allows the definition of integrals of
the curvature functions S, even for surfaces with singular edges, i.e. the
Minkowski functionals generalize curvatures as differential geometric quan-
tities to singular edges. Therefore, it is straightforward to apply the notion
of morphological measures even to patterns consisting of lattice cells (see
the example shown in Fig. 6).
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2.4. Theorems and formulas

A remarkable theorem in integral geometry is the completeness of the
Minkowski functionals [5]. The theorem asserts that any additive, motion-
invariant and conditional continuous functional W(A) on subsets A C R?,
A € R, 1.e. each morphological measure is a linear combination of the d + 1
Minkowski functionals,

d
=Y aW.(4), (2.29)

v=0

with real coeficients ¢, independent of A. Thus, every morphological mea-
sure W defined by the properties (2.1)-(2.3) can be written in terms of
Minkowski functionals W,. In other words. the Minkowski functionals are
the complete set of morphological measures. In a d-dimensional ambient
space, the curvature integrals (2.23) constitute the distinct family of d 41
morphological measures which share the common features of being addi-
tive, motion-invariant and continuous. In d = 3 they are related to familiar
measures: covered voluine, surface area, integral mean curvature and Euler
characteristic.

An important consequence of this theorem is the possibility to calculate
analytically certain integrals of Minkowski functionals. The “principal kine-
matical formulae”. for instance, describe the factorization of the Minkowski
functionals of the intersection AN B of two shapes A and B if one integrates
over the motions, namely the translations and rotations of one of them. The
kinematical formulae may be written concisely in the form

v

/ M,(ANgB)dg =
G

(:) M,_,(B)M,(A). (2.30)
u=0
The integral is performed with respect to the invariant Haar measure dg of
the group of motions G and runs over all motions ¢gB of the set B, with
A, B € R. The proof of this formula is straightforward so we can give
a shmt sketch. The integral I,(A, B) = [; W,(A N gB)dg is a motion-
invariant, additive and condmonal continuous functlonal for the grain A4 as
well as for B. Thus one can find a representation

I(A,B) =Y ¢ \W,(A)Wx(B) (2.31)
@A

with some coefficients ¢/,,. As I, (A, B) is homogeneous of order 2d — v the
coefficients obey the constraint o\ = ¢ 0y— -\ with the Kronecker-symbol
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d; =0,1if i = O resp. i # 0. For the calculation of the remaining constants I
refer to Ref. [5]. It is sufficient to calculate the integral for specified situations
as ¢}, does not depend on A and B.

In particular, the kinematical formulae (2.30) include the formula for the
factorization of the volume Wy due to the motion of the grains,

/ Wo(A N gB)dg = Wo(A)Wo(B). (2.32)
G

The kinematical formulae (2.30) describes the factorization of the Minkowski
functionals W, (A N gB) of the intersection of two grains in the Minkowski
functionals W, (A) and W, (B) of the single grains. This is an immediate
consequence of the completeness theorem and would be in contrast extremely
hard to prove it using elementary integration theory. Even the calculation of
the factorization (2.32) of the volume W, for some simple shapes would fill
up pages. This factorizationtaused by the motion of the grains will be used
for the calculation of mean values of the Minkowski functionals in Chapter 3.

The kinematical formulae (2.30) are useful mathematical tools in stereol-
ogy and stochastic geometry. The Minkowski functionals can be calculated
efficiently for any given coverage without requiring statistical assumptions
about the underlying point set. Moreover, mean values can be calculated
exactly for the classical Boolean model [10], where the centers of balls are
distributed in R? according to Poisson’s law, which is often employed as a
reference model. This will be done in the next section.

3. Stochastic geometry

Integral geometry is concerned with the morphology and motion of single
grains. This was considered in the previous section. Now we want to study
the properties, in particular the morphological measures of many randomly
distributed objects, for instance, holes in a porous medium.

Stochastic geometry is the mathematical frame that concerns such ran-
dom structures. In particular it formulates mathematical models for the
description and give proofs about the existence and uniqueness of mean
values or variances. Since 1975 - possibly the beginning of modern stochas-
tic geometry due to the works of Harding and Kendall (1974), as well as
Matheron (1975) — a fast growing amount of literature has been pub-
lished [11-13]. Here, I consider only one specific model, namely the Boolean
grain model [14].

The Boolean model (Poisson-grain model, germ-grain model) starts with
independently and random distribution of points z; (germs) in the Euclidean
space R%. We assume an homogeneous density p of points in a convex domain
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2 C R? (homogeneous Poisson point process). At every point z; we fix
identical but independent oriented convex bodies K; (grains).

To introduce the kind of calculation usually done in the Boolean grain
model we calculate the mean value of the covered volume: A configuration of
the model is given by the union A = U; K; of convex grains K; with volume
V = Wp(K;). The average over all possible configuration is equal to an
integral over the positions and orientations of every grain independent on
the position and orientation of the others. This corresponds to a Poissonian
distribution of the grains. The mean value v(p) of the covered volume V (.A)
per volume |£2| of a test domain 2 C R? can be obtained immediately
by the average < x(A N ¥) > of incidence at a fixed point & € {2 in the
test domain. Here we assume explicitly an homogeneous distribution of
grains and consider only such translated grains g K; which have a non-empty
intersection g K;N{2 # §. Using the decomposition of the Euler characteristic

N
V(A &) =x(AnT) =1- [0 - x(Kin&)) (3.1)

i=1

one obtains immediately for the mean value of the covered volume

N
elp) = (\(ANE) =1- [ - x(K:n D))

=1

Wo(K)p\ N
=1- (1 - —l(\-—)‘-)) Nl — eV (3.2)

where the average y( K;NT) over a single grain yields the volume Wy (K;) =V
and the density p = |2|/N is given by the volume |2| and the number N
of grains. The mean volume 1 — v(p) = e~?Y(X) = Py(K) of the uncovered
region in space corresponds to the probability Fo(K) that no point of a point
process lies inside the given region K of a single grain. This so-called ‘void
probability function’ of the point process possesses this simple expression
only for Poisson distributed points.

In contrast to the mean value of the volume Wy the other Minkowski
functionals W; are not related-to an probability measure and cannot be
represented by a function (x(A N &)) which is easily decomposable. There-
fore, we propose another approach to calculate mean values by taking into
account only the additivity (2.18) of the Minkowski functionals.

To be as rigorous as possible and desirable we recapitulate definitions and
notations. We consider N grains K; € K, ¢ = 1,..., N out of the convex
ring K. We assume that their Minkowski functionals M, (K;) are finite but
not necessary equal and that we can define a mean value m, = (M, (h}))
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averaged over all shapes. Throughout this section we use for simplicity the
normalization M, = (wy—, /wyw, )W, of the functionals W, (see Eq. (2.12)).
At a given point @ € K, of each grain (the germ or center) we fix a d-frame
to determine besides the position &; of the grain K; its orientation. These
so marked penetrable grains are placed independently at N random sites in
a d-cube {2 with random isotropic orientation of their d-frames. To avoid
edge effects we use periodic boundary conditions on 9f2. Thus, a random
configuration of grains gives rise to a set

N
AN = U g:K;, € K. (33)
=1
Our aim is to compute the mean value of M (Apy), where the configurational
average is done with the product density element

with [ dg; = |£2] = V(£2). The integration over translations is restricted to
2, i.e. the translated grains should have a non-empty intersection with 2.

Consider first the configurational average for a single grain, Kn. Ad-
ditivity of M,(A) (see 2.18) combined with the kinematical formula (2.30)
and with the motion-invariance M, (gnKn) = M,(Kn) leads to

dg
/M A Tar

dan
= (.AN 1)—}—]\/[ I(N) /M .AN 1ﬂgNI(N) I?ZJT

= M,(Av_1) + M, (Ex) = 3 (M) My (AN-)Mu(EN) . (35)

pn=0

The further average over size and shape of K replaces M, (K ) by its mean
value, m,. Since the grains are independently and identically distributed in
location, orientation, size and shape, Eq. (3.5) leads to a simple difference
equation for the mean value M, (N) = (M, (An)),
v

— — I/ — .

M,(N)—-M,(N-1)=m, — Z < )M,,_M(N - 1)ym,. (3.6)
=0 H
n

In the limit NV, £2 — oo, p = N/|2| fixed one obtains a system of differential
equations

20A0) — iy 3 (M) st ()

n=0



Morphology of Spatial Patterns 1765

for the normalized mean values

my(p) = lim M, (N) (3.8)

N—oo |.Q| )

One can solve recursively the differential equations (3.7) yielding the mean
values for the Minkowski functionals

mo(p) = 1 —e™ P70

myi(p) = pmye” ",

ma(p) = (pma — mip®) e,

ma(p) = (pma — 3mymap® + m3p®)e o™ (3.9)

00 2.0 40 6.0
n

Fig. 4. The mean value of the Minkowski functionals ¥, for randomly distributed
balls of radius r(Poisson distribution). For low densities n = 47/373p typical
configurations are isolated balls with a positive mean Euler characteristic ws and
a vanishing mean covered volume wp. For high densities almost the whole space
is covered and only isolated cavities remained yielding a positive ws if the volume
tends to 1 for complete coverage. For intermediate densities the Euler characteristic

is negative indicating net-like structures.

In Fig. 4 we show the mean values of the Minkowski functionals per
unit volume where we used the original normalization w,(p) = (W,) =
(wywq/wq—,) m,(p), for monodispersed balls of radius r in three dimensions.
They can be written as functions of the normalized density n = (47/3)r3p

7L

we(v) = 1—e™",
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rwi(n) = ne™™,

32
2 _ _ PARWRS )
rewe(n) = (n 33" ) ,
3 2 37?2 3y —m

For monodispersed discs of radius r in two dimension one obtains the mean
values

wo(v) = 1—e™",
rwi(n) = ne™ ",

rlwy(n) = (n—n?)e™ (3.11)

with the normalized density n = wr2p. In the next section we use these
results, in particular the mean values of the Euler characteristic, namely
wz(n) in Eq. (3.10) and wz(n) in Eq. (3.11), to estimate the percolation
threshold of the Boolean grain model.

4. Applications
4.1. Porous media

For practical purposes it is important to have a reliable estimate of the
percolation threshold for porous media in terms of the shape of the pores.
We observe by comparison with numerical data that, at least for certain
grain shapes, the mean Euler characteristic vanishes at a density close to the
threshold of continuum percolation. In passing we mention, that there is a
natural way to formulate a discrete integral geometry for polyhedral sets on
regular lattices [14]. The mean Euler characteristics of lattice sets wq(p) are
polynomials in p = 1 — e™", which coincide with the matching polynomials
known from percolation theory [15]. Moreover, w,(p) vanishes at the exact
threshold value p, for percolation on a two-dimensional self-matching lattice.
In the case of continuum percolation, exact values of p. are not known but
some efforts have been made [16-18], based on numerical estimates and
excluded-volume arguments, to infer empirical bounds on p.. Motivated by
these attempts to arrive at practically useful percolation criteria, we looked
for a possible connection between n. of continuum percolation and the zeros
ngd) of wy(n) [10]. In Table I, numerical n.-data for some grain shapes are
compared with the zeros s

2 i
(3) _ 48hv ) s 12

ng = —5 11— ( —6_122-)

2 (4.2)

7
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obtained from Egs (3.10) and (3.11); ngs) denotes the smallest of the two
zeros of wz(n). The data tempted us to speculate that ngZ) < n?) and

n((}a) > nf’) might possibly hold as universal bounds for n.. As a further
support for this conjecture, we plotted in Fig. 5 p.(/)-values for randomly
located and orientated cylinders of length [ and fixed radius r in comparison
with po(l), which tends to 2/(xrl?) for {/r — 0. It would be interesting to
check whether the second zero of ws(n) concurs with void percolation, but
we are not aware of simulation data for this case.

1072
TCL
1073
>
g
= 10
107
1072 10°* 10°

length L

Fig. 5. Percolation threshold p.(L) (black dots, Ref. [18]) for randomly oriented
and located cylinders of length L and fixed radius r in comparison with po(L) (full
line). The zero py of the Euler characteristic as function of the density is a quite
accurate estimate of the percolation threshold p.. This estimate can be calculated
explicitly in terms of the morphology of the single shape, namely the cylinder {see
Eqgs (2.22) and (4.2)).

TABLE 1

Threshold values for the percolation density parameter and zeros of the Euler
characteristic. The sticks in d = 2 are rectangles of length [ and vanishing breadth.
The discs in d = 3 are cylinders of radius »r = 0.5 and vanishing height. The
simulation data are from Ref. [17]: a, Ref. [19]: b.

I
e

d=2 d=2 d=3
discs sticks balls

o R

jon
7]
o]
1%/]

ne =112 | ’p, = 5.7 | no = 0.34% | p, = 0.19°
ng=1 Ppg=m ng =038 | pg=0.22
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4.2. Chemical reaction-diffusion patterns

In order to apply the Minkowski functionals to chemical patterns gener-
ated in a diffusion-reaction system we consider Turing-type spatial patterns
in a 2-dimensional open spatial reactor with a Chlorite-Iodide-malonic acid
reaction. The experiments are described in detail in Ref. [4]. The pat-
terns form in a thin, quasi 2-dimensional disk filled with polyacrylamide gel
which prevents convection but allows diffusion of chemicals. Depending on
the concentration of Iodide /7 the system changes color from yellow to blue
which is measured in digitized grey-scale images. Above critical values of the
control parameters, namely temperature and reagent concentrations, spatial
patterns spontaneously emerge from a spatially homogeneous system. Three
different types of patterns are reported in Ref. [4], a hexagonal structure of
isolated dots, a lamellar stripe structure broken up into domains of different
orientations, and a structure of turbulent stripes, which change shape and
orientation much faster than the usual moving of grain boundaries. Such
a turbulent pattern is shown in Fig. 1(b). The grey tones of the image
correspond to the amount of the oxidized state in the system, ¢.e. inversely
proportional to the concentration of lodide I3 . Each image consists of a
512 x 480 array of pixels with 256 grey levels.

In this section we introduce the concept of iso-density contours of such
spatial patterns, 7.e. thresholds in the grey level, and define the Minkowski
functionals for digital images, namely for arrays of pixels.

4.2.1. Thresholding

In order to study the concentration profile in greater detail we introduce
a threshold variable pg, = 0, ...,255 and reset the grey value at each pixel
to either white or black depending on whether the original value is larger or
lower than py,. respectively. Here, white corresponds to high values of the
gray-level. In this way we get 256 black-and-white pictures out of one gray-
level picture. The qualitative features of the images varies drastically when
the threshold parameter p, is changed. For high thresholds pi, we study
the regions of maximum concentration, i.e. we obtain information concerning
the shape of the peaks in the profile. For low thresholds we study the deep
valleys of the concentration profile and for intermediate p¢n, we obtain more
or less the same visual impression as from the gray-scale pattern. Thus the
spatial information we get depends strongly on the threshold we set.

4.2.2. Discretizing

Most of the patterns one can obtain from computer simulations or even
from observations exhibit a pixel structure which is normally not visible in
the continuous spatial structures on a mesoscopic scale. This lattice struc-
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ture arise either from the discretization of kinetic equations or from the
resolution of digital visual recording equipments like video cameras. Al-
though the picture in Fig. 1 seems to show a continuous pattern, namely
smooth boundary lines between black and white areas, it actually consists
of a square-lattice of pixels as shown in Fig. 6. Thus, each pixel has ex-
actly four nearest neighbor pixels along the sides of the unit-squares of the
lattice and also four next-nearest neighbors connecting the diagonals of the
unit-squares. What appears at the beginning to be a disadvantage can be
used to calculate morphological measures very fast and accurately. In order
to avoid a somewhat arbitrary definition of continuous boundary lines on a
scale larger than the pixel size, we define the Minkowski functionals right at
the well-defined pixel-level.

-1 0 0 -1

-1 +1 +1 -1
I +1
0
-1 +1

+]1 +1 -1

0 +1

-1 0 0 -1

Fig. 6. An array of quadratic pixels is quite often the underlying spatial structure
for simulations as well as for experimental data obtained from digital recording
equipments like video cameras. Although the boundary length IV does not converge
to the continuous boundary length for a vanishing lattice spacing, it is convenient
to use this lattice structure to calculate the Minkowski measures. One can define an
analogue discrete quantity I/ to the continuous boundary length using the number
of edges between black and white pixels on the lattice (I = 24 for the configuration
above). The area F is given by the number of white pixels (F = 29) and the
Euler characteristic y by the sum of curvature variables 7 € {-1,0,+1} (x =
&(+1) + 8(0) + 8(—~1) = 0).

For instance, the white area of a thresholded black-and-white picture
can be obtained simply by counting the number N, of white pixels which
depends on the threshold py,. The area fraction F(pen) = N,/N, normalized
by the total number of pixel N. decreases from one to zero by increasing the
threshold pyy,.
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Although the boundary length of the discretized pattern does not con-
verge to the continuous boundary length for a vanishing lattice spacing, one
can define an analogue quantity on the lattice using the number of edges
between black and white pixels. Thus, the length of the boundary line
U(pen) = B,/N between black and white regions is defined as the number of
pairs of neighbored black and white pixels B, normalized by the total num-
ber of pixels N. As expected the boundary length U starts at zero for the
totally white image at py;, = 0, increases, reaches a maximum value where
the black and white areas are nearly equal, decreases, and finally ends at
zero again for the complete black image at pyh, = 255.

In contrast to the surface area F' and the line length U the Euler char-
acteristic y describes the pattern in a purely topological way, 2.e. without
referring to any kind of metric. It measures the connectivity of the black and
white regions. Despite this global characterization of the pattern the Euler
characteristic can be calculated in a local way. Consider for example one
of the four corners of a black pixel and its three neighbored pixels joining
at this corner as it is shown in Fig. 6. We define at each corner of a black
pixel the ‘local curvature’ —1,0, or +1 depending on the bending of the
boundary, i.e. 7 = %1 if the boundary is curved or 7 = 0 iff it continues in
a straight line. The sign depends on the orientation of the curvature. Then,
the Euler characteristic x = )., 7. is given by the sum of these curvature
variables 7. € {—1,0.4+1} at each corner ¢ along the boundary (compare
with Eq. 2.5). Thus /U describes the mean curvature of the boundary
between black and white domains.

4.2.3. Results

For each threshold p¢, and each pattern reported in Ref. [4] we calculated
(see Ref. [20]) the white area F, the length U of the boundaries, and the
integral of the curvature along the boundaries, i.e. the Euler characteristic
Y- In particular, we analyzed each pattern indicated by the ‘phase diagram’
in Fig. 10 of Ref. [4] to study transitions of patterns.

Surprisingly it turns out that there are simple combinations of the quan-
tities F'(pen), Ulpen), and x(pen). namely

pr(pw) = tanh™'(2F — 1),
(7
pulpm) = gy =1 cosh? (pr(pen)) -

Px(peh) = % : (4.3)

such that the experimental data (considered as functions of the threshold pp.
which is normalized to the interval [—1, 1] for convenience) may be described
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quite well by polynomials of very low order, i.e.
Py (pen) = PO + p pun + P pf, + PO P} (4.4)

and which approximate the functions pg(pen), pu(peh), and py(pwm) very
accurately. This holds for all the patterns reported in Ref. [4]. That is, these
special combinations of F, U, and x may be described by a few parameters
p&u), v = 0,1, 2,3 for different patterns and they are in this sense universal
in character.

In Fig. 7 we show for an hexagonal pattern (full lines), a lamellar stripe
structure (dashed), and a turbulent state (dash-dotted), the function py(pin)-
The lines are the best fits to the data (symbols), which can hardly be dis-
tinguished from the experimental data. The coefficients for the polynomials
shown in Fig. 7 are given in Table II to illustrate typical values. It was not
possible to fit the data curves with polynomials of lower orders than the
cubic we used in the ansatz. Higher orders were not needed to improve the

accuracy. The coeflicients p( ) (i=1,...,4) depend on the control param-
eters as for instance the concentrat.lon of malonic acid or the temperature,
but they are reproducible by unchanged experimental conditions. Moreover
the fits are not only satisfying sufficient accuracy at intermediate thresholds

0.10
005 +
A 000
—0.05
_O'm-l.o -0.5 00 05 1.0
P

Fig. 7. The mean curvature P, (pw) := y/U as function of the threshold pe, turns
out to be a cubic polynomial for hexagonal patterns (circles), a linear function for
turbulent patterns (plus), and a symmetric cubic polynomial without a quadratic
term for stripe patterns (stars).
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near zero but also at the very ends, where only few isolated components
remain in the images.

TABLE 11

Typical values for the coefficients p,(\,") of the polynomials p, (ptr) for hexagonal,

stripe, and turbulent patterns. Coefficients which are at least one order of mag-
nitude smaller than the dominant terms are set in parentheses to illustrate the
apparent symmetry of the polynomials.

pattern type P&m PQ) P;z) P;B)
hexagons 0.024 0.056 -0.025 0.033
stripes {(-0.00020) 0.024 (-0.000013) 0.031
turbulent (0.0026)  0.063  (-0.0039)  (0.0044)

The first result of this integral geometric method for pattern analysis is
that the area F of the white domains as a function of the threshold py, is
given mainly by an hyperbolic tangent profile and that the boundary length
U is proportional to the product F(1 — F), i.e. to the product of the areas
of black and white components, respectively.

The second even more important result is that the dependence on the
experimental conditions like the concentration of malonic acid is reflected
only in a finite number of coefficients pﬁf). The functional form of the mea-
sures F, U, and y remains the same, .e. it is given always by polynomials
of low order.

The third and most striking result is the dependence of the coefficients
on the control parameters. For instance, we show in Fig. 8 for seven different
concentrations [H;S04]8 (mM) at constant [C1O; )4 = 20 mM the experi-
mental curve p, (pen) and the best fit using a cubic polynomial. The other
control parameters were fixed at the values given for Fig. 10 of Ref. [4].
The shape of the polynomial p, (p¢n) indicates a transition from hexago-
nal point patterns (full lines at [HoS04)8 = 17,28, 45, and 100 mM to
turbulent structures (dash-dotted lines at [HyS04]8 = 2. 5. 10 mM).
For all turbulent patterns the polynomial is nearly a straight line with no
constant, quadratic. or cubic term and therefore shows a zero at p, = 0.
In contrast, for the hexagons these terms cannot be neglected, especially
the quadratic term that yields an asymmetry in the functional form of the
threshold py,. The similarity to the symmetry breaking mechanism at ther-
modynamic phase transitions is obvious, although the physical connection
has not been made yet. The transition seems to be continnous with steadily
decreasing cubic and quadratic terms in the polynomial. They remain almost
zero for the turbulent patterns despite the change in the control parameters.

The inset shows the coefficient pgo) of the polynomial pﬁ( Pth), 1.€. its value
at py, = 0, as a function of the concentration [HoSO4]5 (mM). A similar
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Fig. 8. The polynomial p, (psn) indicates a transition from hexagonal point patterns
(full lines) to turbulent structures (dash-dotted) as a function of [H2SO4]5 (mM)
at constant [ClO5]% = 20 mM. The other control parameters were held fixed at
the values given for Fig. 10 of Ref. [4]. The transition seems to be continuous with
decreasing cubic and quadratic terms in the polynomial. They remain zero for the
turbulent patterns. As in Fig. 7 the lines are best fits to the experimental data
{black dots). The inset shows the coefficient p;m of the polynomial p, (pwn), t.e. its
value at py, = 0, as a function of the concentration [HQSO4]OB {mM).

symmetry breaking in the polynomial is observed for the transition from
stripe to turbulent patterns. But the transition seems to be discontinuous.
i.€. shows a sharp jump in the shape of the polynomial when the type of
pattern changes from a turbulent state to stripes.

Relating to these results we want to focus on three questions:

Why is the white area essentially a hyperbolic tangent profile in the
threshold pg,? Despite the occurrence of this profile in such diverse fields as
thermal statistics of a paramagnet, the width of a fluid interface or the mean-
field solution of a ¢*-field theory, the connection to the reaction-diffusion
system is not clear yet.

Why are the measures pr{peh), pu(pen). and py(pen) finite polynomials
in the threshold p;,? They do not need do be that. However, in many
models for statistical geometries like the Boolean grain model considered in
Sec. 3, similar polvnomial behaviors of the Minkowski functional do occur.
But what is the underlying statistical model in this case, if there is one?

Why is there a symmetry breaking in the mean curvature, i.e. in the
Euler characteristic as a measure for the topology of patterns? Is it possible
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to formulate a mesoscopic theory of pattern-transitions in analogy to the
Landau-theory of thermodynamic phase transitions?

The primary conclusion of this section is that Minkowski functionals, in
particular the Euler characteristic, describe quantitatively irregular spatial
patterns and their transitions in a morphological way and might be capable
of classifying pattern transitions in a similar way like thermodynamic phase
transitions.

4.8. Spinodal decomposition

Spinodal decomposition kinetics [21,22] has been a subject of consider-
able attention in recent years. Particular effort has been focused on iden-
tifying scaling regimes using appropriate computer simulation techniques
(molecular dynamics [23], Langevin models [24], lattice gas [25] or lattice
Boltzmann models [26, 27]).

The usual approaches to the characterization of the evolution of the
single-phase domains which arise after quenching are mainly based on the
time dependent mean domain size R(t) which may be calculated from the
first zero of the radial distribution function or from the first moment of the
structure factor [28]. Besides of being computationally expensive, the mean
domain size alone cannot account for the morphology of the rich variety of
geometrical shapes of single phase domains which arise after quenching as
well as for their connectivity, which also is changing in time. Therefore it is
useful to look for a quantitative characterization of the morphology of spatial
patterns which allows for a gain in relevant information on the kinetics of
many particle systems, especially when these systems undergo phase tran-
sitions like spinodal decomposition. In contrast to the radial distribution
function, i.e. its first zero, the Minkowski functionals are statistical robust
measures which makes it possible to extract information even when large
fluctuations are present.

The aim of this section is to make an attempt towards the character-
ization of the time evolution of the morphology of phase separation using
the morphological measures introduced in Sec. 2. For this purpose we use a
lattice Boltzmann model on a 2D hexagonal lattice derived in Refs [26,27]
when modelling the isothermal hydrodynamics of a two phase system. Sim-
ulations were mainly done on a 1024 x 1024 lattice using periodic boundary
conditions. The particle distribution functions f;(Z,¢) evolve in accordance
to the discretized Boltzmann equation

F(E + &t 1) = £i(&, 1) = (&) (4.5)
with the unit vectors

€ = {cos[2r (i - 1)/6], sin[2m(: — 1)/6]} . (4.6)
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The collision term £2;(Z,t) is linearized introducing the equilibrium distri-
bution functions ff%, ¢ = 0,1, ... 6, as well as the relaxation time 7

0= —— (i~ I, (@.7)

The equilibrium distribution functions f{(Z) were expanded as power series
in the local velocity @(Z) and the appropriate coefficients were determined
using local conservation of mass and momentum, as well as Galilean in-
variance and isotropy of pressure tensor [26]. The local particle density is
defined by

1=6
p(E,1) = D fil&1). (4.8)
1=0
The density p(&,t) is shown in Fig. 1(c) for the phase-symmetric mean den-

sity p = 3.5 where the limits are 0 < p < 7. For the state equation of the
fluid ’

K
p = p¥'(p) = $(p) — rpV?p = S| Vpl? (4.9)
we have chosen a van der Waals fluid with the bulk free energy density ¥
¥ =pTln | —2—) — ap? (4.10)
1—pb ’

where T is the system temperature and the constant x defines the strength of
the surface tension. Choosing ¢ = 9/49, b = 2/21, the critical temperature
value becomes T, = 0.571. The spinodal densities p;tp at temperature I' < T,
are defined as the zeros of the equation 9" (p) = 0. For T = 0.55 one obtains
the densities pg, = 2.744 and pJ, = 4.315.

Each simulation run was defined by the mean density p, the value of the
surface tension constant x and the value of the relaxation time 7 (which
also gives the value of the kinematic viscosity v = (27 — 1)/8 [26]). The
lattice system was first initialized with a mean density p and 1% random
fluctuations of the local density p(Z) were allowed. After an initialization,
the system was released to evolve during 500 preliminary automaton steps at
the initial temperature Tj, = 0.580 above the critical temperature T.. Then
the temperature was changed suddenly to the final value Ts, = 0.550. From
this moment on (¢ = 0), the system was allowed to evolve to its equilibrium
state while snapshots were stored at certain time intervals.

We calculate the morphological measures F', U, and x for the snapshots
(one is shown in Fig. 1(c)) in the same way as for the Turing patterns
described in Sec. 4.2. Here we are not interested in the dependence on the
threshold p¢, but on the time t. After the initial stage the measures no
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Fig. 9. The time dependent morphological measures F, U, and x for spinodal
decomposition kinetics for 7 = 0.6 and different surface stiffness « (full line k =
0.01, dashed x = 0.005, and dotted & = 0.002). One can clearly distinguish between
two different time regime: an early stage spinodal decomposition with increasing
measures (in particular I/ and y) and a late stage domain growth with decreasing
boundary length U and Euler characteristic x. The maximum values U and ¥
define the transition time {. For vanishing surface stiffness & the growth of the
domains become extremely slow (see dotted curve).
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longer depend significantly on the threshold and we can set it to the mean
density value py, = 3.5.

In Fig. 9 we show the time dependent morphological measures F (¢},
U(t), and x(t) for an off-symmetric quench with p = 3 where the fluid
phase is the minority phase. One can distinguish between two different time
regimes: the early stage of spinodal decomposition kinetics and the late
state of domain growth. The growing of density fluctuations leads at early
times to the build up of interfaces between homogeneous domains of the
coexisting phases. This process is accompanied by an increase of white area
F (fluid phase), of the boundary length U of the interface, and of the Euler
characteristic due to many disconnected components of the fluid minority
phase. In contrast to this early stage, during the late stage domain growth
leads to a decrease in the quantities U and y due to the increase in the
characteristic length scale. The area of the fluid phase remains more or less
constant and approaches the final value

PPy
pPi— Pg

) (4.11)
which is given by the level rule of the coexistence region. The oscillations
indicate shape fluctuations of the domains driven by the surface tension and
the inertia of the fluid. They are typical initial kinetic phenomena and can
be damped by an increase in the viscosity. Because of the demixing of the
phases the boundary length U — /47 F and the Euler characteristic x — 1
are decaying to the values of a single fluid drop with area F in the vapor
phase.

The maximum values U and Y mark the transition from the increase dur-
ing spinodal decomposition and the decrease due to domain growth. Thus,
we can use the maximum values to define the transition time ¢.

If the inhomogeneous pattern consists of homogeneous domains A with
sharp interfaces the domain growth is due to rearranging the domains with-
out changing the area F of the fluid phase which is given by the level rule
in Eq. (4.11). Because the measures W,(.A) are homogeneous functions of
order d — v (see (2.19)) for the normalized quantities we assume the scaling

behavior
F~1 , U~L' | x~L7? (4.12)

with a scaling length L. We have tested this assumption by changing system
parameters such as the surface tension x and the relaxation time 7 and by
looking for the same functional behavior of U? and y.

In Fig. 11 we show U~1(t) and x~13(t), i.e. L(t) as function of time.
We observe a scaling behavior

L(t) ~1t° (4.13)
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Fig. 10. The maximum values U ~ L~! (diamonds 7 = 0.6, squares 7 = 0.7,
triangles = 0.8), and y ~ L™ (stars 7 = 0.6, crosses 7 = 0.7, plus 7 = 0.8) of the
morphological measures scale with the characteristic length L. One observes L ~
(p— psp)‘l/ 2 in accordance with Cahn-Hilliard theory of linear stability analysis
when approaching the spinodal density pep.

with a scaling exponent « that depends on the relaxation time 7 (viscosity).
We obtain, for instance, o = % for 7 = 0.54 and a = % for r = 0.8. For
intermediate relaxation times 7 we observe a cross over from one scaling to
the other, for example, from 2/3 (early times) to 1/2 (late times) at 7 = 0.6
(see Fig. 11).

The possibility to distinguish between the early time decomposition and
the late stage growth using the definition of the transition time ¢ enables us
to study the dependence of the scaling length L at ¢ on the density p, in
particular when approaching the spinodal density ps,. We observe a scaling
behavior for the maximum values U and y with the diverging characteristic
length scale

L~(p- psp)—l/2 ) (4.14)

which is shown in Fig. 10. This scaling behavior is consistent with the
prediction of the Cahn—Hilliard theory of early time spinodal decomposition
[21]. The transition time itself scales in the same way t ~ (p — pgp)~'/?
indicating a density independent mean velocity L/f of the fluid particles
during the early stage, which depends only on the temperature 7.

Finally, we want to emphasize that the calculation of the morphological
measures is convenient and fast since one has to count only pixels. The def-
inition and calculation of the characteristic length scale by using the scaling
of the morphological measures U and x instead of the correlation function
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Fig. 11. In the late stage of spinodal decomposition kinetics (long times) one
finds the scaling behavior U ~ L~! (plus), and x ~ L~? (diamonds) for the
morphological measures. We observe the growth law L ~ ¢* with o = 1/2 (dotted
line) for » = 0.6 (diffusive regime).

makes it possible to decrease the computational time of the simulation con-
siderably. Moreover, we obtain an immediate test of the scaling assumption
of the morphology during the domain growth and also a clear definition of
the early time regime of spinodal decomposition. In other words, Minkowski
functionals provide a mean to characterize the cross over from early time
spinodal decomposition to the late stage domain growth.

In three dimensions, the morphological measures are a more promising
tool since the topology of the patterns changes drastically with the mean
density p. In particular one finds a whole region of densities between the
percolation thresholds as shown in Sec. 1.1 where the pattern is bicontinuous.
Since the late stage growth is expected to depend on the topology of the
spatial structure the morphological measures may provide a mean to study
the dependence of the scaling behavior on the morphology.

5. Summary

We defined morphological measures of d-dimensional patterns as additive
(2.1), motion-invariant (2.2) and continuous (2.3) functionals of the spatial
domains. The theorem (2.29) asserts that a morphological measure can be
represented as a sum of d + 1 Minkowski functionals W, defined by the
Egs (2.11). The Minkowski functionals are familiar geometric quantities,
in particular, for d = 3 the Euler characteristic x, the covered volume V|
the surface area S of the coverage, and its integral mean curvature H. The
principal kinematical formulae (2.30) provide means to calculate mean val-
ues (3.9) of the Minkowski functionals for the Boolean grain model where
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random structures in space are generated by overlapping grains (balls, sticks)
each with arbitrary location and orientation. We applied the concept of in-
tegral geometry and in particular the notion of morphological measures to

the

following physical systems:

(A) Porous media can be generated by the Boolean grain model, .e. by

overlapping sets of arbitrary shape distributed uniformly in space. The
percolation threshold of such porous media can be estimated accu-
rately by Eqs (4.1) and (4.2) in terms of the shape, namely volume,
surface area, integral mean curvature, and Euler characteristic of the
distributed pores.

Turing patterns observed in chemical reaction-diffusion systems can
be analyzed in terms of the morphological measures, which turn out
to be cubic polynomials in the grey-level of the patterns. Thus the
dependence on the experimental conditions is reflected only in a finite
number of coefficients, which can be used as order parameters for the
morphology of the patterns. We observe a symmetry-breaking of the
polynomials when the type of the pattern changes. Therefore, it is
possible to describe the pattern-transitions quantitatively and it may
be possible to classify them in a similar way to thermodynamic phase
transitions.

(C) Integral geometry provides means to study the morphology of homo-

geneous phases during spinodal decomposition. We observe the scaling
behavior (4.12) of the Minkowski functionals W, defining a typical
length scale L. Morphological measures are convenient and fast to cal-
culate during the time evolution yielding accurate values of the scaling
exponent « for various hydrodynamic regimes (see Eq. (4.13)). Ad-
ditionally, it is possible to define the cross over from the early stage
decomposition to the late stage growth and to analyze the morphol-
ogy of decomposition patterns at early times. In particular, for early
times (decomposition regime) we recover the scaling behavior (4.14)
predicted by the Cahn-Hilliard theory when approaching the spinodal
density. In contrast to the radial distribution function, i.e. its first zero.
the Minkowski functionals are statistical robust measures which makes
it possible to extract the length scale L even when large fluctuations
are present,

Minkowski functionals are useful geometric measures to describe pat-

terns and to gain relevant information on physical phenomena related to the
morphology of the spatial structure.
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