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In this paper we study the influence of external fluctuations on a model
oscillating chemical system. The stability of spatially homogeneous, oscil-
lating state against local fluctuations is discussed for various space dimen-
sions. A possibility of an oscillating state in a parameter region, where no
oscillations are predicted by the phenomenological theory, is discussed.
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1. Introduction

The stability of spatially and temporally ordered behaviour of chemical
systems has attracted a lot of scientific attention in the recent years [1].
Many theoretical works are concerned with the linear analysis of the effect
of small time- and space- dependent fluctuation on a given pattern [2]. The
phase dynamics formalism of Kuramoto [3] and Sivahinsky [4] is an example
of the general approach to the problem of noise influenced spatio-temporal
patterns, which avoids the drawbacks of a naive perturbation method. In the
final formulation of IKuramoto [5] the effect of fluctuations is described by a
Brownian motion of the interface position and a small profile perturbation
which depends on time and on location on the interface.

* Presented at the IX Symposium on Statistical Physics, Zakopane, Poland, September
23-28, 1996.
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The present work is concerned with the influence of fluctuations on a
temporally ordered evolution. Let us notice that in homogeneous phase
transitions the nonlinear influence of fluctuations on the dynamics deter-
mines the stability of an ordered phase at nonvanishing temperatures at
different spatial dimensionalities. The aim of this paper is to show how this
problem can be approached in the case of a simple model which exhibits a
temporal pattern formation. The results are pretty similar to the homoge-
neous phase transition case [6]. We have shown that within an approximate
self-consistent model the temporal pattern is stable only in a three dimen-
sional space. In the one- and two- dimensional case we study the decay of
the initially formed temporal pattern. The nonlinear feedback of fluctua-
tions determines a “coherence time” in which the relaxation of an initially
ordered state occurs. The decay of an oscillating state which is formed in a
parametric space region, where the phenomenological theory does not allow
for the existence of oscillations is also studied. Its found that the amplitude
of oscillations below the critical point is proportional to the strength of noise
( inversely proportional to the size of the system ). Such behavior has been
observed in recent molecular dynamics simulations of chemical reactions [7].

2. The model and its linear stability

Let us consider a system with two chemically active reagents U and V,
which concentrations ( denoted as u, v) evolve according to the following
stochastic reaction-diffusion equations:

%1—:— = —v+u(K - (v +v?))+ DViu+ ¢, (1)
% = u+4v(K - («* +v?)) + DV?v+¢&,, (2)

which are regarded as Ito stochastic differential equations. In the homoge-
neous case, if the noise terms are neglected, the system is characterized by
a single stationary state (v = 0,u = 0) for K < 0. For K > 0 this state
becomes unstable and the stable limit cycle of the radius v/ K appears.

We assume that white noises &, &,, which are spatially and temporally
dependent, have the following properties:

(Culz, t)fv(mlv t,)> =0, (3a)
(fu(a:,t)fu(:l:/, tl)) =eC(lz—2 ot — t/) , (3b)
&, (2, 1), (2', ) = cC(|lz—a' |)é(t-1). (3¢c)

Eq. (3a) means that these noises are uncorrelated and Eqs. (3b, 3c) say
that they influence the dynamics of both reagents with the same strength.
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The function C(| @ — @' |) describes the spatial correlations of the noise in
different points of space. For the detailed calculations presented below we
adopt the following form of C:

-513'2
Clez-2'|)= (_a:___i) , (4)

1
e E
where A is a constant and d denotes system’s dimensionality. In the limit of
A — 0 Eq. (4) defines the noise which is uncorrelated in space. It comes out
that the noise correlation length A plays the role of cutoff in the momentum
space. It seems more realistic to introduce the spatial cutoff, which is always
associated to reaction diffusion models, in the definition of the noise corre-
lation function rather then in the definition of the interval over momentum
space. On the other hand we assume that there are no correlations between
noises at different moments of time. From the physical point of view Egs. (1)
and (2) may be regarded as an approximation of more complex chemical dy-
namics with respect to a small perturbation around a homogeneous, steady
state [8].

Let us introduce a new complex variable:

z=u+iv, (5a)
which may be represented in terms of the amplitude p and phase ¢:
z = pexp (ip). (5b)

Egs. (1), (2) are equivalent to the following single equation for z

0z . . . ,

5 ==+ a(K - Lz |2) + DV22 + (&, + 46, (6)
however, it is more convenient to use p and ¢ for the definition of a temporal
pattern and for the analysis of its linear stability. The evolution of these
variables is described by equations:

7] . eC(0
5? = p(K — p*) + DV?p — Dp(Vc,o)2 -+ T(l +&,, (7)
, p
9 1 2DGovps DV + 52, (8)
ot P P

where the new noises £, and £, are obtained by the rotation of the original
noises acting on u and v:

Ep - fu cos @ + fv sin @, (ga”)
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€, =& cosp—Eysing. (9b)

It may be easily checked that the noises £,, &, are independent and their dis-
persions are the same as those of the noises &, &,. One may notice (Eq. (8))
that for small p the phase noise £, becomes important. It is understand-
able because if the amplitude of oscillations is small then fluctuations may
randomly move the system on the limit cycle and the influence of such fluc-
tuations on the phase ¢ is large. In Eq. (7) the term coming from [to’s

interpretation of stochastic differential equations: ( G—C%QZ) appears. This
term has no mathematical meaning if the noise is uncorrelated in space
(C(l 2 —a'|) = 8(z — 2)). The presence of this term changes the ampli-
tude of a stationary state with respect to the case when noise is neglected.
The phenomenological stationary state (p = 0) disappears in the presence
of noise. The radius corresponding to the stable stationary state is shifted
from pp, = V'K to the value:

K 1 -
po =\~ + 3 (2eC(0) + K2). (10)
The solution for the average amplitude and phase of homogeneous oscilla-

tions obtained from Eq. (7) and (8) reads: (p) = po,{p) = t. For large
positive K the value of pg can be approximated by:

. €C(0)
PO:/)Dh<1+ i ) (11)

In this case the presence of noise increases the amplitude of limit cycle.

What is more important Eq. (10) predicts nonzero radius of oscillations
below the phenomenological critical point (K = 0). Near the critical point
if | K | < eC(0) the amplitude of the steady state is given by:

e (2COY 02

2
As we shall show later, this rather peculiar regime of oscillations, driven by
noise, is stable in sense that the standard deviation of amplitude fluctuations

may be smaller than pg.
For ' < 0 the amplitude may be approximated as:

~ [£C(0) .
po = STK| (13)

It indicates that in the presence of noise oscillations may appear also below
the phenomenological critical point. This phenomenon has been observed in
molecular dynamics simulations of a model of oscillating reaction [7].
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Now let us consider the influence of noise on the homogeneous oscillating
solution of Egs. (6), (7): p = po, = t. Let p,® denote a small, local
perturbation of this solution. In the following we consider the evolution of a
state, which at the beginning corresponds to a homogeneous limit circle {z.e.
p{t =0) = 0 and @(t = 0) = 0). Within the simplest linear approximation
the evolution of p, ¢ is described by the following equations:

%? = —2p\/K2?2+42eC(0)+ DV + &, (14a)

1)
92 _ pvzp4 b (14b)
ot po
Equations (14) are independent and they analytical solution can be easily
written [9]. Let us assume that the system is enclosed within a d-dimensional

cube with a side length L. Expressing p and ¢ by their Fourier transforms,
defined as:

fr = l/(ld:z:f( Yexp(—i2rak/L),

Ld

where V(= L%) is the volume of the system, one obtains linear stochastic
differential equations for p and @. In the k-space the relation (3) leads to:

eCh

(€olke, )Eo (K. 1)) = (So (ks )€ (R, 1)) = <=bhsnr 08t = 1) (15)

and for the correlations of noise defined by Eq. (4) the function C}, reads:

Cio = exp - (%‘-'3)2) . (16)

It is easy to see that all the Fourier components of p (including the
one corresponding to k = 0) are damped in time. The expression for the
amplitude fluctuations comes directly from solution of Eq. (14). In the limit
t — oo it reads:

Ck

(7' = 5y Z D(2rk/L)2 + 2 /K2 + 2¢C(0)

In the thermodynamic limit (large L) we can replace the sum with an integral
over the Fourier space:

v o) = o [ Fsta) (19)

k#0

(17)
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Introducing an inverse correlation length m as:

m? = 2/K2? + 2¢C(0), (19)

and using C, given by Eq. ({16) we obtain:
€ A
(p%) = jz-nzd_zf(-Q—m—) , (20)

where

1 1 .
10 = o [ ey ev(-(aa)?). (21)
In the case of large positive K

~

Po KA'zd ’

and such results are in the agreement with the intuitive idea that the noise
has a marginal effect on a stable cycle.
On the other hand if K is negative and € <| K | then

~

Po Cl0)As

which is always finite independently of space dimensionality and does not
depend on the strength of the noise. This behavior is obviously far away
from the predictions of phenomenological analysis. It the noise correlation
length is large than the dispersion of p may be smaller than py and thus the
noise induced oscillations should be visible.

Close to the phenomenological critical point { | K |« € ) we have:

3

(P ~ T (24)
Po

Therefore, the standard deviation of the radius goes to zero for dimension-
alities d = 2 and 3 so oscillations may be observed.

The average behavior of the system is described by the average of the
complex field z over the realizations of the noises and the initial conditions.
Having in mind that the noses £, and £, are independent and taking into
account their Gaussian character, we have:

(=) = polexpigexp (it) = poexp (- 1(@H)) exp (it) . (25)
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The solution of Eq. (14b) reads:

o= (0((5)') [ (o).

and

{@2(m)) = i/C:; sz ZC’kexp( 2D<27rk) )/dsexp(2D<2zk) s).

0 kx0
(27)
The first term of Eq. (27) is associated with the homogeneous diffusion of
the phase. It must be noted that the size of the system slows down this
homogeneous diffusion. The characteristic time for this process is of the

order of Ke’fl and defines a natural upper limit for the temporal coherence
of the system. At this time scale the linearization procedure leads naturally
to the Kuramoto’s result, which says that a pattern under the influence of
a small disturbance retains it shape, but the Goldstone modes parameters
(in our case it is the phase) become a time dependent local quantities. In
the following we shall be interested in the system stability for much shorter
times. This stability is determined by the relaxation of local phase fluctua-
tions associated with the second term of Eq. (27). This term depends on the
dimensionality of the system. Taking into account the correlations of noise
in the form given by Eq. (16) one obtains:

(@) = L 4 =1 (m_,q) ford =1, (28a)

Vp§ ~ pg4DVT
-2 et e 1 <8Dt+A2)
S = I
(@) = ga+ memph (T

for d =2, (28b)

200y - €L _5_(_1_>3_1_<1M_L.__> for d = 3.(28
(el = vt a\F) \a” Boir ) -(28¢)

For a large volume we can neglect the instability related to a homogeneous
phase diffusion, which is associated with the first term of Eq. (27). Because
of the second term of Egs. (27) the nonhomogeneous phase fluctuations
make the ordered state unstable in one- and two-dimensions. On the other
hand, for d = 3 the second term in Eq. (28c) converges to the finite value.
This result is in an agreement with what is expected from the analogy with
equilibrium phase transitions i.e. correlations introduced by large dimen-
sionality enforce a coherent behavior which should be stable if only local,
uncorrelated, noise induced fluctuations are considered.
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3. Fluctuations in the nonlinear regime

The main limitation of the analysis presented in the previous section is
the neglecting of the feedback of phase fluctuations on the amplitude of the
ordered phase given by the term Dp(V)® in Eq. (7). A simple model of
fluctuations, which goes beyond the linearized theory, can be introduced by
means of a suitable mean-field like approximation. Some possible approxi-
mations of this kind are discussed below.

A generalization of the phasedynamics approach in the nonlinear regime
can be achieved as follows. We assume that the correlations between local
fluctuations of the amplitude and phase can be always neglected. For in-
stance, in the case of large K there is a strong restoring force, which will
quickly dump out amplitude oscillations. Thus, we can assume that as far
as the long time behavior of phase fluctuations is concerned the amplitude
is constant as a function of space and it is slowly varying in time because
of a coupling with phase fluctuations. On the other hand, nonhomogeneous
phase fluctuation modify the stationary state of the amplitude. As a con-
sequence the local phase (amplitude) fluctuations appearing in the local
amplitude (phase) equation are substituted by their average values with re-
spect to a restricted ensemble where only phase (amplitude) fluctuations are
considered:

d . ¢C'(0

L= p(K - )+ -—2-;—) +DVip— Dp((Ve)) +6,,  (29)
e _ 2 2D 5#’

5 = L+ DV == w<w)+;. (30)

Let us consider a stationary state characterized by a constant in space
average amplitude and a phase, which may depend on a space variable. The
following relationship for the amplitude of a homogeneous stationary state
ps comes out from Eq. (29):

eC(0)
2ps

ps(IX = D{(V¢)®) - ps*) + =0. (31)

It shows that the presence of phase fluctuations decreases the stationary
state amplitude. Moreover, in the case of large nonhomogeneous fluctuations
(K < D{(V))?) the amplitude of a stationary state is reduced to the order
of . This regime is obviously far beyond the linear approximation presented
in the previous section, where the presence of fluctuations can only increase
the amplitude.

Within the restricted ensemble assumption we may obtain the average
over phase noise of the inhomogeneous phase fluctuations &,. Let us consider
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a homogeneous state of phase for ¢ < 0 and noise, which appears for £ > 0.
In such case

(Ve)? (1))
z?ﬂ(Qik)zCkeXp(*w(m )/ dsesp 2("7)'s)
- voaa m (1 -en(-20(2)).

eC(0) eCo ( (2“) )
- - t). 32
9Dp? 2DV p? 2DVng§OC’“e"p 2D\7 (82)

Substituting {32) to (31) one obtains:
eC

%+
2Vps 2ps(27r

ps(K — ps?) + /dqu exp(~2Dg¢%*t) = 0. (33)

The formal solution of Eq. (33) is in the form of (10) and reads:

K 1], Co 1 . oo )
== . - ) 4
Ps J 5153 \/1 +2¢ (V + (2ﬂ)dfd qCqexp(—2Dg%) (34)

2

In the long time limit the integral may be neglected and the stationary radius

of the circle is:
K 1 . CQ
=4+ = 2 e — 35
Ps,00 \J2 +.2\/K +2e57, (35)

which in the limit of a large volume converges to the phenomenological value
pph- Therefore, the inclusion of phase fluctuations almost completely cancels
out the effect of noise on the radius predicted by the small noise expansion.

An alternative mean-field like approach to the problem is based on the
following approximations. Let us substitute the modulus of the complex
process z in Eq. (6) (| 2z |* ) by its spatial average. It is worthwhile to note
that this approximation is not equivalent to the substitution of the local
value of modulus with the ensemble average. The difference between these
two approximation schemes can be explained by the intrinsic non-ergodicity
of the model. Let us show that the model we considered exhibits a quite
different mechanism for long time behavior at small dimensionalities.

Within the approximations introduced one obtains equations describing
the time evolution of the Fourier components. It is convenient to separate
the k = 0 component from the others. For k # 0 we have:
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9z 27k 2
a:_z~k+~k<\—[7gl —214 )—D(—%‘) 2k + &k - (36)
120

The equation for the Fourier component corresponding to k = 0 is much
simpler and reads:

Oz ) .
-59:1.304—20(1(—‘2012—21,2,[2)4-520. (37)
t 1£0

Eq. (37) says that | zg | becomes macroscopically large at the steady state
if (K~ 2z |>+ Yzl & 12))0 . Unlike the equation for the evolution of the
local fluctuation (Eq. (36)) there is no linear term in Eq. (37) which is able
to control the stability of the process. This stability is ensured only by the
nonlinear term in the dynamics. On the basis of Egs. ((36), (37) according
to the Ito rules, we obtain the evolution equations for the square of modulus
of zi. The equations for the modulus at a stationary state read:

eC

‘:O ‘2(1\/'—/4"‘30 !2>+T}—Q:0’ (383,)
of . ‘27rk)2 | 2o 12> eCl
2k -D(Z2) —a4- =0, b
| 2 | (Ix D(L A- )+ 57 =0, (38b)
where
A=Y 2 (38c)

K #0

The formal solution of Egs. (38 a,b) may be written as:

K - A+./(K - A)?+4:C,/V
|z | = Y - ) o, (39a)
2 3 Ck .
a0 2= = 39b

For consistency of Egs. (39) the following relationship should be satisfied:

=Y (0
V i D(3E)2 +m?’
where
A- K+ /(K - A)? + 4eC
m22120{2+.4~11': \/ G. (41)

2
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For the assumed form of noise (Eqgs. (3), (4)) the integration in Eq. (40) may
be analytically done [10] leading to:

A= 4771‘5\/5 exp(“Zg)z) (1 - ¢(2Ln\/—%>) ford=1, (42a)
A= ’47;1) exp((njg)z)Ei(w%%)z> ford=2, (42b)
and
- i () -o(2)) e
(42¢)

where @ and E: denote the probability integral and the logarithmic integral
defined as follows:

B(z) = ?T- / exp(—t2)dt,
0

o0

Ei(z) = -/3“‘—"5-1%.

-

It is worthwhile to discuss the cases d = 1 and d = 3 separately because
the systems behavior in these cases is different. For simplicity let us assume
that A is small. Now the expressions for A may be approximated as follows:

£

= d=1, 43

TS for (43)
and JR
5 il

= —— =3. 44

52D " for d =3 (44)

Let us consider the case of large K, so the system is expected to exhibit an
oscillatory behavior. Eq. (38a) may be rewritten in the form:
. C
m?(m? + K - 4) = 2. (45)
It can be easily solved by a symbolic algebra program, but such solution
is tedious and hardly readable. Therefore let us discuss the approximate
solution, the physical meaning of which is clear.
In the case of d = 3 one may assume that both A and m are small if
compared with K and then the solution reads:

SC()
VK’

1%

(46)
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Therefore | z, 12 is approximately equal to K, which means that the system
is exhibiting coherent oscillations in space.

For d =1 A is a function of m so the only approximation one can make
is to neglect m? as small if compared with K. Now the solution of Eq. ((45)

is:
z £ \2 4Ke(Cy -
' (4\/17 * \/(4\/D) " T) ' (4‘)

/ + b4]\CQD 1
(48)

\/1 4 S4KCoD

eV

and

]:0i2§n22+1\

Thus in d = 1 case the amplitude of coherent oscillations is small and related
to volume and the strength of noise.

The comparison between the results obtained for d = 1 and d = 3 sup-
ports the picture we discussed in the previous chapter: it is always possible
to find, even in a reduced dimensionality system, the region of the parame-
ters in which the radius of limit cycle is different from zero. However for one
dimensional case the phase fluctuations always destroy the coherent behav-
ior after sufficiently long time. Contrary, for three dimensional systems the
oscillating state lasts forever, even if the phase fluctuations, give limitation
on the region in which the amplitude is stable.

4. Conclusions

Considering a specific example of a stochastic nonlinear chemical system.,
which exhibits oscillatory behavior, we discussed how the spatial coherence
of the time evolution depends on system’s dimensions.

We have shown that it is convenient to define the cutoff associated to
the coarse graining procedure directly at the level of noise correlation func-
tion. The introduction of spatial correlations of noise is necessary in order
to give a meaning to the stochastic Ito equation for the amplitude. This
equation cannot be rigorously derived for an uncorrelated noise. A few
different decoupling approximations have been used in order to solve the
stochastic differential equations describing system’s evolution. The approx-
imations lead to the conclusion that coherent oscillatory state is stable in
three dimensions, whereas for lower dimensionalities it is destroyed by the
presence of local fluctuations. It is also interesting to notice that various
approximations predict different amplitude of the limit cycle. The result
of small noise expansion (Eq. (10)) says that the amplitude is enlarged
by the presence of noise. The influence of noise is significantly reduced
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in the nonlinear regime as the result of competition between the repul-
sive barrier effect ( EC(O term) and the nonhomogeneous phase fluctuations

(Egs. (32)—-(34)). Bcth terms depend on noise strength and on the character-
istic length of the spatial correlations of noise. The first one, by definition,
the second because at the steady state there is no intrinsic length associated
with the fluctuations. We have obtained that the compensation of these two
effects is at the basis of the validity of a phenomenological theory (z.e. the
theory obtained in the limit of vanishing noise amplitude). On the other
hand the absence of compensation in the transient behavior gives rise to
various, new phenomena, which are not predicted by phenomenology.
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