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The influence of nonequilibrium effects on the rate constant of a ther-
mally activated reaction A+ A — products is investigated. The considered
model for molecules of both reactant and products takes into account the
energy transfer from the internal degrees of freedom to those relevant for
reaction. The results of molecular dynamics simulations performed within
a model of reactive hard spheres are compared with a simple phenomenol-
ogy based on the assumption on the Maxwellian form of reactant’s energy

distribution. A good agreement between both methods was obtained.

PACS numbers: 05.70. Ln, 82.20. Wt, 82.20. Mj

1. Introduction

Nonequilibrium effects which may arise in systems with thermally acti-
vated chemical reactions have been intensively studied for more then 50 years
[1, 2]. They appear because the reaction cross section for a thermally acti-
vated process depends on energy of interacting molecules of reactants. The
probability of reaction is large for molecules with high energy, whereas there
are no reactive collisions if the energy is low. As the result, the most energetic
molecules of reactant are transformed into a product and a nonequilibrium
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contribution to the energy distribution appears. The average quantities,
like for example the rate constant or the diffusion constant, calculated on
the basis of the nonequilibrium energy distribution are different then those
characterising the equilibrium system [3-5]. Most of the studies on this sub-
ject were based on the Boltzmann equation [2, 4, 5] and the molecules of
reactants were modelled as structureless spheres. The recent microscopic
simulations of nonequilibrium effects in systems with a thermally activated
chemical reaction, performed using molecular dynamics [6] and the Bird sim-
ulation technique [4], have shown that an accurate description of these effects
may be obtained if one assumes that the energy distribution of reactant’s
molecules retains Maxwellian form, but the temperature it corresponds to, is
different than the temperature of the system as a whole. The concept, that
many “temperatures” may characterise a system simultaneously is widely
used in spectroscopy, where different “temperatures” are used to describe
translational, rotational or vibrational energy distribution of a molecule.

In this paper we study the nonequilibrium effects associated with the
reaction:

A+ A — products(B + ('),

Contrary to the previous works on this subject the molecules of both re-
actant an product have internal degrees of freedom. Therefore the system
is characterised by four different energy distributions simultaneously. One
can easily give a simple phenomenological description of the nonequilibrium
effects by assuming, like it was done in [6], the Maxwellian form for the
energy distribution of the reactant. The comparison with results of molecu-
lar dynamics simulation shows that such approximation describes system’s
evolution with a good accuracy.

2. Molecular dynamics simulations

In our molecular dynamics simulations we use sphere-in- sphere model in
order to describe a molecule with internal degrees of freedom. The molecules
of the system considered are represented by spheres with a spherical cavity
inside. There is another small sphere in this cavity. The large sphere moves
freely in the whole space and collides with the other large ones. Its kinetic
energy represents the energy related to the degrees of freedom which are
important for a chemical reaction. The motion of a smaller sphere is of
course restricted to the cavity and the small sphere can collide with the big
sphere surrounding it only. It is assumed that collisions between big and
small spheres are elastic. The kinetic energy of a small sphere represents the
energy of the internal degrees of freedom, which do not influence reaction
cross section directly. In this model the energy at equilibrium is equally
divided between “chemical” and * internal” degrees of freedom and in average
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it is equal to 3/2kgT. This value does not depend on sphere masses or
diameters.

The frequency of collisions between a big sphere and a small sphere
trapped inside it determines the rate of energy transfer between “chemical”
and “internal” degrees of freedom. It depends on all parameters describing
the spheres. In our simulations we assumed that the masses of both big and
small sphere are equal. The cavity is homocentratic with the centre of a
big sphere. Its radius is equal to this of the big sphere. Therefore, in our
model if the diameters of a big sphere and of small sphere are fixed than the
density of big spheres (i.e. the packing fraction) is the only parameter, which
controls the ratio of collision frequencies between big and big and between
big and small spheres.

The described model may be easily modified in order to increase the
number of internal degrees of freedom by introducing more then one object
moving in the cavity. If the internal degrees of freedom are represented by
the kinetic energy of hard objects than the energy transfer between chemical
and internal degrees of freedom occurs in collisions only. A potential-based
interaction between small and big spheres would lead to continuos energy
transfer between these degrees of freedom . However, from the numerical
point of view it is more convenient to study and record system’s evolution
using a single algorithm for the nearest collision, rather then to mix methods
for hard sphere evolution of the large spheres with a step-by-step solution
for motion of a trapped object in a potential field.

In order to describe a reactive collision we adopt the line-of-centre [7]
model for a thermally activated reaction. Let the activation energy for a
considered process equals E4. A collision between big spheres is regarded
as reactive if in the centre of masses reference system (for big spheres only)
the kinetic energy associated with the motion of big spheres along the line of
their centres exceeds F4. Let us notice that the existence of small spheres
has no influence on reaction because the probability of an instantaneous
collision of three hard spheres is null. In simulations presented below we
assume that the heat of studied reaction is equal to zero.

In order to make computer simulations efficient we used the technique
described in [4] and [8]. First we calculate the evolution without reactions
and store the trajectory. Next having recorded information on a equilibrium
trajectory we can easily obtain the evolution of a system with reactions. It
is just necessary to choose the time reaction starts, mark all the spheres
as reactants, read the information about consecutive collisions and check if
they lead to reaction or not. Simulations give information on concentrations
of reagents and on the properties of energy distribution for reactant and
product as functions of time (the procedure was described in [8]).



1800 J. GORECKI, M. GRYCIUK

The results present below were obtained for ng = 512 big spheres all
with same diameter d¢ = 5, which represented “chemical” properties of
molecules. A small spheres with diameter dy = 2.5 is moving inside each big
sphere. The masses of both big and small sphere are equal to 32a.u. The
ratio of frequency of collisions between big spheres and between big and the
corresponding small sphere is controlled by system’s packing fraction. We
have considered three different packing factors n = 0.155,0.238,0.398. The
results for the average energies related to different degrees of freedom and
for the rate constant for activation energies F4 = 2, and 3kgT are shown in
Figs. 1-5.

3. Phenomenological description of nonequilibrium effects

The simplest theoretical approach, which describes nonequilibrium ef-
fects in systems with a thermally activated reaction, is based on the assump-
tion that if at the beginning the energy distribution for molecules of reactant
is the equilibrium one than it retains Maxwellian form for all the time reac-
tion proceed. Of course, during the evolution the temperature of the system
as a whole becomes different than the time dependent “temperature” of re-
actant. Here we adopt this method for the system with internal degrees
of freedom. Let us assume that energy distribution of both internal and
chemical degrees of freedom for particles of reactant A has the Maxwellian
form corresponding to time dependent temperatures T7 4(t), Tc 4(t) respec-
tively. Moreover, it is assumed that the internal and chemical degrees of
freedom are uncorrelated so at each moment of time, the probability density
fa(vc, o1, t) of finding a particle of A with the velocities v¢, U1, for the outer
and the inner spheres respectively, factories as follows:

fa(te,vnt) = fro ,0)(Pe) - fry o0 (T1) (1)

where fr.  ((0c) and J1; 4((0r) are the Maxwellians corresponding to
Tr,.4(t) and Tc a(t) respectively. Now one may easily derive the equations,
which describe the time evolution of concentration of A and the density of
energy for molecules of A and of products. The reaction cross section for
the line of centre model reads [7}:

ooy Psrde(1-F4) forEc2Es (2)
A4, 0 for EC < EA

In this formula sg stands for the steric factor and

- = \2
EC,' == m(ﬂ—zﬁ, (3)
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where ¥; and U2 denote precollision velocities of colliding spheres.For the
line-of-centre model the equation describing the time evolution for concen-

tration of A reads [9]:
da

— = -k (T t)) a® 4
o (Tc,a(t)) a®, (4)
where
/2 .
() = s edd? ?L’“_Bb(_t)y __Ea
kE(Tc.a(t)) = spddigaa ( — exp FTeal) ) (5)

and g4 4 is the value of the radial distribution function of big spheres at the
distance equal to their diameter. _

The equations describing time evolution of the density of energy for the
internal and chemical degrees of freedom can be obtained if one consider
the chemical reaction and the energy transfer [9]. The internal energy of
molecules of A decreases because after a reactive collision the energy of
inner spheres becomes the internal energy for a molecule of product. The
collisions between the outer and the inner spheres contribute to the exchange
of energy between the internal and chemical degrees of freedom. Taking these
two processes into account one obtains the following equation:

d (3 o (mkg(Tia+Tca)\?
—(,—kBaTI,A(t)) = 4d7g (T 5114 “)) kp(Tc.a — Tr.4)a

dt \2 2m
kgTc 4\ 2 E
—spdd*gaa (”_’3_&&) exp | ——2 §kBTI aa, (6)
m kgTc.a ) 2 ’

where d* = (d¢ — dj)/2 and g™ denotes the geometric factor, which con-
tributes to the frequency of collisions between the inner and the outer
spheres, in the same way as the radial distribution function does for the
collision between big spheres. The equation describing the time evolution
for the density of energy of the chemical degrees of freedom of reactant can
be obtained in the similar way when one considers the chemical reaction
and two possible ways of energy exchange: in collisions between the outer
and the inner spheres in particles representing A as described before and in
collisions between particles representing A and those representing products.
The equation has the form:

d (3 o (Tkp(Tia+ T 1/2
~<§kBCLTC,A(t)) =4d”g ( 5114 C’A)) k(T4 —Tc,a)e

dt 2m
‘ rhgTe A\ /? E 3 7 E
"3F4déﬂAA (—?) e€xp (”‘ kBTIZ A) §ICBTC,A(12 1 + %7%;
wkg(To+ To )\ /?
+4d%gaa < 5 ;m < ’A)) ky(To — Te,a)ang . (7)
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By introducing the scaled variables:
— time in units describing the frequency of collisions between big spheres

nov,

7 = 4d%gaa (T(kBTO) i 2

— concentration in units corresponding to the total density:
a
a=—,
L]

~— temperatures scaled to the temperature of the system as a whole

£ = 17,4 = T4
I T() C TO ’
and the activation energy:
AT kgl

one obtains the following evolution equations:

! € 4 ,
d . 2 ' §C’ +£1 1/2
y . |
g(;fc' = -fé/?spexp <—§:> % (.522_*_5‘4) o
2/1 1/2 9 1 1/2
+3 (E“L%) (1~§c)+§cf <§(§1+€c)> (€r—¢&),

(10)

where c¢p is the ratio of the frequency of collision between inner and outer
spheres and the frequency of collisions between the large spheres. For any
initial condition Eqs. (7)-(9) can be easily solved numerically. If £ and &¢
are known than the concentration of products (b) and the energy densities:
internal £y g and chemical E¢ g can be calculated from:

b = np(l —a), (11)
. - w
Erp = ‘-é]‘v'BTO 7 a&, (12)
—
j 3 1—af
Ecp = SkeTo——> (13)
— &
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Moreover, the rate constant at time ¢t can be calculated from Eq. (5).
The results obtained by numerical solution of Egs. (8)—(13) are plotted in
Figs. 1-5 using a solid line. In the limiting case of very low rate of energy
transfer between internal and chemical degrees of freedom it is expected that
the energy accumulated in internal degrees of freedom has no influence on
systems evolution. Putting ¢ = 0 one obtains

d €
Y= ~§é./2sFexp (—é) a?, (14)
d
a—_ﬁc = ——fC SF exp (—5—5) 3 (520 +EA) «
2/1 gc 1/2
2(3+5) Ta-e, (15)

and such set of equations describes nonequilibrium effects in a system struc-
tureless spheres [6]. For comparison we plot a numerical solution of Egs. (14),
(15) in Figs. 1, 2 and 5 using the dashed line.

Let us notice that Eq. (10) may be rewritten as

fovdum (23§ )
+§(%+%€)1/2(1-—§c), (16)

In the case when the energy transfer between the internal and chemical
degrees of freedom is very effective (¢; — o0) Eq. (9) gives {5 = {¢. Now
from Eq. (16) it follows that:

: e ( = ) <§C )
—& = —=J &1 s ——
pymde Q{gc spexp (—g= )3 (G tea

9 N 1/2
+§<%+%> (1"50)}~ (17)

As expected the decrease in reactant’s energy is equally shared between
chemical and internal degrees of freedom. The results of Table I compare
the minimum value of the rate constant (scaled to the equilibrium value
of rate constant) and the concentrations of reactant for which the max-
imum nonequilibrium effects is expected obtained for low rate of energy
transfer (Eqs(14), (15)) with these for high energy transfer (Egs. (14), (17))
and with the results for a hypotetic system with 4 internal degrees of free-
dom and infinitely fast energy transfer (thus 1/5 stands instead of 1/2 in
Eq. (17)). Steric factor is taken as equal to 1. It comes out that the strength
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of nonequilibrium effect is not significantly changed by the presence of the
internal degrees of freedom. On the other hand, the range of concentra-
tions, in which the nonequilibrium effect is the most important is shifted
towards higher concentrations of product if the number of internal degrees
of freedom is increasing.

TABLE I
The maximum nonequilibrium effect on the rate constant as a function of the
activation energy and the rate of energy transfer. The minimum of scaled rate
constant is given together with the concentration of products it corresponds to. In
calculations sp = 1, the cases I, IT and III correspond to very low energy transfer,
very high energy transfer for sphere-in-sphere case and to very high energy transfer
in a system with 4 internal degrees of freedom, respectively.

A I T
0.5 08,5(053) 0.004 (0.65) 0.938 (0.78)
1 0810 (0.43) 0.846 (0.56) 0.893 (0.71)
1.5 0.776 (0.34) 0.809 (0.46) 0.859 (0.63)
2 0768 (0.26) 0.796 (0.38) 0.841 (0.54)
2.5 0.779(0.20) 0.800 (0.30) 0.837 (0.46)
3 0.802(0.15) 0.816 (0.23) 0.844 (0.37)

4. Results and discussion

Figures 1-5 show the comparison between results of molecular dynamics
simulations (points) and phenomenology ( the solid line) for a few selected
systems. For all reactions considered sp = 1. The average energy corre-
sponding to the chemical degrees of freedom of reactant, scaled to the value
of thermal energy for an average particle of the whole system is shown in
Fig. 1. The system is characterised by packing fraction n = 0.393 and for
this density ¢y = 0.7. The activation energy for the reaction considered is
€4 = 2. The time evolution of ¢ is very similar to the evolution of “tem-
perature” of reactant in a system without internal degrees of freedom (for
comparison we plot it using a dashed line). At the beginning ¢ decreases
because the most energetic particles of A are transformed into product. At
a certain concentration of reactant the energy exchange with molecules of
product starts to dominate over the energy decrease related to reaction and
&c increases to its equilibrium value. The maximum nonequilibrium ef-
fects corresponds to the minimum in ¢. As expected (Table 1) for system
with internal degrees of freedom the decrease in £¢ is less pronounced than
for structureless particles and it is shifted towards larger concentrations of
products.
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Fig. 1. The average energy for the chemical degrees of freedom of reactant, scaled
to 3/2kpTy, as a function of concentration of products. The solid line shows phe-
nomenological result (Egs. (8), (10)) and points represented molecular dynamics
data. For comparison we give the time evolution of the average energy of reactant
in the case of structureless molecules {Egs. (14}, (15)) (the dashed line).
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Fig. 2. The average energy for the chemical degrees of freedom for products, scaled
to 3/2kpTy, as a function of concentration of products. Notation as in Fig. 1.
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Fig. 3. The average energy for the internal degrees of freedom for reactant A,
scaled to 3/2kgT). as a function of concentration of products. The solid line shows
phenomenological result (Egs. {8)-(10)) and points represent molecular dynamics
data.
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Fig. 4. The average energy for the internal degrees of freedom for products, scaled
to 3/2kpTy, as a function of concentration of products. Notation as in Fig. 3.
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The time evolution of the average energy associated with the chemical
degrees of freedom of product (Fig. 2) is also very similar to the results ob-
tained for the average energy of product in a system without internal degree
of freedom. Like in the later case this energy is monotonically decreasing
function of concentration. The results shown in Fig. 2 were obtained for
n = 0.155(cy = 4.08) and €4 = 3. For comparison the average energy of
products in a system without the internal degree of freedom is shown (the
dashed line).

The evolution of the average energy associated with internal degrees
of freedom for reactant is shown in Fig. 3. If the transfer rate of energy
between chemical and internal degrees of freedom of A is very fast then &;(t)
is almost the same as &¢(¢)> The results presented in Fig. 3 were calculated
for n = 0.393 and therefore the energy transfer mentioned above is quite
slow (c; = 0.7). At the beginning the energy related to internal degrees of
freedom of A remains close to the equilibrium value. The maximum decrease
in internal energy of A occurs for much larger concentration of B than it is
for the chemical energy of A (compare with Fig. 1).

Fig. 4 shows the most interesting time evolution of the average energy
associated with the internal degrees of freedom for product. At the beginning
it is equal to the equilibrium temperature of the system as a whole. As
reactions start the energy is transferred from the chemical to internal degrees
of freedom of product and the average energy reaches its maximum. Finally
it decreases due to the energy transfer from products to the reactant. The
results presented in Fig. 4 were obtained for n = 0.155.

It is worthwhile to notice that for the time evolution of the average
energies the agreement between molecular dynamics simulation and phe-
nomenology is very good. The theory, which takes the internal degrees of
freedom into account gives much better description of the nonequilibrium
effects than the phenomenology for structureless particles.

Figs. 5a and 5b show the rate constants for the processes characterised
by activation energies ¢4 = 2 and £4 = 3 respectively. Simulation were per-
formed for n = 0.238, which corresponds to ¢y = 1.983. Large dispersion of
molecular dynamic results (points) is related to the limited size of recorded
trajectory (750000 collisions were recorded ). The rate constant calculated
on the basis of phenomenology (Eq. (5) ) predicts slightly larger nonequilib-
rium effects than observed in simulations. The agreement between theory
and simulations improves at higher activation energies. We believe that the
discrepancies between phenomenology and simulations observed at low acti-
vation energies are related to correlations between the energies of the outer
and the inner spheres. Our theory neglects these correlations completely
(Eq. (1)) whereas in simulations we observed an increased (by about 30 %)
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that a hot small sphere moves inside a highly energetic large one. We believe
that, in despite of its simplicity, the phenomenology based on the concept
of different temperatures which characterise various degrees of freedom of
molecules may be useful for an approximate description of nonequilibrium

J. GOreEckI, M. GRYCIUK

effects in chemical systems.

scaled rate constant

scaled rate constant

Fig. 5. The rate constant scaled to the equilibrium value as a function of con-
centration of products. Notation as in Fig. 1. The phenomenological rate constant

1.00

0.85

o
©
o

0.85

0.80

o
00
o

o
0
o
PR O U AN R U U Y H U T U AV EAT S U W WA N U OO U U U 0 A0 S VO W B I T

vt b e s et el iiaged

0.75 Frrrr T

0 0.2C 0.40 . 0.60 0.80

©
o

concentration of products

0.80 T T

0.00 0.20 0.40 0.60 0.80

concentration of products

was calculated using Eq. (5). (a) —ea=2; (b) —ea = 3.
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