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It is shown that experimental data (D.-S. Liu, R.D. Astumian,
T.Y. Tsong, J. Biol. Chem. 265, 7260 (1990)) on active transport of
Na* in human erythrocytes (catalyzed by Nat-K*+-ATPase) under the in-
fluence of external ac electric fields can be interpreted as the evidence of
stochastic resonance between the external ac field and the fluctuations of
the membrane potential (energy barrier of the process): the signal-to-noise
ratio J/v;, where J is the ionic current (signal), 4; — the intensity of in-
trinsic fluctuations (noise), exhibits strong maximum as the function of
v;. The model calculations show that in the considered system one can
expect the appearance of (i) inverse stochastic resonance, and of (i) ape-
riodic stochastic resonance: (i) the ratio J/1, vs intensity of external ac
field ¥, exhibits maximum in the presence of barrier fluctuations; (ii) the
external periodic ac field can be replaced by the external random ac field
(dichotomous Markovian noise in our calculations) of strength -, and in-
verse correlation time A., and the ratio J/+. vs. 4. also exhibits a distinct
maximum in the presence of internal fluctuations of the membrane poten-
tial. Note that the superposition of two Markovian dichotomous noises
(internal fluctuations and external ac field) is equivalent to non-Markovian
barrier fluctuations.

PACS numbers: 05.40. +j, 82.20. M;j

1. Introduction

In last years a growing attention is paid to the kinetics of transitions over
a fluctuating barrier [1]. Various physical, chemical, etc. processes, as well
as various types of fluctuations were discussed in literature. The fluctuating
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barrier problem seems to be of interest especially for the kinetics of biophys-
ical and biochemical enzymatic processes, which are governed by big protein
molecules, undergoing complicated structural (conformational) transitions
during their work. These structural changes are easily influenced by the
random or regular changes in their environment, leading to the changes in
the barrier height for the processes catalyzed by these proteins.

Random fluctuations and periodic oscillations of various physical pa-
rameters are common to the environment of biomolecules, especially in the
vicinity of cell membranes. Membrane proteins (enzymes) play very impor-
tant roles in mediating signal transduction, in transporting material to and
from the living cells, etc., and frequently function as free energy transduc-
tors in synthesizing some chemicals or in transporting ions against a free
energy gradients. In carrying such functions, the protein undergoes a cycle
of conformational transitions between different states which may have very
different charge distributions. The action of such a molecule will thus be
influenced strongly by membrane electrical potential: (¢) the electric fields
are greatly magnified in the lipid membrane, and () the membrane prevents
the enzyme from rotating freely and thus following the field.

Therefore membrane proteins can sense the fluctuations of electric fields,
generated either by externally imposed ac fields, or by fluctuations of ionic
concentrations, both thermal and resulting from the action of ion channels
[2]. The membrane electric potential plays in such situations the role of acti-
vation energy (potential barrier), and it was shown that, when a membrane
enzyme is electroconformationally coupled to an ac field (either regular or
random), it can transduce energy from that field to force the catalyzed pro-
cess to go against free energy gradient [3—6].

In our former paper [7] we have shown that the assumption of random
fluctuations of the membrane potential is sufficient to explain existing ex-
perimental data on active ionic flow through cell membranes (catalyzed by
ATPases) under the influence of external ac electric fields, which exhibit a
distinct maximum of the flow (increase of flow about two- three times) for
some range of frequencies [6, 8-10]. The feasibility of the fit implies that
the experimental result (peak of J(w) at wmax) can be interpreted as the
resonance between internal fluctuations and external oscillating field.

The enhancement of the action of the external regular field by stochas-
tic field resembles the well-known effect of stochastic resonance [11-13], the
phenomenon of an increase of the response of the system to the determinis-
tic forcing by an increase in the input noise, occuring in systems subjected
to both periodic and random driving. The most popular characteristics of
this effect being commonly in use is the peak in the signal-to-noise ratio
(SNR) as a function of the input noise strength, although the physics of
this phenomenon is the transfer of energy into some physical process from
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the stochastic field (noise) with the assistance of the regular field (pumping,
signal). The idea of SR was introduced for the first time as a plausible ex-
planation, based on numerical simulations, of the recurrence of ice ages [11],
and later discussed in many aspects, both purely theoretical and in applica-
tion to several specific physical systems. SR is presently one of most popular
subjects in the theory of stochastic processes, and the relevant literature is
vast [12-14].

In this paper we are going to examine the model [3, 4, 7] describing the
active ionic flow through cell membranes under the influence of external ac
electric fields, and in the presence of random fluctuations of the membrane
potential from the point of view of stochastic resonance. One of the aims
is the search of effects which can be measured experimentally and therefore
can substantiate the interpretation of the behaviour of transmembrane ionic
flows in terms of stochastic resonance.

2. The model

As in [7], we consider the active transport of ions across membrane un-
der the action of external ac field, and under the influence of spontaneous
fluctuations of the membrane potential. We shall use the Astumian and
Robertson (A-R) model [3, 4], constructed for the description of the effect
of an ac electric field on the action and efficiency of the membrane proteins.

The A-R model describes the collection of identical protein molecules
(enzymes E) in a planar bilayer membrane, each oriented in the same way,
and each able to exist in two electrically distinct conformational states.
Protein—protein interactions are assumed to be negligible. The overall en-
zyme cycle describing the whole catalyzed process is, schematically:

31 Qyy
Sy
E E*S (2.1)
————d
52 al’?
or, in short,
E
AT——=B (2.1a)

where E and E* represent different conformations of the enzyme. Sy and S,
may represent either two different chemical species (catalyzed production of
the product S; from the substrate S ), or the same species outside and inside
the biological cell (active transport through the membrane). Each pathway
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may consist of several intermediate stages; also E and [E*S] may represent
several different states in internal equlibrium.

A good measure of the rate and direction of the catalyzed process are
the currents j;, jo describing the instantaneous flows in the upper and lower
pathways of the overall process, i.e., the instantaneous rates of binding of
S: and of S; to the enzyme E:

jj = Ozf]‘SjE — Ozr]'[E'*S] = (aijj + Otrj)E - Olrja (2'2)

where E/, [E*S] are the probabilities for the enzyme to be in the state E,
[E*S], respectively (E + [E*S] = 1), S, S represent the concentrations of
the substances Sy, S;, and ay; (j =1,2, k=f,r) are the effective rate coeffi-
cients in different pathways. Sign of currents j; is chosen for convenience:
net transition S; — S, will correspond to j; > 0, etc. The kinetic equation
describing this process, i.e. the equation of change for the probability E
reads:

E=—ji—ja=— 3 [(eS;+ay)E - arj]. (2.3)
j=1,2
From our present point of view, the most important feature of the chem-
ical reactions of this type is the dependence of the rate coefficients oy ; on
the membrane potential v:

Ok = ai,je"DW, Dy,; = di,j Az;/RT, (2.4)

where Az; is the effective charge transported across the membrane in the
Jj-th pathway, ¢ is the electrical potential difference across membrane, o are
the rate coefficients for 1 = 0, dy; = §;, d,; = —(1—4,), and §; denote the
apportionement constants, which split up the total effects of Az ;¢ between
the forward and reverse process.

We shall consider the situation when the concentrations S;, Sy are held
constant {9] (stationary condition). The electric field 4 across membrane is
assumed to be composed of internal and external parts:

7’b2 Q/)i+7/)e7 (25)
; is fluctuating randomly around some average (static) value:
Vi = ¥s + 1:&ilt) (2.6)

Ye is decomposed into static and alternating parts, and the latter is taken
either in the simple sinusoidal form, or as the random dichotomous process,
or hoth:

Ye = Yo + Py cos(wit) + ve&e(t) . (2.7)
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As previously, we shall approximate the stochastic parts by the dichoto-
mous noise (DN), but in contrast to [7], we shall consider Markovian asym-
metric DNs. Note that the linear combination of two Markovian DNs is
equivalent to one non-Markovian four-state stochastic process. Therefore
some of the results presented below can be interpreted also as the effect of
non-Markovian barrier fluctuations.

3. Fluctuations

The stochastic parts are described by independent Markovian asymmet-
ric dichotomous noises :

Enlt) € {Am1y —Ama}, (En(®) =0, (En()En(t)) = Smpe 10
m = t,e€, (3.1)

with A,, = 1/Tem, Tc being the noise correlation times, and with

Am,lAm,‘Z = A?n : Am,l - Am,2 = A'(r)n ’ fyzn(t) = A?n + Agnfm (t) . (3~2)
In the following we shall absorb intensity of the noises (measured by A?)
in the parameters 7,,, i.c., we put formally AZ = 1.

Due to the last relation (3.2) (which is characteristic for any dichotomous
noise), any function of £(¢) can be evaluated in a simple way. Especially,

ay,; = &5 ;¢ Pes O Fi(y;Dy ;) — &()Gi(viDi )| Fe(veDx,5)

- ff(t)G€(7eDk,j)]* (3.3)
where 67 . = af ; exp(—Dx,;¥s), and
e"!mAmJl' _ e""imdm.kf
("m ) = . Fm Y} — "’YmAm,lf__Am Gm ).
nn) = T Fale) = 6 1Gin(2)
(3.4)

The kinetic equation (2) thus reads:

E = [_acc + acsfi(t) + ascfe(t) - asséi(t)ge(t)]E
+bcc - bcs{i(t) - bsc‘fe(t) + bssgi (t)fe(t) b (‘35)

where the coefficients are built of the functions (3.4). When ¢, # 0 these
coefficients are time-dependent.
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4. Solution of kinetic equation

We follow here the method described in Ref. [7]: the kinetic equation
(3.5) is averaged over the stochastic process (processes), and the Shapiro-
Loginov theorem [15] is used for the evaluation of time derivatives of corre-
lation functions appearing in the result of averaging. In effect, we get the
set of four averaged kinetic equations:

W(t) = -P(t) - 2(t) + y(t) (4.1)
Aee —les —Qsc Ass
—Qcs Ai + Qe — des A? Ass —Qqsc
P=]| —a, Ass Ae + e — a.scAeO —Qcs
Ass —Qsc + ac‘,A? —Gcs + ascAg Ay + Ae +ace ~ acsA;‘J - ascA(e)
(4.2)
(E(t)) bec
E(t)fz(t» _bcs
Wi(t) = ( , t) = . 4.3
W=\ (Ewew) |+ YO b (49)
(E@)&i(t)Ee (1)) bss

In the absence of external periodic field (1, = 0) these coefficients are
time-independent and the stationary solution is trivial:

W=Pl.y. (4.4)

For ¢, # 0 the coeflicients are periodic in time. In this case we ap-
proximate the periodic field by M rectangular impulses [7,16] (in practice,
M = 50 gives very good accuracy):

@ac(t) =, for Lim <t <tlpmt1, tam = nA+mr, 1= /_\/M,

solve Eq. (4.1) between impulses, and sew together the solutions by the
stroboscopic mapping:

Wn,m-{-l = -Am y Wn,m + Xm s Wﬂ-}-l,l =H W‘n,l + Y’ (45)
with
Anlze_me:R;ll 'e_EmT'Rmv Xm:(I—Am)ym’

T being the identity matrix, £ — the diagonal matrix of eigenvalues (; of the
matrix P, R-P-R™! = £, and

M M-1 M-1

H = HAm. YZXMJrZ(H.AH.1>X1.

m=1 =1 5=l
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The asymptotic (n — oo) solution of the mappings (4.5) reads
W =(I-H)'Y.

These formulae enable the calculation of the asymptotic values J of the
current j°, Eq. (2.2), averaged over noise, and over period of the ac field,
which is the measurable quantity:

1 nd+A
J=5 [ G, (4.6)
na

In [7] the formula (4.6) was fitted successfully (the fit is shown in Fig.3
below) to the existing experimental data on active flow of Na* ions through
plasma membrane of human erythrocytes (catalysed by [Na,K]-ATPase) un-
der the influence of an external ac electric field [9,6], for symmetric Marko-
vian DN. Only intrinsic fluctuations &;(¢) of the membrane potential were
considered there.

5. Stochastic resonance

In [7] we have mentioned that the success of the fit shows that the exper-
imental result (peak of Jj(w) at wmax) can be interpreted as the resonance
between internal fluctuations and external oscillating field, especially be-
cause (1) the location of the peak (i.e., the value of wpax) depends mainly
on the correlation time A7' and on the intensity v; of the noise: increase of
A; or 7y; results in the increase of wpay, (7t) the considered model cannot be
fitted to the experimental data in the absence of the noise. We shall now
prove that indeed this is the stochastic resonance, and we shall examine
numerically this effect in more detail.

In numerical calculations we shall use the the values of the parameters
of the model found in [7]. These are:
a3 51 =210, a%,5; =54, &), =4.0, &7, = 0.11, Az /RT = 3.48,

For the symmetric Markovian DN (normalized to unity), the best-fit
fluctuation parameters were: ~; /v, = 5.15, A; = 1300 s~! (and v, = 0).

In this section we shall examine the dependence of the stochastic reso-
nance effect on various parameters describing different types of barrier fluc-
tuations.

As we have said in the Introduction, the standard measure of SR being
commonly in use is the appearance of the peak in the signal-to-noise ratio
(SNR) vs. input noise strength. The directly measurable quantity, which can
be used as the outcoming signal, is obviously the current J, Eq. (4.6): in the
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+120.0

b,
c.0 1 8.0

Fig. 1. Standard stochastic resonance: R = J/v, I = v;, A; = 10, ¥4 = 1.
dependence on frequency of driving periodic field w = 10™ (curves are labeled by
n), ve = 0.

t160.0

0.0 ]l —8.0

Fig. 2. As in Fig.1: dependence on the asymmetry of stochastic field: (1) A? =
0.005, (2) A? = 0.0, (3) A? = —0.005.
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Fig. 3. Equivalence of stochastic and periodic driving ac fields: (1) periodic driving:
J(w) for ¥y = 1, 7. = 0. (fit to experimental data [9]); (2) stochastic driving: J(A¢)
for v = 0.9, ¢, = 0. Ag =0, v = 5.15, A; = 1300. o denote experimental data
[6, 7, 9}

absence of driving ac field the current is very low and negative, whereas in the
presence of ac field current changes direction and increases in magnitude.
The presence of stochastic field results in additional increase of current.
The measure of the intensity I of the noise (of barrier fluctuations) &, is
the parameter v,,. Figs. 1 and 2 show the SNR R = J/v; vs. I = 4; in
dependence on the frequency w of the periodic ac field, and on the asymmetry
AY of intrinsic fluctuations, in the absence of external stochastic ac field
(ve = 0). The dependence of ratio of current to the noise intensity on the
noise intensity shows the maximum characteristic for SR.

Instead periodic ac field, stochastic driving can be used. Fig.3 shows the
equivalence of stochastic and periodic driving ac fields: — curve 1 presents
the fit [7] of the model including intrinsic fluctuations (symmetric dichoto-
mous noise & (t) with parameters quoted above), driven by periodic ac field of
variable frequency w, to experimental data (circles) mentioned above. Curve
2 shows the behaviour of the same model driven by random external field
(in this case the symmetric dichotomous random signal &) with v. = 0.9,
and variable inverse correlation time A,. The scaling of A, vsw is A = 0.4w
and is chosen in order to obtain the coincidence of peaks. These results
show that suitably chosen random and periodic external fields produce very
similar “resonance” between external field and intrinsic fluctuations.
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0.0 I 5.0

Fig. 4. Aperiodic stochastic resonance, R = J/v¥e, I = ve, tae = 0, 7 = 5.15,
A = 1300, dependence on the inverse correlation time A, of external stochastic
field: (1) Ac = 107, (2) A = 10°, (3) Ac = 105, (4) A, = 10%, (5) A. = 10°.
Ay = 0.

0.0 I 4.0
Fig. 5. As in Fig. 4 — dependence on the asymmetry of external stochastic field:
(1) A2 = -1072,(2) A% = —1073. (3) A2 = —107%, (4) A? = 0, (7) A? = 10~6,
(8) A2 =2-10"5. A, = 10%.
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Fig. 6. As in Fig. 4 - dependence on external static field: ¥y = 1.0,0.9,...
-0.9,-1.0; A, = 10%, Ay = 0.

L40.

i i i i

I 5.0

Fig. 7. Inverse stochastic resonance, R = J/¥,, I = 9,. one symmetric Marko-
vian noise y; = 5.15, A; = 1300, 7. = 0, dependence on external periodic field:
(Hw=10% (2)w=10% 3)w=10% Q) w=1
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2

Fig. 8. Asin Fig. 7 - v = 5.15, w = 103, (1) A; = 2000, (2) A; = 1300.
(3) A; = 1000, (4) A; = 100.

1 3\0
Fig. 9. As in Fig. 7 - asymmetric intrinsic noise: (1) A? = 10-%, (2) A? = 0.0,
(3) A9 = —10-%; A = 1300.
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The use of stochastic driving in the place of periodic one also leads to
the appearance of distinct maxima in the plots of B = J/7., with I = 7,
(Figs. 4-6). These maxima can be interpreted as the aperiodic stochastic
resonance (ASR) [13,14], being here the resonance between intrinsic and
externally induced random fluctuations of the membrane potential. Figs. 4-
6 show the dependence of ASR on parameters describing these fluctuations,
and on the presence of external static field.

In the case discussed above the distinction between incoming signal and
amplifying field is not so well-defined as in the case of standard SR — the
roles of intrinsic and extrinsic fluctuations can be exchanged. This suggests
the possibility of inverse SR: the search for maximum in the dependence of
R = J/v, vs. I = 4, in the presence of fluctuations. The results are shown
in Figs. 7-9 for several combinations of the values of parameters describing
periodic and stochastic fields. It is-seen that indeed there is such inverse
effect.

6. Final remarks

Although the A-R 2-state model (2.1)-(2.4) is the simplest model of
the enzyme kinetics in cell membranes, it is fairly realistic. It explains the
observed action of ac external field on the ionic current in the active ionic
transport, especially the inversion of the direction and the increase of the
magnitude of the active ionic transport. The original model [4,16] is not
able to explain the frequency dependence of the current (of the presence
of maximum of .J(w)) in the experimental data, but the last effect can be
reproduced by inclusion of random fluctuations of the membrane potential
[7].

The results presented in this paper show that the effect of stimulation of
biomembrane electric potential by external ac fields on the effectiveness of
membrane ezymes — or at least on the active transport of Na®™ in human
erythrocytes catalyzed by Nat-K*-ATPase [6,7,9] — can be interpreted as
the stochastic resonance between the external ac field and the fluctuations of
the membrane potential (energy barrier of the process): the dependence of
signal-to-noise ratio on the intensity of intrinsic fluctuations (noise), exhibits
strong maximum (Figs. 1, 2). Note that these fluctuations can be treated as
the effective way of taking into account of many intermediate stages of the
process (2.1) (configurations of the enzyme-reagent complex).

However, there is no simple controlled way of changing either the in-
tensity +; of the intrinsic fluctuations of the membrane potential (“noise”
in Figs. 1,2), nor their other characteristics. Therefore the results shown
in Figs. 1,2 only suggest the possibility of the SR in transmembrane ionic
transport. This deficiency can be remedied by the use of extrinsic ran-
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dom electric field inducing additional random fluctuations of the membrane
potential. This in turn leads to the proposed above notions of aperiodic
stochastic resonance, and inverse stochastic resonance. SR with aperiodic
inputs was recently discussed by Collins et al. [14] (cf. also [13]). ASR and
ISR effects can be used for the experimental verification of the presence,
strength, and other characteristics of intrinsic fluctuations.

The drawback of the considered model seems to be its high sensitivity
on asymmetry of the barrier fluctuations: for strong driving fields, .e. for
higher values of either 4. or ¥, the model becomes divergent even for very
small values of the asymmetry parameter Aq (cf. Figs. 5 and 9).

The noise intensities used in our calculations may seem to be rather high
in comparison with the amplitude of the external periodic fields. However,
as we have said in [7], the size of a biological cell is fairly small, and the size
of one protein molecule is still much smaller, consequently the fluctuations of
the number of ions in the immediate vicinity of an enzyme, even very small
in macroscopic terms (of the order of thermal fluctuations), will appear
big enough on the microscopic scale to cause fairly strong fluctuations in the
electrical potential acting on this enzyme. Therefore it seems quite natural to
expect that the random fluctuations in the enzyme potential barrier, caused
by random fluctuations of ion numbers, can be bigger than the intensity
of the regular changes in enzyme potential, caused by oscillations of the
external driving field. More details can be found in the literature; extensive
discussion is presented in Ref. [3].

REFERENCES

[1] D.L. Stein, C.R. Doering, R.G. Palmer, J.L. van Hemmen, R.M. McLaughlin,
J. Phys. A 23, L203 (1990); C.R. Doering, J.C. Gadoua, Phys. Rev. Lett.
69, 2318 (1992); B. Gaveau, E. Gudowska-Nowak, R. Kapral, M. Moreau.
Phys. Rev. A46, 825 (1992); M. Moreau, D. Borgis, B. Gaveau, J. Hynes, R.
Kapral, E. Gudowska-Nowak, Acta Phys. Pol. B23, 367 (1992); A. Fulisiski,
Phys. Lett. A180, 94 (1993); M. Gitterman, J. Kiefer, Physica A200, 258
(1993); R.D. Astumian, M. Bier, Phys. Rev. Lett. 72, 1766 (1994); W.
Schneller, L. Gunther, D.L. Weaver, Phys. Rev. B50, 770 (1994).

[2] c.f e.g. L.J. de Felice, A. Isaac, J. Stat. Phys. 70, 339 (1993); D. Petracchi,
C. Ascoli, M. Barbi, S. Chillemi, M. Pellegrini, M. Pellegrino, .J. Stat. Phys.
70, 393 (1993); L.S. Liebovitch, J. Stat. Phys. 70, 329 (1993). A.A. Lev, Y.E.
Korchev, T.K. Rostovtseva, C.L. Bashford, D.T. Edmonds, C.A. Pasternak,
Proc. Roy. Soc. London, B252, 187 (1993); L.S. Liebovitch, A.T. Todorov,
Crit. Rev. Neurobiology 10, 169 (1996); and references therein.

{3] R.D. Astumian, P.B. Chock, T.Y. Tsong, H.V. Westerhof, Phys. Rev. A39,
6416 (1989);

{4] R.D. Astumian, B. Robertson, J. Chem. Phys. 91, 4891 (1989).



Stochastic Resonances in Active Transport in... 1825

[5] B. Robertson, R.D. Astumian, Biophys. J. 57, 689, 969 (1990); V.S. Markin,
T.Y. Tsong, R.D. Astumian, B. Robertson, J. Chem. Phys. 93, 5062 (1990).

[6] B. Robertson, R.D. Astumian, J. Chem. Phys. 94, 7414 (1991).

[7] A. Fuliniski, Phys. Lett. A193, 267 (1994).

[8] T.Y. Tsong, Electroconformational Coupling: a Fundamental Process of
Biomolecular Electronics for Signal Transduction, in: Molecular Electronics.
Biosensors and Biocomputers, F.T. Hong, Ed., Plenum Press, New York-
London 1989, pp. 83-95.

[9] D.-S. Liu, R.D. Astumian, T.Y. Tsong, J. Biol. Chem. 265, 7260 (1990).

[10] B. Robertson, R.D. Astumian, Biochemistry 31, 139 (1992).

[11] C. Nicolis, J. Stat. Phys. 70, 3 (1993) and references therein.

[12] c.f. e.g. Proceedings NATO Advanced Research Workshop “Stochastic Reso-
nance in Physics and Biology”, edited by F. Moss, A. Bulsara, M.F. Shlesinger,
J. Stat. Phys. 70, No 1/2 (1993); P. Jung, Phys. Rep. 234, 175 (1993); A.
Fuliniski, Phys. Rev. E52, 4523 (1995); V. Berdichevsky, M. Gitterman, Eu-
rophys. Lett. 36, 161 (1996); M. Franaszek, E. Simiu, Phys. Rev. E54, 1298
{1996); M. Grifoni, P. Hanggi, Phys. Rev. E54, 1390 (1996).

[13] P. Hanggi. P. Jung, Ch. Zerbe, F. Moss, J. Stat. Phys. 70, 25 (1993): A.
Neiman, L. Schimansky-Geier, Phys. Rev. Lett. 72, 2088 (1994).

[14] J.J. Collins, C.C. Chow, T.T. Imhoff, Phys. Rev. E52, R3321 (1995); Nature
376, 236 (1995); C. Heneghan, C.C. Chow, J.J. Collins, T.T. Imhoff, S.B.
Lowen, M.C. Teich, Phys. Rev. E54, R2228 (1996).

[15] V.E. Shapiro, V.M. Loginov, Physica A91, 563 (1978); V.M. Loginov, Acta
Phys. Pol. B27, 693 (1996).

[16] A. Fulifiski, J. Chem. Phys. 96, 3549 (1992).



