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A description of kinetics of the temperature or pressure field induced
phase transformations in model biomembranes is proposed. It is based
on the Avrami-Kolmogorov model combined with concept of chemical reac-
tion fractal-like kinetics. As a result, a non-Debyean (stretched exponential
and power-law) relaxation of the phase transformation process is obtained.
Possible applications to experimental cases like thermotropic phase trans-
formations in lipids (e.g. dipalmitoyphosphatidyicholine - DPPC) and/or
hydration of dioleylphosphatidylethanolamine (DOPE) bilayers caused by
pressure are discussed.

PACS numbers: 43.64. +r, 43.70. +1, 43.71. +m, 05.70. Fh

1. Introduction

Amphiphilic assemblies, such as lipids and surfactants dispersed in wa-
ter or other (e.g. organic) solvents can undergo aggregation into a variety
of physico-chemical structures among which biomembranes encompass some
commonly known morphological systems. They may also transform from
one structural form, like gel to another like liquid crystal, when solution
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conditions are changed e.g. the pH-characteristics, the electrolyte concen-
tration or some thermodynamic factors, e.g. temperature or pressure. Such
systems may exhibit a very rich structural behavior regarding the liquid
crystalline (or noncrystalline) phases with many topological arrangements
of components from which they are constituted. Under certain physico-
chemical circumstances, generally due to a cooperative behavior of a lipid
solution, biomembranes are observed to form regular (periodic) lattices in
one- , two- or even three-dimensional spaces [1]. The resulting structures
usually resemble the smectic liquid crystals because of existence of stacks of
amphiphilic layers, mostly separated by water. Some lamellar as well as non-
lamellar (like inverted hexagonal or cubic) phases, or even the intermediates
called mesophases, can also emerge which is of relevance when investigating
some biological processes like domain or cluster growth, channel formation
within a biomembrane, phase separation, fusion, thin film rupture, etc. [2].
There is also a possibility of forming some more irregular statistically self-
similar ensambles (sponge-like or reminiscent of the percolation lattice) when
some defects or structural perturbations, like anaesthetics, impurities, some
interstitially located molecules or thermal as well as athermal (e.g. due to
domain surface) fluctuations of the membrane material, are detected in the
system [3]. This is certainly a case which seems more realistic and would
be more likely to occur in real biosystems in which biomembranes represent
the main structural constituent for their pretty complex architecture [4].

This is now rather commonly accepted opinion that dynamics of a thin
model biomaterial examplified by the lipid bilayer and manifested by phase
transformations caused by change of an external field (e.g. temperature or
pressure), is one of the most attractive and not completely solved problems.
In order to understand kinetic aspects of the phenomena mentioned above,
one requires not only a proper understanding of the thermodynamics of self-
asociation in the lipid dispersions, but also of temporal rules driving the
process, i.e. how the new phase may arise from the old one. An important
problem is usually related to a general feature of how the interaction forces
between amphiphiles within aggregates are affected by certain solution con-
ditions, like pH or temperature, etc., and how to incorporate it into a rather
phenomenological kinetic description [5, 6].

In this study, we propose a novel approach for description of the kinetics
of thermo-(i.e., caused by temperature changes) as well as barotropic (i.e.,
pressure mediated changes) phase transformations in model biomembranes.
For illustration, we have chosen two kinds of examples that, in our opinion,
could be described in the frame of our modeling. First, we make an attempt
in order to elucidate relaxation kinetics obtained e.g. during the dilatometric
experiments on quenched dipalmitoylphosphatidylcholine (DPPC) systems
where the classical kinetic effects but with small fractional dimensionalities
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may occur [6] or when measuring hexagonal/cubic and cubic/lamellar phase
transformations in a lyotropic liquid crystal [7]. Second, we consider another
related phenomenon, in which some action of the hydrostatic pressure im-
posed on a hydrated dioleylphosphatidylethanolamine (DOPE) membrane
sample plays a predominant role. Let us describe this case in more detail
because it looks very interestingly. So, following [8], one has to report that
the DOPE model membrane, comprised of inverted hexagonal phase, is pre-
pared by mechanical mixing to be fully hydrated. It results in a more or less
homogeneous swelling of the membrane material. In consequence, the macro-
molecules constituting the bilayer get elongated since the water molecules
enter the whole porous membrane structure. The entrance proceeds rather
througout the pre-existing pores or some free volume spaces located among
lipid macromolecules than by transient fluctuations of the bilayer structure.
Some additional but equally important effects relying on the electrostatic
attraction between the water molecules (or some aggregates of them) and
the lipid chains is to be noticed as well. What does really happen after
exerting the hyvdrostatic pressure of order of 1 kbar on the swollen and hy-
drated DOPE membrane system? From the physico-chemical point of view,
one realizes that the chemical potential of the bulk water present in the sys-
tem is changed which results in some migration (diffusion) of the molecules
throughout the spatially fluctuating membrane material; note that these
fluctuations can be mostly thought of as a direct response of the membrane
material on the pressure action. Some resulting spatial reorganization of the
water molecules and/or water complexes emerges, and a certain possibly
electrostatic association of water to lipid macromolecules or domains estab-
lishes the hydration process and provides its quite firm coupling to the lipid
structural changes in which, in our opinion, none of the processes prevails or
dominates. The last sentence is, however, our hypothesis. It may come from
the following rationale. Namely, if the lipid structural changes were slow
compared to hydration then hydration kinetics will perfectly follow those of
the lipid, in other words, the hydration can be monitored. If hydration were
slow, in turn, then the rate limiting step would be that of hydration of the
new structure. The former must be discarded because it is not observed in
the experiment [8] and simply looks unrealistically in the light of experimen-
tal conditions applied. The latter will, at most, be a specific case treated by
the theory featured by this paper since it should follow first order kinetics
[9], but with the chemical reaction rate coefficient being time-independent
(as it will be seen further, we will describe time-dependent kinetics). Thus,
we opt for the scenario in which the process is complex and consists of two
unseparable parts, namely that of hydration and that assigned to the lipid
structural changes. Such a process is hard to treat by simple tools. The
only fruitful as well as simple way that we can see relies on presumption
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that the process under study is the anomalous random walk process. It may
be reminiscent of the random walk process on a percolation lattice, and can
be roughly sketched as a propagation of the hydration front or “wave” (in-
evitably connected with the lipid structural changes) in the bilayer. Such
a phenomenon may belong, in general, to the class of transport processes
in a possibly fractal (not through a fractal!) matrix, where the fractality
of the space may, if needed, be constructed by using e.g. the interfaces be-
tween lipid domains or by realizing the porosity of the structure in question.
In this way, we may have some microscopic insight into the whole process
mentioned. As to the phase transformation in the system, one can consider
the following. Namely, after the pressure is being applied, a certain release
of water molecules is noticed, the swelling conditions are changed, the hy-
dration process is still contributed, but the system leaves the old (elongated
or stretched) structural state (see above) and arrives at a new (squeezed
or compressed) one. Both physical states, i.e. the parent and the children
phases, remain hydrated. So, the phase transformation that we propose to
consider is of purely mechanical nature and relies on a passage between two
mechanically distinguishable states of the piece of material in question, i.e.
between the elongated and the squeezed one. A similar picturesque expla-
nation can also be served when an infrared milisecond laser temperature
Jjump influences a lyotropic liquid crystal (e.g. non-ionic surfactant plus wa-
ter) behavior. In such a case, one can study some phase transformations
between mesophases formed by a non-ionic surfactant in water, like hexag-
onal/cubic or cubic/lamellar phase transformations [7]. Here, however, the
role of hydrostatic pressure plays the laser T-jump.

Bearing that in mind, we wish to propose a modification of the Avrami-
Kolmogorov (AK) equation [6, 10] due to incorporation of the fracal-like
chemical reaction kinetics {11} which would be responsible for a proper de-
scription of the coupling of the hydration with the lipid structural changes,
and taking into account existence of the phase transformations between two
mechanically different states of the membrane constituents, like lipid macro-
molecules or some clusters of them. As a result, we get the temporal (kinetic)
behavior of the system in question which, depending upon the range of ac-
tion of a main physical parameter of the system, denoted by A, is either a
stretched exponential (i.e., the non-Debyean relaxation effects take place,
like in case of many thermotropic phase transformations studied [6, 7]) or
a power function of time (e¢.f. [8] and references therein), or may also be
constant, i.e. a static “frozen” structure is possible to obtain.

The paper is organized as follows. In Section 2, we shortly sketch the
mode] which can describe the pressure induced hydration kinetics in lipid
bilayers and also may serve for description of other (thermotropic) phase
transformations [6, 7] (our rationale is that sudden changes of the pressure
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or temperature field may cause, in the frame of our phenomenological de-
scription applied, at least qualitatively the same changes in the hydrated
lipid matrix). Next, we modify this model in order to adapt it for a descrip-
tion of anomalous kinetic behavior of the 'wet and dynamic matter system’
[7, 8, 12]. The analysis of the model is carried out in Section 3. The Section
4 offers closing remarks.

2. Generalization of the Avrami—Kolmogorov equation

The Avrami-Kolmogorov (AK) kinetic theory of the temporal behavior
of biphasic systems is a well-established theory and can be found elsewhere
[6, 13]. One may also consult the original papers [10]. This theory describes
kinetics of a physical process as to how to get temporal rules of yielding a
new phase of a system at the cost of the old phase assuming that a constant
number of nuclei constituting a system as well as a growth law for an in-
dividual nucleus are determined. Let us start directly from the generalized
equation of AK-type which reads

v, (t)

2, (1

%fh(t) = NE(t)[1 - fa(t)]

where f;,(t) is a time-dependent fractional completion or volume fraction of
a sample transformed to a new phase [10, 13], N is a number of randomly
distributed nuclei per unit volume each of which will grow to a volume V,,(t)
at time t. Let us notice that a stationary state, dfy,(t)/dt = 0, is reached for
fa(t) = 1 (in practice, after some large time interval being passed). Keep
in mind that, by construction, f;(t) always takes on the values from the
interval [0, 1] and is dimensionless. '

Two factors in the aforepresented equation are novel when comparing to
the classical description. The first is related to the quantity k() termed in
this study as the chemical reaction rate coefficient which is assumed to be a
power function of time of the form [11]

k() = k0<1 + ;) " ohso (2)

where kg is the “equilibrium” chemical reaction rate constant which depends
upon temperature and 7 stands for a characteristic time scale of the reac-
tions. Let us note that for h = 0 one gets k(t) = ko > 0 and for long times
k(t) tends to zero for any A > 0. Profitting by the modern chemical reaction
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kinetics theory [11, 14], one can state that the h-exponent might be related
to the spectral dimension of the fractal or nonfractal system which, in turn,
can be inferred from the probability of the system return to its initial state
which is a power function of time [11]. The theory [11] offers evaluation of
this exponent utilizing the Alexander-Orbach conjecture, i.e. h =1 —d,/2
and d; = 2dy/d,, where dy is the fractal dimension of the object (mem-
brane) under study and d,, is the fractal dimension of the random walk in
a biopolymeric fractal system [11, 15, 16]. On the other hand, the quantity
h reflects transport properties of the system and exhibits a “connectivity”
of the system, i.e. how likely a random walker can travel through the whole
structure, how many dangling ends or traps, or steric hindrances or even in-
terfaces the structure owns or, equivalently but in the language of chemical
kinetics, how easily can the chemical reaction proceed, etc. [17]. In turn, for
having known more details concerning the transport processes in biomem-
branes, mostly in the spirit of correlated (non-Markovian, “with memory”)
and non-correlated (Markovian, “memoryless”) random walk concepts, Ref.
[18] can probably shed more light on the problem studied.

The physical motivation of incorporating k() into Eq. (1) may come
from the following general reasoning. Namely, in biosystems like DOPE
or DPPC membranes, the cooperative structural changes in lipid bilayers
can be assigned to either the growth of lipid domains or to some kind of
disruption or ’degradation’ (lysis, phase separation, rupture [19], structural
changes in some protein involved biomembranes caused by a ligand associ-
ation or dissociation [20], defects ’provoked’ by small and mobile proteins
like mellitin [21], etc.) of the membrane material (or a part of it) caused
by certain species like proteins, anaesthetics, impurities or induced by some
external fields like temperature or presssure, or sometimes by some gradi-
ents (changes) of them [3, 22|. Such phenomena are related to the strength
of interactions in the system that are in general the lipid-protein (or lipid-
solvent) interactions [3]. If the biological process involves diffusion of some
agents like water molecules within the lipid matrix and the process of water
penetration proceeds in one lipid domain in a quite different time regime
than in another one (e.g. because of trapping, caging, presence of compart-
mentalized reactions or building of © bonds, some disconnections of lipid
domains, possible phase separations, etc.) then the size of the domain, its
microscopic structure as well as life-time, etc., must be for sure a very im-
portant physical factor. It can lead to the fractal-like reaction kinetics of
the process and cannot, even crudely, be understood, because of enormous
complexity, in any classical reaction-kinetic terms [11].

To be more specific, let us recall e.g. the gel-to-liquid crystalline phase
transformation of some multilamellar lipid bilayers [13] or the pressure in-
duced hydration of lipid model membranes. They both may be understood
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by invoking the following picturesque explanation. Thus, we start from
the experimental situation in which under a certain external field (temper-
ature or pressure) something is going to happen. E.g. in the latter, water
molecules enter the bilayer [8] and invasion of water molecules into such an
elastic porous medium (e.g. DOPE-dispersion) proceeds. The water pene-
tration and possible chemical reactions between water and lipid molecules
lead to creation of a new swollen and hydrated phase. After the temperature
or pressure action, some squeezing effects of lipid macromolecules or even of
domains composed of the macromolecules are possible to observe [8] under
such physical circumstances because some external cause (temperature or
presssure) is exerted on the system and the water molecules or water com-
plexes push on the lipid matrix constituents. As reported in [8, 11], the
kinetics of yielding the new (squeezed) phase from the old (unsqueezed or
elongated) one, is time-sensitive [8] and therefore the concept of fractal-like
chemical reaction kinetics, represented by Eq. (2), is used in the paper (see
also another similar elucidation concerning a defect process in a lipid bilayer
described in [14]). Note that by assuming the above we have still an equation
of the AK-form, but now with a time-dependent number of “nuclei” (seeds or
germs) which is equal to N (t) = N(1+¢/7)~" and it is a decreasing function
of time, like e.g. in the normal grain growth of (bio)materials (see discussion
in [14]). In other words, as a consequence of the assumption (2), we propose
to rewrite the classical AK-equation for some number of “nuclei” N (t) being
time-dependent (in the classical description, it is a positive constant).

The second factor, the volume V,,(t), possesses a clear and unique mean-
ing in the AK-description. It is of the form [13, 11]

Va(t) = guP R3(t), (3)

where R(t) is the radius of a single possibly round domain taken at time ¢, g
is a geometrical “shape” factor, e.g. for spheres it is equal to 47 /3, and u is
a radial growth rate (known in some typical cases like growth of sphere-like
or other symmetric objects). The exponent p takes on the values which one
is able to infer from the R(¢) versus ¢t dependence.

Let us concentrate on the time-dependence of R(t) which certainly is
needed to determine V,,(t) (see Eq. (3), stated above). In a general case, it
has the form [23]

R(t) = at". (4)

For a squeezed state of the lipid chain (or domain), one has [23]
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v=1/3, a=ag(-B/C)~/3, (5)

where ag is a positive proportionality constant, and the quantities B and C
are the second and third virial coefficients which enter the power expansion
of pressure of the macromolecular (lipid) system around N; see [23], pp.
90-92, for having more details.

For a stretched (elongated) lipid chain state one may write [23]

v =3/5, a=abT"5v/b3)/°, (6)

where @, is a positive proportionality constant, T stands for the so-called
reduced temperature of the system, b is the length of the monomeric unit of
the lipid chain, and v stands for its excluded volume [23].

For an ideal Gaussian chain near the Flory (or 8)-temperature we can
obtain [23]

y=1/2, a=azb, (7)

where a3 is a positive proportionality constant as well. This case is rather
an intermediate (’idealistic’) case and will be consequently omitted.

Notice once again that now we formulate our problem in a language
of time variable (in a time domain). There exists a mathematically and
also physically equivalent formulation of the problem but in terms of some
variable n (instead of t) which is always referred to as a number of repeat-
ing subunites (monomers) constituting a polymeric chain (c.f. [23, 24] and
references therein).

The above presented scaling formulas are classical in the polymer physics
and hold for polymer chains which are either compressed (shortened or
squezzed) by an external field as e.g. by pressure, or for the random poly-
mer chain with some excluded volume effect, for which one expects to have
R(t) o« t3/5 or for a purely random chain (with no excluded volume effect),
for which one gets R(t) o t'/2(c.f. [24] and references therein). Notice that
if the squeezed structural state dominates the process in question then one
expects to have to do with some non-lamellar (like inverted hexagonal [8])
phase, whereas in the case of elongated structural state some lamellar (gel
or crystalline [7]) phase may prevail.

Applying Eqgs. (3) and (4) one gets

Valt) = guPa®®, (8)

which means that V,(t) increases with t.
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Let us mention that Eq. (1) is reminiscent of a typical chemical reaction
kinetic equation of the first order with respect to f (c.f. [11, 9] and refs.
therein). Also, the fj,-variable is of the form of f; = V},/V, where V), repre-
sents a volume of the swollen (’affected’) phase and V' is the total volume of
the system in question and f; simply reminiscent of the mole concentration
of reacting species or their molar ratio. Moreover, let us recall once again
that one should be aware that we have applied a scaling formula, ¢.e. Egs. (3)
and (4), which, among others (see above), holds for a macromolecule of ra-
dius R being squeezed by the water molecules being forced by an external
(temperature or pressure) field [23].

3. Solution of the generalized Avrami-Kolmogorov equation

The proposed model is determined by Eqgs. (1), (2) and (8). It is con-
venient to present a solution of this model in terms of a rescaled relaxation
function z(t) defined as [8]

z(t) = uh(_t) (9)

1= fi(0)

which changes from 1 for the initial state ¢ = 0 to x4 € [0, 1] for the final
state as t — co. The solution of Eq. (1) with the functions (2) and (8) reads

t

= exp [ — AF(h,3v:3v+ 1; —t/r)}. (10)

where F(a,b;c;z) = QFI (@, b; ¢; z) stands for the hypergeometric (Kummer)
function [25] and

A = NkoguPa®. (11)

Details of dynamics of the phase transformation determined by Eq. (10)
depend on h and 7. The formula (10) is rather complicated bacause of the
appearance of the hypergeometric function F(a,b;c;z). In Ref. [25] the
reader can find many special forms of this function for specific values of the
parameters a, b and c.
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t

Fig. 1. The solutions (10) for the squeezed state (y = 1/3) for different values of
h: 0.5, 1.0, 2.0, respectively.

For the squeezed state, i.e. when v = 1/3 (c.f. Eq. (5)), Eq. (10) can
be expressed by elementary functions and the relaxation function z(t) takes
the form (c.f. Fig.1)

o(t) = exp{ -~ 1—’%[(1 T 1]} for h # 1, (12)

z(t) = <1+ §>_AT, forh=1. (13)

In a general case, for arbitrary values of parameters A and v, the long-time
asymptotics can be directly evaluated from (10) providing the result

a(t) ~ exp[-Ct7" M, C=3Ay7"/(3y = h), for h#3y, (14)
and
z(t) ~ t7?, B =3Ayr>, for h=3y. (15)

The exact expressions (12) and (13) reduce to the form (14) and (15), re-
spectively, for times { >> 7.

Now, one can discuss all classes of solutions to the problem in question.
Namely, in dependence of values of the exponent h, one can distinguish
three classes of the long-time asymptotics (Figs.1-3). For the first class,
when h < 37, the relaxation function x(t) — 0 as t = oo. It is governed by
the stretched exponential. For the second class, when h = 37, the function
z(t) decreases to zero as well but now the kinetics of the transformation
process changes according to a power-law (15) with the exponent 3AyT3Y,
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For the third class, when h > 37, the solution z(t) approaches a positive
constant value zs. E.g.,if h = 3y + 1 then F(h,3y;h;2) = (1 — 2)™3 and
now one gets the exact result

m(t):exp[—-A(TT:t)BW} . (16)

Indeed, in the long-time limit it behaves as (14) and tends to the constant
value z4 given by

T = eXp ( - AT?’"’) >0. (17)

o0

1

10

[
IS
mJ

t
Fig. 2. Same as in Fig. 1, but for the elongated state (v = 3/5).

It is worth stressing that the stationary solution z¢ = 0 corresponds to
the situation when the new phase dominates the whole system and the old
phase is completely pushed out by the new one. Such kind of the transfor-
mation can be examplified by either the fluid-to-ripple phase transition or
the ripple-to-gel phase transition, or even the gel-to-liquid crystalline phase
(cubic, hexagonal) transiton [6, 8, 12, 22]. On the contrary, if in the station-
ary state 24 > 0 then the residue of the old phase co-exists with the new
one. This situation can appear in all the biophysical systems which show
a tendency to self-defence against creation of a new phase. For example,
one can invoke here some immunological scenarios which typically rely on
competition between two kinds of phases: the non-affected (healthy or im-

mune) and the affected (sick or toxicated) one. If 25 = 0 then all cells of the
domain are affected. If 25 > 0 then only a part of cells is finally affected.
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The cases (12) for h = 0 and (14) for 3y = h + 1 correspond to the
classical Debye relaxation function of the exponential form. Otherwise,
(12) and (14) are always stretched exponentials with the critical exponent
3y — h (v = 1/3 for the case of (12) ) and are known as the Kohlrausch-
Williams-Watts relaxation functions being a very useful tool serving for
description of the relaxation (time-dependent) phenomena in strongly in-
teracting (non-Debyean) glassy materials and fragile liquids (c.f. [26] and
references therein). Eq. (13) can be utilized in a specific situation studied
in [8]. As the main result, the authors of [8] offer a power law for a rescaled
relaxation function z(t), which is deduced from the measurements of the
time dependence of the number of water molecules per a lipid molecule. It
is of the power law form (13), where A7 ranges from ca. 0.66 to 0.99 (see [8]
for details). Therefore, it seems to us that such modeling may be promissing
(c.f. Eq. (11)), though in some specific cases a possibly well-estimated values
of A7 should be justified (unfortunately, we have no experimental findings
for A and 7). For the thermotropic phase transformation (6), in turn, when
¥ = 3/5, a physical picture that we get is of the same quality as in the
barotropic case (Fig.3). The only difference is that the kind of relaxation
occur for the following values of h: if A < 9/5 then we get the stretched
exponential behavior, for o = 9/5 a power-law is realized and finally for
h > 9/5 the system reaches a positive constant value.

o

) T T T é T ZT')

t

Fig. 3. A comparison of solutions (10) to the problem studied for h = 0.2, but
for different values of +4: 1/3,1/2,3/5, respectively. This represents the phase
transformation from the old fully hydrated and elongated {y = 3/5) via the normal
(intermediate) hydrated (v = 1/2) to the new hydrated and squezzed (y = 1/3)
state.
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4. Closing remarks

In Section 2 we have proposed a description of the thermotropic as well
as barotropic phase transformations in the frame of the modified AK-theory
[10] combined with the fractal chemical reaction kinetics concept [11]. In
Section 3 we have revealed some results of that modeling, mostly by stating
explicitely and applying the rescaled relaxation function z(t) of the system
studied.

The main results of the paper are as follows:

— for the thermotropic phase transformations one is able to recover the
forms of the relaxation functions reported in the literature, e.g. in [6,
7,12, 13];

— for the power-law kinetics, a physical structure of the critical exponent
AT is found;

— some trends of both, theory and experimental measurements reported
in [6, 13, 7] as well as in [8] and represented by the rescaled relaxation
function z(t) (see the equations presented in the previous section}, are
in a good agreement, though an exact fitting to the experimental data
from [8] is not provided;

— the description reconstructs the physical picture of the situation mod-
elled which consists of: phase transformation between the elongated (or
stretched) and squeezed (or compressed) states of the system which is
implicitly associated with the microdomain growth and structure for-
mation, like in [14, 27], or even broader, i.e. like in the nucleation-and-
growth mechanism [7], and fractal-like reaction concept which couples
the hydration and lipid structural changes of the membrane material
(these phenomena are accompanied by a rather homogeneous swelling
of the system {7, 8, 12]); note formally that the situation described
is not necessarily restricted to deterministic or random fractals, but
can also be assigned to some typical Euclidean objects like spheres or
cylinders (in biophysics: micelles or vesicles) or even flat sheets (viz.
phospholipid monolayers or bilayers dispersed at the air-water inter-
face).

We want to state that similar kinetics with stretched exponentials occur
in some metallic or ceramic systems (melts, annealed materials, etc.) [28].
One may recall here a thickening process of very large plates or segregation
of dislocations. We may suspect that the hydration process modelled in
the work can be of civilian transformation type with non-glissile, coherent
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or incoherent, interfaces of the swollen phases [28, 29]; c.f. [7] and refs.
therein. One has to realize that certain concepts, borrowed from the studies
of diffusion systems in which a response of material exerted by its elastic
modulus changes is observed, may certainly be of help like in [30], where the
hydrogen transport through metallic membrane was studied. Moreover, it
should be stressed that a statistical self-similarity of the porous membrane
material and the scaling behaviour permeability against porosity of a system
under investigation have to be revisited and adapted to an elastic porous
“tissue” (see [31] and references therein). A crucial point that is worth to
address should account for the role of chemical reaction in a complex medium
like biphasic mixtures, amphiphilic layers, systems with fluctuating barriers
(e.g. biological materials), etc. Recent investigations in this area show that
presence of memory effect in the system decreases the chemical reaction rate
constant (c.f. [32] and references therein). Also, if a chemical reaction field
affects a reactive medium one may expect not only some structural changes
of it (some new chemical bonds and “bridges”, like 7 bonds, can emerge), but
one can observe that a certain tunning and stabilization of pattern formation
is possible as well [33]. These general observations are in qualitative accord
with our modeling.

Last but not least we wish to support the argumentation presented in
this paper by invoking a study on protein channel kinetics (i.e., which is
the mechanism of channel opening and closing) presented in [34]. First,
the authors used, qualitatively, the same kind of kinetic equation like in
our study (Eq. (1) of the preceding chapter). Second, the ’kernel’ of this
equation was also of the same quality (c.f. Eq. (2) for details). Some subtle
difference was that the exponent h that we have used was given by h = 1- D,
where D played the role of the fractal dimension of the protein channel
[34]. The fractal-like kinetics was postulated there since during the passage
of ions through the protein channels proteins conform to a huge number
of the minimum energy conformational states, i.e. the process, like that
described above, is 'suspected’ to pass through many time domains. We
see some analogies with the process studied in this work. Despite some
details the most striking analogy would be that the channel closing (D—> 2)
and opening (D—> 1) procedure is reminiscent of our kinetics of phase
transformations between the squeezed (y = 1/3) and elongated (y = 3/5)
lipid matter state, respectively.

Finally, we would like to express our hope that the problem will attract
an increasing attention because of possible vast applications mentioned e.g.
in [35]. A certain need for some new experiments, mostly leading to determi-
nation of h-exponent can be underlined as well. Also, one has to be aware or
even cautious that the modeling offered here shows rather certain promissing
trends towards a qualitative agreement between theory and experiment than
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it gives somebody satisfaction from the very formal point of view. In other
words, it means, that the general role of this study relies mostly on sketch-
ing some possibilities on how to attempt to deal with kinetics of the phase
transformations in the model lipid membranes by combinig the well-known
and rather ancient but still very useful AK-description with quite modern
concept of the chemical reaction fractal-like kinetics since both of them suit
very well the case modelled [36].

A.G. is indebted to Prof. Larry S. Liebovitch for discussions and
Volkswagen-Stiftung for financial support.
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