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One of possible models of conformational transition dynamics in na-
tive proteins is diffusion on fractal lattices, in particular on percolation
clusters. In this paper a theoretical model of reactions involving proteins
with intramolecular dynamics of this kind is studied. It is assumed that
the transition state of the reaction is reduced to a single conformational
substate (a lattice site representing the gate) and that the initial state is
also reduced to a single site. The latter can coincide with the gate or not.
Despite the fact that the considered reaction is an activated process, com-
puter simulations indicate that the pre-exponential stage of the reaction
can be the most important one. In this stage after a short initial period
strongly dependent on the location of the initial state the reaction proceeds
according to the algebraic power law. There is no direct relation between
the value of the power law exponent o in this stage and the spectral dimen-
sion d of the lattice. The value of this exponent was estimated to be in the
range 0.25 to 0.4. The rate of the final exponential decay is determined by
two components — the characteristic reconstruction time of the transition
state equilibrium occupation and the characteristic time predicted by the
transition state theory.

PACS numbers: 87.15. He, 87.15. Rn, 05.40. +}

1. Introduction

An impetuous progress in experimental studies of native protein dynam-
ics requires that more and more adequate theoretical models be worked
out. In the time scale larger than 10~!'s this dynamics is reduced to
purely stochastic conformational transitions. One class of models of confor-
mational transition dynamics within native proteins are protein-glass type
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models [1-3], in which the dynamics is assumed to look alike in every time-
scale, i.e. the spectrum of corresponding relaxation times has self-similarity
symmetry. For this kind of models time scaling originates either from a
hierarchy of barrier heights in the potential energy landscape or from a hi-
erarchy of bottlenecks in the network representing conformational states of
the protein. Two conformations are connected in this network if and only if
a direct transition between them is possible. Scaling properties are observed
for diffusion on fractal lattices of spectral dimension less than 2 [4-7]. An
example of such a lattice is the percolation cluster which will be the focus
of this paper. In this case the bottlenecks can be identified as connections
joining state groupings (clusters) of increasing magnitude (Fig. 1).

(b)

Fig. 1. (a) The largest connected subset of a percolating lattice obtained from a
square lattice. The missing bonds were removed stochastically with critical prob-
ability 0.5. (b) A percolation cluster obtained from the same lattice by breaking
3 bonds connecting it with the rest of the lattice. Its 5 subclusters of the greatest
order have been moved apart and connected with dashed lines. One of them has
been further subdivided into 6 subclusters etc. The number of bonds connecting
a subcluster with other subclusters of the same order is random, approximately in
the range 3 to 7.

In the available literature there are many papers in which target or trap-
ping problems of modeling reaction dynamics are considered [7-9]. In the
present paper, however, another problem, namely that of gated reaction is
studied. A reaction is called a gated reaction if its transition state is reduced
to a single conformation (a selected site on the lattice). Such a conformation
has the meaning of a gate. Because of numerous experimental realizations
we consider mainly the case of diffusion on a percolation cluster with the
gate being simultaneously the initial state [3].
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Since the percolation cluster corresponds in the above sense to the con-
formational state space of the protein molecule, it is essential to require that
its size be finite. In order to achieve that we imposed reflective or periodic
boundary conditions. Finite size effects introduce a lower and upper limit
into the reciprocal relaxation time spectrum. Moreover, in our context the
form of the cluster is expected to be specific to a given protein thus no config-
urational averaging over different cluster realizations should be considered.
We shall focus on the properties of one of the most essential variables in this
process, namely the survival probability.

So far no analytical solutions for many diffusion problems on fractal
lattices are known and computer experiments are the only tool that could
be used to solve those problems. We present results of direct simulations of
diffusion on percolation clusters. These results indicate that after an initial
stage the reaction proceeds according to the algebraic power law stage and
afterwards it enters the final exponential decay stage.

2. Random walk on a lattice in discrete time

In general, a stochastic Markov process of discrete vectorial values (lat-
tice sites) in discrete time (steps) is described by the set of recurrent equa-
tions [10]

FPria(ljlo) = ZW 1) P ('|lo), (1)

with the initial condition

Fo(lllo) = 145, (2)
P, (l]lp) being the probability that a random walker starting from site /g
occupies site [ after n steps. Probabilities W (I|l') of transition from site !’
to [ in a single step obey the condition

S war) =1 (3)
1

due to which Eq. (1) can be rewritten in the form of difference master equa-
tion .
Py (lllo) = Pu(lllo) = Y W) Pu(l'lle) = W (I Pa(lllo)] (4)
ll
There are three important quantities in the theory. The first is the

probability F,,(I|lp) that a random walker starting from Iy reaches [ for the
first time after n steps (n > 0); it is related to P, (I]|lg) by the equation

Po(llio) = 3 Pacon (111) E(l]lo). (5)
m=1
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The second is the mean number S, (lg) of distinct sites visited in n steps by
a random walker starting from Iy, defined by the equation

Sulle) =1+ 33 Fnllllo) (6)
!

m=1

(prime denotes summation with [ = lp omitted). And the third quantity is
the probability C,,(/|lp) that a random walker starting from Iy did not reach
[ in the first n steps,

n

Culllle) =1= Y Fn(lllo). (7)
m=1

If the random walk is assumed to cease once it reaches the state [ (such
a state, when excluded from the lattice, is referred to as a limbo state [3]),
then €', has the meaning of survival probability or (in chemical context)
molar fraction of the decaying reagent in an irreversible reaction [3]. Upon
denoting the limbo state as *. Eq. (4) should be rewritten for it as

Poyi(*[lo) = Y W (+]1) Pa(lllo). (8)
l

In the following sections we shall consider only systems for which W ({|l')
does not vanish only if / = !’ or / and I’ are each other’s nearest neighbours.

3. Simulation procedure

All simulations were performed on square lattices with bond percolation
{critical concentration p. = 0.5). Since finite size effects were of interest and
computing resources were limited. the chosen lattices were fairly small (in
the range 5 x 10° to 108 sites). The largest connected subset of sites was de-
termined algorithmically; for systems of small size (e.g. N & 5 x 10° sites) it
was possible to find the percolation cluster of the highest order interactively.
This procedure involved finding and breaking a few bonds connecting the
chosen cluster with the rest of the lattice, which is equivalent to imposing
reflecting boundary conditions. For larger systems periodic boundary con-
ditions were introduced prior to the bond removal procedure and thus the
largest connected cluster was obtained directly. Both approaches are equiv-
alent for our problem. Indeed, clusters prepared according to the above
presented methods differ in terms of self-similarity properties only when
subclusters of the greatest order are considered, therefore discrepancies in
the time evolution of the walker concentration could be observed only in
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the long-time limit, that is for times comparable with the characteristic re-
laxation times of those subclusters. But in that time regime the finite-size
effects determine the evolution.

For [ # I’ the transition probability W (I’|{) was assumed to be constant,
W (l'|l) = W, and independent of the number of neighbours z because other-
wise the equilibrium occupation probability of a given site would have been
dependent on z and thus the time evolution of the system would have been
considerably influenced by the local properties of absorption centres. But
in order to satisfy Condition (3) it was necessary to allow non-zero values
of W(I|l). as well. Changing the value of W (l|l’) leads only to a rescaling of
the time unit for the diffusion process but no other side-effects are observed.

Partly in order to test the simulation procedures we tried to determine
the spectral dimension d of the systems. For d < 2 the asymptotic relation [7]

S, o< n? (9)

holds (the value of S, is asymptotically independent of the choice of the
initial site lp). If N denotes the number of lattice sites and the initial
spatial distribution of walkers is assumed to be uniform, the average survival
probability

Cn=1-N"13"3%" Fp(+llo). (10)
lp m=1

Assuming that the diffusion process is on average symmetrical with respect
to exchanging the initial point and the final one, F,,({/l') = F,,(I'/l), and

0.0

fog(t - C{n))

30}

40 x .
0.0 20 4.0 60

tog(n)

Fig. 2. Intermediate time period scaling behaviour of the “extinction” probability
1 — Cy, for 10* walks on a percolation cluster of order 5 (N & 5 x 10®). The initial
spatial distribution of walkers was uniform; n denotes the number of steps.
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taking into account Eq. (6) one obtains

_— 1
-1 - — — 11
Co=1- 5(Sn - 1), (1)
thus in our case . .
1-C, xn¥2, (12)

The quantity 1 — C,, was calculated from some 10* simulations performed
on a percolation cluster of size N & 5 x 10® and the result is shown in Fig. 2.
It is clearly seen that in the intermediate time period the simulated points
are located along a straight line. Its inclination amounts to ca. 0.664 which
is in good agreement with the Alexander—Orbach conjecture d = 4/3 ([4]).

4. Results

We studied the time evolution of the survival probability C'(x|lg) for sys-
tems in which the random walk starts from one specific site Iy and proceeds
until it reaches the limbo state [ = *. In our case the site corresponding to
this state has only one neighbour [ = 0. The latter is of course the only gate
to exit the lattice and thus the transition state of the reaction. An activation
barrier was introduced into the system by specifying that a random walker
occupying site 0 can move over to one of the neighbouring sites with tran-
sition probability W, disappear from the lattice (fall into the limbo state)
with transition probability V', smaller than the probability W or stay at 0
with probability 1 — zW — V', where z is the number of neighbours of site 0.

The reciprocal relaxation time spectrum of our system differs from the
spectrum of diffusion on an ideal percolation cluster because it has an upper
bound (resulting from the fact that there exists the smallest size of the
subcluster, corresponding to our site) and a non-zero lower bound (since
the system is finite). Adding the limbo state results in adding a new value

k=P(v-tyu ! (13)

to the spectrum [3]. It has the meaning of the long time decay rate of the
survival probability C'. In Eq. (13), P3® = 1/N is the equilibrium occupation
probability of the site 0 (it has a non—zero value only for finite clusters) and
U~ denotes the longest relaxation time. The latter is a function of W and
lattice size. The value of £ is smaller than any other value belonging to the
spectrum.
The ratio
a=V/W (14)

has the meaning of the absorption coefficient. If it is small enough, the
population decay rate k is expected to be determined mainly by the time
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the system spends waiting for opening of the gate to the limbo state, like in
the transition state theory [11], where the reaction rate is determined mostly
by the height of the activation barrier:

kTST = v/N. (15)

For a large value of V', however, the time needed to find the transition state
and reconstruct its equilibrium population determines the value of &:

EREC = U/N. (16)

Unless expressly stated otherwise, the presented results were obtained
for lg = 0 as there exist numerous physical realizations of this case [3].
Fig. 3 shows the time evolution of C'(x|0) obtained from four groups of two
simulation series for various locations of the gate 0. The initial behaviour of
C(%|0) depends very strongly on the choice of 0, especially on the number of
its neighbours. But in the limit of large n the evolution of C), is not affected
by this choice and an exponential decay is observed, which is of course a
finite-size effect, cf. Eq.(13).

logC(n)

o0 2.0 4.0 6.0 80
n

Fig. 3. Log-log plot of the time evolution of the survival probability C' obtained
from 4 groups of 2 simulation series with different starting sites 0. In these groups
the number of ly’s nearest neighbours is equal to 1 (the smallest value of the
population at the beginning), 2, 3 and 4 (the largest value).

The exponential stage of the reaction can be identified as a straight line
decrease on the lin-log plot in Fig. 4 where the time evolution of C,(*(0)
is shown for different values of the absorption coefficient a. The fastest
exponential decay is observed for a = 1. In this case the characteristic time
of the reaction predicted by the transition state theory 1/ ETST ~ 0.25x10% is
two orders of magnitude shorter than the estimated value 1/k ~ 0.40 x 10¢
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thus the reaction rate is determined by the time the system requires to
reconstruct the equilibrium population of the state 0. The longest relaxation
time I/~! can be therefore easily found to amount to 0.8 x 10%. Decreasing
the value of @ ten times does not influence the rate of this process (not
shown). When a = 0.01, k5T becomes comparable with kFEC, therefore a
significant slowdown is observed (1/k ~ 0.8 x 10°).

0.0

logC(n}
»
o

-40 L L
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n

Fig. 4. Time evolution of the survival probability C for various values of the
absorption ratio @ = 1.0 (the fastest, the corresponding curve on the plot has the
steepest slope), 1072 and 1073, Number of lattice sites, N ~ 5 x 10°.

Selected results for series of simulations with different, although situated
close to each other sites lp and 0 are shown in Fig. 5. It is clearly seen
that the population at which the exponential decay starts is affected by the
choice of /y and 0 whereas the decay rate appears to be independent of it.

The above presented results were obtained for percolation clusters of
relatively small size. The time evolution of C,, in this case can be reasonably
divided into two stages — the initial period and the exponential decay period
— it is therefore determined by the properties of the initial state and the size
of the lattice. In fact similar results could have been obtained for systems
with no self-similarity symmetry at all. Only for larger values of N a new
stage can be clearly seen. A typical result for N &~ 5 x 10° is presented in
Fig. 6. After the initial period the system enters a non—exponential stage in
which the decay follows an algebraic power law

Cp o 1™ (17)

with exponent a apparently in the range 0.25-0.4. This scaling behaviour
is a result of the scaling properties of the percolation cluster. Presumably
the value of this exponent does not depend neither on the fractal dimension
of the system nor its spectral dimension yet it does not depend on the value
of the absorption coefficient a.
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Fig. 5. Lin-log plot of the time dependence of the survival probability €' obtained
from 2 groups of 3 simulation series. In each group the simulations were obtained
for the same location of I but different locations of the gate 0.
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Fig. 6. Time evolution of the survival probability C on a cluster of size N ~ 5x 10°.
Three stages of reaction can be seen: the initial stage, the algebraic decay stage
and the exponential decay stage.

5. Summary

The evolution of the survival probability of the investigated system pro-
ceeds in three stages. The behaviour of the system in the first stage depends
on the choice of the initial state, especially on the number of this site’s near-
est neighbours. The intermediate power law decay stage appears only for
sufficiently large values of N at least 5 x 10°. In the last stage the pop-
ulation decays exponentially and the rate of this process is determined by
two components — the characteristic reconstruction time of the transition
state equilibrium occupation 1/AREC and the characteristic time predicted
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by the transition state theory 1/kTST. The above presented methods can
be used to determine the longest relaxation time U~! of the system. In case
of systems where lp # 0 an upward shift can be observed on the population
vs. time plot but the exponential decay rate is independent of the choice of
lp. The scaling behaviour of the process in the intermediate time period is
a result of the self-similarity symmetry of the system. The relation of the
scaling exponent to the systems’ fractal and spectral dimension is currently
being investigated.
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