Vol. 28 (1997) ACTA PHYSICA POLONICA B No 8

DIFFUSION ON FRACTAL LATTICES —
A STATISTICAL MODEL OF CHEMICAL
REACTIONS INVOLVING PROTEINS*

M. KURZYNSKI

Institute of Physics, A. Mickiewicz University,
Umultowska 85, 61-614 Poznan, Poland

e-mail:kurzphys@phys .amu. edu. pl

(Received March 12, 1997)

Construction of a contemporary, truly advanced statistical theory of
biochemical processes will need possibly simple but realistic models of mi-
croscopic dynamics of the enzymatic proteins involved. Many experiments
performed with the help of various techniques since the mid 70s have
demonstrated that native proteins, apart from the usual fast vibrational
dynamics, reveal also a much slower activated dynamics of conformational
transitions in the whole range of relaxation times from 107! to 10%s or
longer. At least in the range from 10~!! to 10~7s the relaxation time
spectrum is quasi-continuous and often has an approximate self-similarity
symmetry (time scaling). Diffusion on fractal lattices is a particular model
of stochastic dynamics displaying this property. Application of this model
in construction of some elements of a novel theory of protein involving reac-
tions is preceded by detailed analysis of the general concepts of the stochas-
tic theory of reaction rates. Two kinds of experiments give especially strong
grounds for the model of dynamics considered: small ligand rebinding to
protein after laser flash photolysis and observations, with the help of the
patch clamp technique, of fluctuations of the ionic current through single
protein channels. Under special conditions realized in these experiments
the initial conformational substates of the protein already belong to the
transition state of the reaction. A theoretical model of such reactions is
proposed, assuming that the reaction transition state is reduced to a single
conformational substate (the gate). Computer simulations indicate pre-
dominance of the initial stage of the reaction proceeding according to the
algebraic power law, over the final exponential stage. Simple formulae are
proposed for description of the whole time course of the reaction and its
variation with temperature. An application to describe the steady-state
stage of a complete enzymatic reaction is also considered.
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1. Introduction

The necessary basis of any statistical theory of physical processes is a
certain, intentionally simplified model of phenomena underlying microscopic
dynamics. The quality and the relation to reality of the models in use are,
however, different in different fields of research. In biochemistry and molecu-
lar biology, until recently, most scientists acted as if following the rule stating
that what was not known, simply did not exist. The transition state theory,
commonly used in interpretation of biomolecular reactions [1,2], excludes
in principle the existence of any microscopic dynamics of involved enzy-
matic proteins more complex than negligibly fast vibrations. This picture,
adapted directly from the physical chemistry of low-molecular weight com-
pounds, has eventually proved untrue. More and more studies, performed
with the help of various techniques since the mid 70s [3-8], have indicated
the existence, apart from the usual vibrations, also of a rich activated dy-
namics of conformational transitions within the protein native state. The
slow character of this dynamics propels rather essential alteration in our
understanding of biochemical processes [9-11]. Consequently, the time has
come to start thinking seriously about formulation of a contemporary, truly
advanced statistical theory of these processes based on more realistic models
of microscopic dynamics of proteins. This paper is addressed primarily to
physicists-theoreticians who would like to pick up this glove.

The paper consists of three parts. In the first part the microscopic dy-
namics of native proteins is shortly described and pointed to comprise, in
the time-scale longer than 10~ !!s, the purely stochastic conformational tran-
sitions of a quasi-continuous, at least in the range up to 10~ s, spectrum
of relaxation times. Two classes of models of the conformational transition
dynamics are determined, referred symbolically to as ‘protein machine’ and
‘protein glass’. Next, the essential ideas of the theory of reaction rates bas-
ing on stochastic models of intramolecular dynamics are outlined. Special
attention is paid to reactions proceeding under conditions of the initial mi-
crostate of the involved molecule confined to the reaction transition state.
The mechanism of reaction of the ‘fluctuating barrier’ type is opposed to
the mechanism of ‘gating’ by intramolecular dynamics. And finally, the ap-
plication of a particular class of models of protein glass type represented by
diffusion on fractal lattices is considered and confronted with unfortunately
still very poor experimental data.

2. Internal dynamics of proteins

Proteins are linear polymers of amino acids. The fundamental structural
(and probably also evolutionary) unit of protein is a domain [12] consisting,
on the average, of one hundred amino acid residues, each of a dosen or
so atoms, thus having about 5 x 10% internal degrees of freedom. These
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are not only covalent bond lengths and angles but also dihedral angles of
rotations about the bonds. It is the ability to perform such rotations (limited
only to some degree by steric hindrances), combined with the possibility of
hydrogen bonds break up and reformation, that makes the landscape of
the configurational potential energy extremely complex. A general feature
of this landscape is the presence of an astronomical number (of an order
of 101% per domain) of local minima separated by higher or lower energy
barriers of non-covalent nature [3,4.12]. As in the stereochemistry of low-
molecular weight organic compounds, regions of the configurational space
surrounding the local minima can be referred to as protein conformational
states (substates in particular contexts) or, simpler, protein conformations.

In a reasonable approximation, internal dynamics of protein is to be de-
composed into vibrations within particular conformational states and con-
formational transitions [8,10,13,14]. The former are more or less damped
harmonic oscillations, subjected accidentally to stochastic perturbations,
whereas the latter are purely stochastic activated processes. The approx-
imation is valid when interconformational barriers are high enough to en-
sure equilibration of vibrational modes preceeding each transition to another
conformational state. As a lower bound of the interconformational barrier
heights one can assume a few units of kg7, say 10 kJ/mol, which is a typical
energy barrier height for a local rotation about a single covalent bond in the
absence of any steric constraints and, simultaneously, a typical energy of a
hydrogen bond. Barriers lower than 10 kJ/mol can be treated as a particu-
lar manifestation of the vibrational anharmonicity, to be taken into account
on assuming a finite correlation time of stochastic forces and, accordingly, a
timne-dependent friction [15].

The vibrational dynamics is characterized by a spectrum of periods of vi-
brational normal modes of the number equal to the number of degrees of free-
dom (~ 5 x 10° per domain). Vibrational periods range from 10~ s (weakly
damped localized N-H or C-H stretching modes) to 10~ !s (overdamped col-
lective modes involving the whole domains), hence the vibrational dynamics
is too fast to influence essentially the processes of chemical reactions involv-
ing proteins. The conformational transition dynamics is characterized by
a spectrum of relaxation times of the number equal to the number of con-
formational states {~ 10'% per domain). In physiological conditions, this
spectrum begins at 10~1!s (local side chain rotations or hydrogen bond rear-
rangements on the protein surface, related to overcoming the just assumed
lowest energy barier of the order of 10 kJ/mol) and its upper limit is the
mean waiting-time for spontaneous unfolding, of a value carefully estimated
to be within the range 10® — 10!!s [12]. Beginning from the pioneer study
of the low-temperature dispersive kinetics of ligand rebinding to myoglobin
after a laser flash photolysis by Frauenfelder and coworkers [16] an increas-
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ing number of experiments give almost every year new evidence indicating
that the conformational transition dynamics is characteristic not only of the
unfolded but also the native state of protein [3-8].

Conformational transitions do not take place in the entire bulk of na-
tive proteins but are limited to liquid-like regions surrounding solid-like
fragments of secondary structure (Fig. 1).Their relaxation time spectrum
seems to be practically quasi-continuous, at least in the range from 107!!s
to 10~ 7s [8,11]. Because the experiments at hand cannot elucidate the nature
of conformational transition dynamics in detail, the problem of modelling
this dynamics is to some extent left open to speculation. In two classes
of models provided in previous literature the speculative element seems to
be kept within reasonable limits [8, 10]. In the first class, we refer symboli-
cally to as ‘protein machine’ [11], the dynamics of conformational transitions
is represented by a quasi-continuous diffusive motion in a certain effective
potential along a few ‘mechanical’ coordinates, e.g. angles or distances de-
scribing mutual orientation of approximately rigid fragments of secondary
structure or larger structural elements (Fig. 1). The spectrum of reciprocal
relaxation times for dynamics of such a type is more or less homogeneous.
Otherwise, in the second class of models the dynamics is assumed to look

Fig. 1. A schematic cross-section of the fundamental structural unit of protein, a
domain. Heavily shaded are solid-like fragments of secondary structure (a-helices
or f-sheets) and weakly shaded are surrounding liquid-like regions. Black is the
catalytic centre localized at two neighbouring solid-like elements. In models of
Protein-Machine type, the dynamics of conformational transitions is treated as a
quasi-continuous diffusive motion of solid-like elements relative to each other. Al-
ternatively, in models of Protein-Glass type this dynamics is treated as a diffusion
of structural defects through the liquid-like medium. The picture can be reinter-
preted on a higher structural level: solid-like elements represent then the whole
domains moving in a multidomain enzymatic complex.
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alike in every time scale, i.e., the spectrum of reciprocal relaxation times
has a self-similarity symmetry (Fig. 2(a)). The latter is considered to be a
generic property of glassy materials thus we propose to refer to this second,
more extensive class of models as ‘protein glass’.

Time scaling is observed directly in the closed-time distribution density
of certain protein ionic channels studied with the help of the patch clamp
technique [17-21]. It can originate either from a hierarchy of barrier heights
in the potential energy landscape (the ‘fractal time’), or from a hierarchy
of bottle-necks in the network joining conformations between which direct
transitions take place (the ‘fractal space’) [22-24].

A hierarchy (‘tiers’) of interconformational barrier heights was proposed
originally by Frauenfelder and coworkers in order to give a unitary inter-
pretation of the results of various experiments concerning the process of
ligand binding to myoglobin [5-7, 16,25-27]. The existence of such a hier-
archy can explain also the low-temperature specific heat behaviour of pro-
teins [28,29], the temperature dependence of the Young modulus [30], re-
sults of the specific heat spectroscopy [31] and the temperature anomalies
of the Lamb—Ma&ssbauer and the Debye-Waller factors observed in Mdss-
bauer spectra [32,33] and inelastic neutron scattering [34-37], respectively.
A hierarchical organization of barrier heights was confirmed by numerical
simulations [38-40], though not by all of them [41].

The potential energy landscape with a hierarchy of barrier heights forms
what in mathematics is called the ultrametric space [42]. A particular re-
alization of the ultrametric space, especially predisposed for the application
to proteins, seem to offer various spin-glass models [43,44| with dynamics
of the Glauber or Metropolis type [45]. Most spin-glass models display a
discontinuos phase transition to the spin-glass phase which is to be inter-
preted as the protein folding transition. The information on the relation of
the primary structure to the tertiary structure of protein can be, following
the Hopfield theory of associative memory [46], directly incorporporated into
the spin interaction matrix [47,48].

An alternative to the hierarchy of barrier heights in the potential energy
landscape is the hierarchy of bottlenecks (the entropy barrier heights) in
the network joining neighbouring conformational states. Most already men-
tioned experimental observations can be equally well interpreted in terms of
the hierary both of the energy and the entropy barrier heights. Mathemati-
cal realization of hierarchical networks are fractal lattices being the subject
of this paper. The process of diffusion on a lattice can (but does not have
to) be interpreted as directly simulating structural defect motions in the
liquid-like regions between solid-like fragments of secondary structure. The
structural defect diffusion in 3-dimensional liquid medium was suggested for
an explanation of the solvent penetration into the protein interior observed
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Fig. 2. A schematic spectrum of reciprocal relaxation times of the native state con-
formational transition dynamics in protein glass models. When changing time scale
the spectrum looks approximately alike (a). This is, however, only an approxima-
tion. Because of the finite transition time between the neighbouring conformational
states and the finite number of these states the spectrum has both the upper and
the lower bounds (b). For many reactions involving proteins the reasonable values
of these bounds are w & 10!!s~! (by definition) and u &~ 107s™! (slower processes
of conformational relaxation probably do not affect the very reaction).

in hydrogen exchange experiments [49] as well as the time course of elec-
tric current flowing through single ionic channels [50]. But from the point
of view of many physical properties, proteins can hardly be considered 3-
dimensional structures [51]. In fact, the anomalous temperature dependence
of spin-lattice relaxation time and the frequency density of vibrational states
point to the effective dimension of proteins to be between 1 and 2 [52]. Simi-
larly, the static conductivity [53] and the dielectric response dispersion [54] of
variously hydrated protein powders can be explained in terms of percolating
networks, t.e., in the limit case a fractal lattice, of hydrogen bonds.

Time scaling characterizes diffusion on lattices with the spectral (or frac-
ton) dimension between 0 and 2 [55-58]. As yet, only several models of
diffusion on one-dimensional [59-61] and random one-dimensional [62, 63|
chains have been proposed and only for interpretation of the closed-time
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distribution density of certain protein ionic channels [18-20]. The model of
diffusion on the percolation cluster, of a really fractional spectral dimension,
has been studied in the effective medium approximation and also only in the
application to the ionic channels [64,65]. For the purpose of interpretation
of the special temperature variation of the ligand binding rate to myoglobin
only the phenomenological Kohlrausch stretched-exponential law has been
used [26]. We pointed to a number of experimental facts supporting models
of diffusion on fractal lattices thus they seem to deserve more detail theo-
retical studies in the nearest future, and their application to other processes
involving proteins, e.g. enzymatic catalysis, should also be considered.

Of course, the set of conformational states of real native protein is finite
which is manifested as the presence of the upper and the lower bound in the
quasi-continuous spectrum of reciprocal relaxation times (Fig. 2(b)). Conse-

quently, any protein glass model shows unrealistic behaviour both within the
limits of very short and very long times and in practice should be restricted
only to a few levels of the hierarchy [5-7,25,26].

3. Stochastic modelling of reaction rates
3.1. The longest relaxation time

In formal terms, the stochastic dynamics of conformational and chemical
transitions in the native state of a protein macromolecule is described by a
system of master equations [66,67]

pi(t) =D _[wwpy(t) — winpi(t)]. (1)
ll
The quantity p;(t) denotes the probability of the system being in the mi-
crostate {conformation) [ at time ¢, the dot is a derivative with respect to
time and the transition probabilities per unit time w;p are assumed to satisfy
the detailed balance condition:

e eq ¢
wppyt = wyepy? {2)

where piY denotes the equilibrium solution to Eq. (1). The explicit depen-
dence of the solution p;(#) on the initial probability distribution p,(0) is to
be expressed in terms of conditional probabilities (propagators):

Z Piiie (8) P1o (0). (3)

The propagators py;, (t) are solutions to the equations analogous to (1) with
the initial condition
Pijio (0) = dy .- (4)



1860 M. KURZYNSKI

In the appropriate linear combinations of probabilities
Yi(t) =D Yup(t) = (Ve(t)) (5)
1

the system of linear equations (1) is decoupled into the system of independent
equations )
Yi(t) = -7 Y (t). (6)

If condition (2) is satisfied, the coefficients 1 are real and positive, and

have the meaning of reciprocal relaxation times (Fig. 3). The normal modes
of relaxation (5) are written in such a way that they can be interpreted as
the mean values of certain physical quatities (real functions on the set of
microstates) V.

T,
0

Fig. 3. Time-scale separation means the existence of a gap in the spectrum of
reciprocal ralaxation times and isolation of the longest relaxation time.

The master equations like (1) or their continuous counterparts are as-
sumed as the models of microscopic intramolecular dynamics in the stochas-
tic theory of reaction rates. Origins of this theory go back to the Smolu-
chowski [68] description of the diffusion-controlled coagulation and the
Kramers [69] one-dimensional theory of reactions in the overdamped limit.
A general formulation of the theory is due to Montroll and Shuler [70]. A
more detailed discussion of concepts involved can be found in clear papers
by Widom [71] and Northrup and Hynes [72].

When speaking about a unimolecular reaction

RZP

one assumes that the set of internal states of the considered molecule is di-
vided into two subsets corresponding to chemical species R and P (Fig. 4(a)).
The mole fractions of individual species, proportional to the molar concen-
trations, are the sums of probabilities:

Cr=Y_ p = (Cr), Cp =Y p = (Cp). (7)

leR lepP
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Above, Cr and Cp denote the characteristic functions of the subsets R and
P, respectively:

(1 ifleR (1 ifleP
CRl:{O if I € P, CPI:{O if | € R. )

Following the normalization of probability the mole fractions (7) are nor-

malized to unity:
Cr+Cp =1. (9)

The reaction is an activated process if, as a result of a bottleneck on the
border of either the energetic or entropic origin, transitions between both
subsets are not very probable. A consequence is a time-scale separation in
the system (Fig. 3) which means that after the elapse of an initial period
the evolution of the mole fractions Cr and CR is described by the kinetic
equation ) ]

Cr=-Cp= TI_I(CR — Cﬁq) = -k Cr+k_Cp. (10)

For given equilibrium values of the mole fractions Cg* and CE? the longest
chemical relazation time 1) determines in a unique way the forward and
backward reaction rate constants k4 and k_, respectively, through the equa-
tions:

it =ke ko, ke/ko = CRYCR (11)

The quantities Cr or Cp do not have to coincide exactly (up to some multi-
plicative and additive constant) with the slowest variable of the system Y;.
If it holds, the kinetic equation (10) is valid at any time scale, also at the
very beginning stage of the reaction.

(@)

Fig. 4. A schematic partition of the set of molecule microstates (here, confor-
mational states) into two subsets corresponding to different chemical species (a).
In both subsets regions can be distinguished, referred to as the transition states,
between which direct transitions take place (b).
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The quantltles CRY and CRY, thus k4 and k_, depend on the choice of
R and P but ;! = k+ + k_ is independent of this choice; it is determined
only by the equations of microscopic dynamics (1). The exact position of
the R-P border is, however, not very crucial as in the case of the activated
processes the bottleneck between R and P makes the equilibrium occupation
of boundary microstates negligibly small.

Because of the nice properties of the characteristic functions:

Cf{ = CR» Cl% = Cp, CRCP — O, (12)

the thermodynamic perturbation theory for the problem discussed can be
applied exactly, up to the infinite order [73], which results in the exact
expression (valid arbitrarily far from the equilibrium) of the reaction rate
constant k4 in terms of the equilibrium time correlation function of fluxes:

ky = /dtI<CR(l") Cr(0))°/(Cr)". (13)

A similar formula determines the backward reaction rate constant k_. For-
mula (13) was derived for the first time by Yamamoto [74] with the help
of the first order perturbation theory; Chandler [75] derived it simply by
resorting to the Onsager’s regression hypothesis.
After integration over time Eq. (13) can be formally rewritten as the
limit
ky = hm J () CR! (14)

of the reactive flux divided by the equilibrium occupations of species:

(t)/CE = Cr Cr(0)Y/CR =3 pop(t) uipf®/CR. (15)

U {eR}

Similarly, k_ can be rewritten as a limit of J_(¢)/Cg' given by a formula
analogous to Eq. (15). To determine the reactive fluxes explicitely in terms
of the dynamics described by Eqs. (1) we distinguish in both subsets R and
P the transition states R* and P* of reaction, respectively, composed of the
microstates from which direct transitions to the alternate chemical state take
place (Fig. 4(b)) and define, e.g. for { € R¥,

v = Z wyr. (16)
I'ePt

Because of the detailed balance, direct transitions in both directions are
possible only between the transition states.
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The initial value of expression (15),

T (0)/CRr = 3" up{t/CF = kS, (17)
{eR!?

coincides with the value of the reaction rate constant provided by the tran-
sitron state theory [76] which can be easily seen after rewritting it in the
form

K = vCRl/CRt = v exp(-AGh/ksT). (18)

¥

Here, v has the meaning of a mean frequency of transitions, C;ci is the

equilibrium occupation of the transition state and L\G’i;;l denotes the free
energy of activation.

The assumption of the time-scale separation corresponds to the plateau
value behaviour of J4 (t) and J_(t) [77] (Fig. 5). Note a possibility of faster
proceeding of the reaction in the initial stage and the necessity of cutting
the long-time exponential decay by the appropriate regularization factor in
the integral (13) [78]. The reactive flux vanishes for ¢t < 0 which denotes
the necessity of careful treatment of also the lower bound of the integral
(13) (the moment ¢ = 0 should be the internal point of the interval of
integration). The jump at t = 0 is related to a Dirac-delta component of
the time correlation function of fluxes which thus appears to have the form
of a sum [72]

(Cr(t) Cr(0))°/(CRY™ = k$I5(t) + S1.(2). (19)

Formulas (13) and (19) state clearly that the core of the transition state
theory is the assumption of the flux Cr(t) being a delta-corelated white
noise.

T T

0 1, T, t

Fig. 5. A schematic variation of the reactive flux Jy () (divided by C}!) with time.
For the reaction which is an activated process characteristic is the plateau value
behaviuour. Transition state theory approximates the reactive flux time course by
the Heaviside step function.
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For determination of the transition state theory rate constant (18) no
knowledge of the intramolecular dynamics is needed. It is the finite correla-
tion-time component Sy (¢) in the sum (19) that results from the intramolec-
ular dynamical processes. Quite generally, the exact reciprocal rate constant
can be decomposed into three time components [72]:

k= ()T R T () (20)

and similarly kZ'. The first component in Eq. (20) determines the time
needed to cross the boundary under the assumption that the transition
state R* is in a local equilibrium with the rest of microstates composing
the chemical state R. As a result of transition this equilibrium is, however,
disturbed. The second component in Eq. (20) determines the time needed
for restoring this equilibrium from the side of the R species and the third
component determines the time needed for the same process but from the
side of the P species (recrossing the border). From Eq. (20) it follows that
kS is always larger than the exact rate constant k4 (Fig. 5). If two latter
components in Eq. (20) are much smaller than the first component the reac-
tion is well described by the transition state theory, possibly with a certain
transmission coefficient smaller than unity. This is, however, not the case of
reactions controlled by processes of intramolecular dynamics when the latter
terms prevail.

3.2. Reaction rate and the first-passage time problem

One should note that “the rate constants k4 and k_ are not the prob-
abilities per unit time of an R molecule making the R — P transition and
a P molecule making the P — R transition, and k4 Cg and k_Cp are not
the separate P - R and R — P fluxes” (Widom [71]). This holds only for
imagined irreversible reactions

R—-P or P—-R

with the absorbing boundary between the R and P subsets of microstates,
which can be realized by adding an imagined totally absorbing limbo state
(Fig. 6). The stochastic theory of such imagined or real irreversible reactions
is identical to the first-passage time problem for the corresponding stochastic
processes [66,70].

Because of the finite number of conformational states the spectrum of
reciprocal relaxation times characterizing dynamics in the sets R or P alone
has a gap as shown in Fig. 2(b). For irreversible reactions it is the adding of
the limbo state that introduces the longest, additional relaxation time into
the gap as shown in Fig. 3.
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Fig. 6. Any reversible reaction can be formally divided into two irreversible reac-
tions after introducing the imagined limbo state *.

Later on we will consider only the irreversible reaction R — P; the case
of the irreversible reaction P — R is analogous. By definition, transition
probabilities per unit time from the limbo state % to any microstate [ in the
transition state R* vanish:

Wy x = 0. (21)

Consequently, the occupation probability of the limbo state tends in time to
unity:

lim p.(t) = 1. (22)

t—oc

In the presence of the limbo state the quantity

Ctllo) =D pie(t) = 1 = pupp (1) (23)
I€R

has the meaning of survival probability in R through time ¢ (probability that
at time t the system started from state g is still in R). In various contexts
time t in Eq. (23) is referred to as the dwell-time in R, the waiting-time
for transition to P or the first-passage time through the boundary. The
quantity 1 — C(t|{g) is the cumulative probability of the first-passage time
being shorter than ¢, thus its derivative

f(t|lo) = —C(tllo) (24)

has the meaning of the first-passage time distribution density. Eq. (24) can
be integrated to the equation

Clelle) = 1 - f dt' F(t'|lo). (25)
1]

From the second equation (23) and Definition (16) it follows that

F(tll0) = P (1) = D vr prygo (£)- (26)

leR!?
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Note that py;,(t)’s are in general determined by dynamics in the whole set
R; in order to find them one has to solve the full set of equations (1) with the
absorbing boundary conditions (21). Having known the first-passage time
distribution density, one can calculate the mean first-passage time:

(o) = /dttf(t|l0) — —/tdt%tt”") :/dtC(t|lo), (27)
0 0

0

of course, if it is finite. In the last equality we applied integration by parts.
The mole fraction C'(t) of the molecules R which survived through time
t is the survival probality C(t|ly) averaged over the initial distribution of
states py, (0):
= > pi,(0) C(tllo). (28)
lheR
If the mole fraction C obeys the usual kinetic equation for the irreversible

reaction )
C = -kC, (29)

t.e., if it decays exponentially:
C(t) = e ¥, (30)

from the last equality (27) one concludes that the reciprocal rate constant
equals to the mean first-passage time averaged over the initial distribution

of states:
=Y p1,(0) 7 (lo)- (31)
lo

For the reaction being an activated process, after a short initial period the
form of equation (29) and the very rate constant & do not depend on the
initial distribution of states. In such a case for a great majority of internal
states in R the mean first passage time should have the same value coincid-
ing, following Eq. (31), with the value of the reciprocal rate constant:

T(lo)=7=k"L (32)

Formula (32) is often used for calculating the rate constant k [77].

In general the average survival probability C' does not obey the simple ki-
netic equation (29) but one can always formally determine a time-dependent
rate parameter k(t) through the equation

C = —k(t)C. (33)
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Equivalently, )

C d f(®)
——=—-—InC = —+.
cT e T o
From the latter equation it follows immediately that the rate parameter k
is time-independent only if the first-passage time distribution density f(t)

is Poissonian:

k(t) = (34)

f(t) = ke™* (35)

(c.f. Eq. (30)).
Following Egs. (26) and (28) the rate parameter k(t) is given by the

equation
k(t)= Y up(t)/C(t) = J(t)/C(t). (36)
leR?

Here J(t) is in fact the separate R — P flux. If the reaction considered is the
activated process k(t) in Expression (36) reaches the long-lasting stationary
value
k= Z u pit/C = J ()% /C(t)™. (37)
leRt

The flux-over-population formula (37) is usually simpler in applications than
the time correlation function formula (13) which needs the calculations of
the full reactive flux (15). This method has been used in the pioneering
papers by Smoluchowski [68] and Kramers [69]. The formula (37) includes
exactly both the process of crossing the boundary on assuming the local
equilibrium conditions and the process of restoring this equilibrium from
the R side, but of course it neglects the process of recrossing the boundary
(compare Eq. (20)). One can, however, take into account effects of the latter
process on considering the backward P —+ R reaction and the appropriately
chosen probabilities of eqilibration in both subsets of microstates [77].

3.8. Especially prepared initial state

The forward and backward reaction rate constants k4 and k_ we have
considered in Subsection 3.1. are the parameters that are measured in exper-
iments with an ensemble of molecules tending to the total, chemical equi-
librium. In such experiments the initial distributions of microstates in R
and P are not specially prepared and usually not very different from the
local equilibria. However, experiments are also presently possible in which a
single molecule is observed, changing stochastically its state between R and
P (the patch clamp technique [17-21], Fig. 7). As a result the experiments
with single molecules bring the first-passage time distributions, separately
for the forward and backward reaction. The reaction rate parameter deter-
mined by a certain first-passage time distribution corresponds to this given
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Fig. 7. A schematic ‘telegraphic noise’ recorded in experiments performed with the
help of the patch clamp technique. The ionic current flowing through a single pro-
tein channel fluctuates between two values corresponding to two ‘chemical’ states
of the protein. Distribution of the first-passage times (3, 7, 73, . . .) from the open
to the closed state as well as (7%, 72, 75, . . .) from the closed to the open state can
be thus directly determined. Very often the time course of fluctuations recorded
has a similar character in several subsequent timne scales.

by Egs. (34) and (36) rather than that given by Eq. (13). Each time after
a transition, the molecule starts its microscopic evolution from a conforma-
tional substate within the transition state of the return reaction. Conse-
quently, the initial states [y occurring in Eq. (28) are always those belonging
to the transition state R¥ (or P* in the case of the backward reaction).

The initial state distribution confined only to the transition state R* is
realized also in experiments concerning the ensemble of molecules which,
being initially in the thermodynamically stable P state (the reaction R — P
has to be practically irreversible), is excited nonthermally to the unstable
R state. An important class of such experiments are the already mentioned
studies of the small ligand rebinding to protein in various conditions after
the laser flash photolysis [5-7,16,25-27].

Both the experiments using the patch clamp technique and those with
the application of the laser pulses appeared very effective for the study of
protein dynamics. This is why we shall focus here on the case of reac-
tions involving molecules in the initial microstates confined to the transition
state. Special preparation of the initial state very often makes the initial
stage of reaction the most important one, even if the reaction is an activated
process and the initial stage is short as compared to the forthcoming expo-
nential stage. Consequently, the generalized kinetic equation (33) is more
appropriate for description of the entire course of reaction rather than the
usual kinetic equation (29), valid in the exponential stage of the reaction.
However, Eq. (33) is in general only a definition of the time-dependent rate
parameter k(t). It can be considered the proper kinetic equation provided
that the parameter k(¢) is independent on the concentration C'(t). If it is
not the case, the only correct description is in terms of the kinetic equation
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with memory:
/dtk (tYyC-t" /dt’ (t—t"YC(t'). (38)

Eq. (38) is too general to be worth detailed considerations. Fortunately,
when the molecule initial microstates are confined to the transition state
there is a simple way of making Eq. (33) a meaningful kinetic equation.
It consists in the assumption that the entire microscopic dynamics of the
molecule takes place within the transition state, i.e. is described by a set of
master equations of the form

pi(t) = —vpi(t) + D _[@wpr(t) — wepi(t)], (39)

where all [ and I’ € R} and w are some effective rather then the bare
transition probabilities per unit time (compare Eq. (1)). Reduction of the
microscopic dynamics to Eq. (39) is equivalent to considering the parame-
ter k(t) in Eq. (33) a random function of time [79-81]. Several models of
reactions with such a ‘dynamical disorder’ or a ‘fluctuating barrier’ were
treated either exactly or to a good analytical approximation. Let us men-
tion the continuous one-dimensional models of Agmon and Hopfield [82] and
Zwanzig [83], the two-state model of Fuliniski [84] and the continuous time
random walk model of Zharikov and Fischer [85]. For all these models in the
limit of extremely slow internal dynamics (the @’s in Eq. (39) much smaller
than the v’s) the dynamical disorder goes over the ‘static disorder’, with the
latter term denoting the dispersive kinetics [86]:

= Z n(t) = Z pi(0)e ™t ~ /dkg(k) ek (40)
0

leRt leRt

with a continuous distribution g(k) of reaction rate parameters (or the corre-
sponding activation barrier heights). Such a kinetics was originally proposed
for description of the time course of protein reaction by Frauenfelder and
coworkers already in 1975 [16].

Of course, any model of dynamical disorder is only an approximation,
sometimes a very rough one as the influence of intramolecular dynamics
within the space of microstates outside the transition state can dominate
the reaction time course. The effects of the latter dynamics can be simply
distinguished from the effects of fluctuating barriers when considering models
with the transition state R* reduced to a single microstate [ = 0. Such a
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microstate has the meaning of a gate for the reaction which is thus referred
to as the gated reaction [11.87].
For the gated reactions Egs. (24) and (26) are replaced by

C(8]0) = = f(2]0) = —vo pojo(t) (41)

and Eq. (25), after averaging over the only initial microstate /o = 0. reads
t
city=1- v(,/dt'pom(t'). (12)
0

Following Eqs. (41) and (42) the central problem of the theory is calculation
of the probability pgp(t) of returning to the initial point during time t. We
shall consider this quantity in more detail in the next section.

A slightly more complicated is the problem of calculating of the probabil-
ity poj, (f) of transition between two different points Iy and 0 during time t.
It appears when modelling several coupled gated reactions, €.g. a complete
enzymadtic reaction composed of a few steps proceeding in the steady state
conditions [11]. For such a case Eqs. (41) and (42) are replaced, respectively,
by more general ones:

C(tllo) = = f(t)lo) = —vo poy, (1) (43)

and
¢

Cltllo) = 1 — v / dt” oy, (1)- (44)
5

4. Models assuming diffusion on fractal lattices

4.1. The spectral dimension

A set of points is called a lattice if one can define for it the notion of the
nearest-neighbourhood. A stochastic process of values in a certain lattice is
referred to as the random walk or diffusion if the only transitions possible
are between the nearest neighbours. Otherwise we speak about the random
fy [22].

In Fig. 8 two examples of fractal lattices with a hierchy of bottle-necks are
shown: the planar Sierpinski gasket and the planar percolation cluster. The
Jractals are defined as objects of a fractional value of the fractal dimension
but the hierarchical properties of lattices are related with the spectral rather
than the fractal dimension. It is worth distinguishing here clearly both
concepts.
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Fig. 8. Two examples of fractal lattices that can be considered a reasonable model of
the network joining conformational substatates of a protein macromolecule between
which direct transitions take place. (a) Sierpiniski gasket. Three small equilateral
triangles are combined into a larger triangle, three larger triangles into an even
larger one and so on ad infinitwm. (b) Percolation cluster. Bonds on a square
lattice are realized stochastically with the probability 1/2 and then clusters which
are not connected to the largest one are removed. Note the hierarchical structure of
bottle-necks in both lattices resulting in time scaling: the equilibration completes
first within subclusters of a lower order and only then, in a longer time-scale, within
the subclusters of a higher order. Finite number of conformational substates in real
proteins makes the hierarchy bounded both from below and from above.

The notion of the fractal (Hausdorff-Besicovitch) dimension d of a given
lattice is simple [88]. It is the exponent in the power law determing how the
number of sites n changes with the scale (size) s:

n = s, (45)

Consequently, )
d = log n/log s. (46)

For instance, for the planar Sierpinski gasket shown in Fig. 8(a) the two-fold
change of the scale entails a three-fold increase of the number of sites thus
d =log3/log2 ~ 1.585.

The notion of the spectral (Rammal and Toulouse [55,56]) or the fracton
(Alexander and Orbach [57,58]) dimension is more complex. It resorts to
the functional dependence of the density of vibrational normal modes vs.
frequency when a given lattice is considered to consist of massive points
with an elastic coupling between the nearest-neighbours. Quite generally
the Hamiltonian dynamics of a system of coupled harmonic oscillators is
described by the equation

=—if2a, {47)
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where a is the vector of complex numbers with the real and imaginary parts
corresponding to positions and momenta, respectively, of particular har-
monic oscillators:

a = —}5 (g +im1) (48)

and 2 is the frequency matrix. In the coordinates of the normal modes of
vibrations the frequency matrix becomes diagonal and the set of equations
represented by Eq. (47) is decoupled into a set of independent equations

G = —lwipak. (49)

If the density of vibrational modes in the spectrum of frequencies w behaves
regularly, according to a certain power law

plw) x w7, (50)

the number d is referred to as the spectral dimension of the lattice. The
relation (50) can be considered a generalization of the Debye relation for
acoustical phonons in crystal lattices of the integer Euclidean dimension
d [89]; the normal modes of vibration in lattices of a fractional dimension d
are referred to as the fractons [57,58].

Important for the present problem is that the set of master equations (1)
describing diffusion on a given lattice can be rewritten in the form analogous
to Eq. (47):

p= I (p=p™) (51)

with I" being the matrix made of of the transition probabilities w. The
corresponding set of decoupled equations for the relaxational normal modes
reads {c.f. Eq. (6))

Pe = —vk(pe—pp)- (52)
There are, in fact, twice as many Eqs. (49) as Eqgs. (52) (ax’s are complex
variables whereas p;’s are the real ones) thus, following the relation (50},
the density of relaxational modes in the spectrum of reciprocal relaxation
times v should behave as

x 421, 53)
LY v

It is an alternative definition of the spectral dimension [55,56].

Time scaling takes place only if the density of relaxational normal modes
increases with decreasing reciprocal relaxation time v (Fig. 2(a)). Conse-
quently, the hierarchy of bottle-necks is characteristic only for lattices with
the spectral dimension smaller than 2:

d <2 (54)
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For a Sierpiniski gasket embedded in d-dimensional Euclidean space
d = log(d + 1)/ log(d + 3) [55,56], thus for the planar Sierpiniski gasket
(d = 2, Fig. 8(a)) the spectral dimension d = log 3/ log 5 ~ 1.365. The spec-
tral dimension of any percolation cluster (in particular that embedded in
2-dimensional Euclidean space, Fig. 8(b)) is very close to the value d=4/3
(the Alexander-Orbach conjecture) [56-58].

The spectral dimension influences two, physically very important, quan-
tities [55-58]. The first is the probability to return to the original point,
which in the case of free diffusion (without any boundary conditions) be-
haves asymptotically in time as

Pojo(t) £=/2, (55)

This equation is a generalization of the well-known result for the free dif-
fusion in the Euclidean spaces [66]. And the second quantity is the mean
number of distinct sites visited by a random walker, which in the case of free
diffusion behaves asymptotically in time as

12 i d < 2 )
¢ ! 56
S()oc{i if d > 2. (56)

4.2. Scaling of the rate parameter and spectral
dimension

In Section 3.2. we introduced the notion of the time-dependent rate
parameter k(t), Eqgs. (33) and (34), and in Section 3.3. we pointed out
that Eq. (33) can be treated a meaningful kinetic equation only if k() is a
beforahand given function of time (independent of C(t)). For a given k()
the general solution to Eq. (33) is

—ftdt’k(t’)
C(t) = C(0)e o . (57)

Eq. (33), when applied for description of the whole time course of a reac-
tion which is an activated process, needs an introduction of a rate parameter
of the form given schematically in Fig. 9(a), which is time-dependent only
in the initial stage of the reaction. This stage can be characterized by one
or more additional time-scales (c.f. Fig. 3).

For reactions which are not activated processes the rate parameter k is
time-dependent in the whole time domain. Of special importance is the
case when the rate parameter scales with time as shown schematically in
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Fig. 9(b). This is observed directly. e.g., when recording closed-time distri-
bution density of certain protein channels with the help of the patch clamp
technique [17, 18, 21} (the ‘stairs’ in Fig. 9(b). mean that the ionic current
recorded, shown schematically in Fig. 7, has a similar time course in sev-
eral subsequent time scales). When approximated by a straight line on the
log-log plot (Fig. 9(b)), the time dependence of k takes the form [17]:

k(t) o t4/271, (58)
Here d is a certain number from the closed interval 0 < d<2.

(a) (b)

logk logk

logt logt
Fig. 9. A schematic time dependence of the reaction rate parameter k() in the log-
log scale. (a) The case of reaction which is an activated process. Rate parameter is
time-dependent only in the initial stage. (b) The case of a non-activated reaction.
Rate parameter can scale with time: in several subsequent time scales its value
changes proportionally.

For the time dependence (58) with 0 < d < 2 the time integral in Eq. (57)

becomes
t

/ Ak () = (t/7)7 (59)
0
with 7 being some constant and the time variation of the survival probability
is determined by Kohlrausch-Williams-Watts stretched exponential law:

C(t) = C(0)e~WN". (60)

For d = 0 (the critical value) we have

t

/dt’k(t’) —alnt/r (61)

0
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with 7 and « being some constants and the time variation of the survival
probability shows the power law (algebraic) behaviour:

Ct) =C(n)t/m)~". (62)

In the most applications to physical chemistry diffusion on various lat-
tices is considered as modelling the translational motion of the molecules.
For the target or the trapping problems [56,90-92] (for the latter case only
in the limit of moderate times) the survival probability

C(t) ~ C(0) e=¢5®), (63)

where ¢ is the concentration of annihilators diffusing towards the immobile
target R molecule, or the concentration of randomly distributed immobile
traps awaiting to annihilate the diffusing R molecule, and S(t) is the mean
number of distinct sites visited on the undoped lattice by any of two kinds
of walkers during time ¢t. On comparing Eqs. (63) and (56) with Eq. (60) we
find that the number d in the latter equation can have in fact a meaning of
the spectral dimension of an appropriate lattice, which justifies the notation
used.

However, our problem of gated reaction with the fractal lattice repre-
senting the set of internal states of the protein molecule differs from both
the target and the trapping problem, thus given a particular time course of
reaction, either of the stretched-exponential form or of the algebraic power
law form, no conclusions concerning the spectral dimension of the lattice of
conformational substates can be drawn. Morover, which is rather unfortu-
nate. we cannot apply directly results of numerous studies concerning the
target and the trapping problems. Only the models of random walk on a
one-dimensional chain [59-61] and integer-dimensional Euclidean spaces [93]
have been considered untill now in the context of gated reactions (c.f. also
Appendix). The model of diffusion on percolating lattices considered by
Doster and Schirmacher in the effective medium approximation [64,65] con-
cerns the trapping problem rather than that of the gated reaction. In the
next subsection we present preliminary results of recent studies of diffu-
sion on lattices of actually fractional dimension carried out in our labora-
tory [94,95].

4.3. Results of computer stmulations for gated reactions.
A umversal behaviour of survival probability in time

Krzysztof Palacz performed computer simulations of the random walk on
the planar Sierpiniski gasket (Fig. 8(a) [94] and the planar percolation cluster
(Fig. 8(b)) [95] assuming the mxtlal Slte for this walk to be simultaneously
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the gate for the reaction. The studied lattices were assumed finite due
to additionally imposed reflecting boundary conditions and the probability
of leaving the lattice was assumed to be the same as the probability of
transition between the neighbouring sites. Typical time variations obtained
of the survival probability (the mole fraction) C'(t), Eq. (42), are shown in
figures 10 and 11.

0.0 T T ™ —

log&(t)

3.0 " . X
o0 20 40 80 8¢

log(t)

Fig. 10. Typical resuit of a random walk simulation on the Sierpiniski gasket
(Fig. 8(a)). The lattice has been limited to 31°/2 ~ 3 x 10* sites. Some 10°
walkers started at the same site which simultaneously is the only gate to exit the
lattice. The probability of leaving the lattice was assumed to be the same as the
probability of transition between the neighbouring sites. Time is measured in num-
ber of steps in which transitions were randomly generated. Survival probability vs
time is plotted in the log-log scale. The power law and the exponential stages of a
reaction are clearly distinguished.

Despite the fact that the modelled reaction is an activated processes (for
the range of parameters considered the reaction rate is limited by the rate of
restoring the local equilibrium at the gate rather than the very act of leaving
the lattice) its pre-exponential stage appeared to be predominant for both
lattices. For diffusion on the Sierpinski gasket (Fig. 10) the pre-exponential
stage of reaction can be described by a simple formula

C(t) = exp(nt)** erfc(nt)?, (64)
where the symbol erfc denotes the complementary error function [96], n~!
is a certain unit of time and « is a certain exponent, for the case discussed
taking a value a &~ 0.33. In the limit of short times Eq. (64) represents the
stretched-exponential law and in the limit of long times, the algebraic power

law:
v | exp[=2(nt)*/\/m] fort < n7t .
)~ { (mt)~ /7 for t > n~L. (65)
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Fig. 11. Typical result of a random walk simulation on the percolation cluster
(Fig. 8(b)) composed of approximately 5 x 10° sites. Some 10° walkers started
at the same site which simultaneously is the only gate to exit the lattice. The
probability of leaving the lattice was assumed to be the same as the probability of
transition between the neighbouring sites. Time is measured in number of steps in
which transitions were randomly generated. Survival probability vs time is plotted
in the log-log scale. Because the percolation cluster is itself a random lattice and
each its site has a random number of the nearest neighbours, the power law stage of
the reaction is preceded by a certain initial stage strongly dependent on a particular
choice of the gate.

Eq. (64) with the exponent a = 1/2 is the exact solution of the continu-
ous one-dimensional counterpart of the problem considered (c.f. Ref. [93] and
Appendix A). As opposed to the case of free diffusion [56-58], c.f. Eq. (55),
for diffusion in the presence of absorbing sites there is no direct relation
between the value of the exponent « and the spectral dimension d but, con-
trary to the supposition stated in Ref. [93] (c.f. also result in Refs. [64,65]),
the exponent o does not seem to assume a universal value 1/2 independent
of the lattice dimension. As mentioned, our simulations indicate the value
a =~ 0.33 for the planar Sierpinski gasket and a similar fit of the result ob-
tained for the planar percolation cluster (Fig. 11) gives the value a = 0.25.

In general, the time course of the reaction was found to consist of three
stages: an introductory one (present in the case of the percolation cluster,
Fig. 11), the one of the decay according to the algebraic power law (a straight
line on the log-log plot) and the final one of exponential decay. In Fig. 12
all these stages are distinguished in a slightly overstressed form.

The moment of crossing over to the exponential stage of the reaction
depends on the size of the lattice and the probability of leaving it relative to
the probability of transition between the neighbouring sites. The smaller the
lattice and the lower the probability of leaving it, the earlier the exponen-
tial stage of the reaction begins. The crossover from the power-law decay,
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Egs. (64) and (65), to the exponential decay with the chemical relaxation

time k™! can be described with the help of a simple corrected formula
C(t) =[(1-a)C(t) + a)e™™ (66)

with a denoting the level (concentration) from which the exponential decay
begins (Fig. 12).

logC

0 log /A logn/x
log & -\ 0 log Mt
loga N Rees

Fig. 12. A schematic form of the survival probability behaviour in time plotted
in the log-log scale. Three stages are distinguished: introductory one, one of the
decay according to the algebraic power law and the final one of the exponential
decay. Two dashed lines correspond to the functional dependence given by Eq. (64)
and the exponential long-time correction in Eq. (66), respectively. The short-time
behaviour is given by Eq. (67).

For the model of diffusion on the percolation cluster the reaction starts
with a certain introductory stage (Fig. 11) that cannot be described by
Eq. (64). The reason for this is that the percolation cluster is a random
lattice and the choice of the initial site is crucial: it can have from one up
to four nearest neighbour sites (c.f. Fig. 8(b); it should be noted that as
opposed to the solid state physics [97], the configurational averaging over
the lattice disorder does not seem to have any meaning in application to
protein macromolecules with the well-defined primary structure). The very
introductory stage can be fitted to a stretched-exponential law different from
that given by Eq. (65) and the crossover from this stage to the standard
power-law decay, Eq. (64), can be described with the help of the formula

C(t)={(-byexp[- ()] + b}C (1) (67)

with X and 3 being certain new parameters for the stretched-exponential law
and b denoting the level from which the algebraic decay begins (Fig. 12).
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4.4. The mean first-passage time. Application to gated enzymatic reaction
in the steady-state conditions

Simulations starting at initial sites /g different from the gate [ = 0 result
in time courses of the reaction similar to those shown in Figs. 10 and 11 but
the curves in the log-log plots are shifted upwards (compare Eq. (A.26) in
Appendix A) in such a way that the reaction starts with a stage of nonde-
creasing C' (Palacz. unpublished result). This is quite obvious as there is
now a certain period needed for the walkers to reach the gate for the first
time.

In the one-dimensional continuous counterpart of the problem considered
(c.f. Appendix A) the influence of the distance between the initial site and
the gate on the time course of the reaction is determined by clear analytical
formulas (A.24) to (A.27). No such formulas are, of course, obtainable for
diffusion on lattices with non-integer spectral dimension. What is worse,
because of the lack of translational symmetry, there is no well defined notion
of diffusion distance in such cases. Nevertheless, we would like to have
some ansat: describing dependence of the survival probability, Eq. (44),
or the corresponding first-passage time distribution density, Eq. (43), on
at least an effective diffusion distance. Let us try to construct such an
ansatz using formulas for the one-dimensional case. Having this, we shall
be able to calculate the mean first-passage times that determine the rate or
the turnover number of complete enzymatic reaction proceeding under the
steady state conditions [11,98] (Fig. 13).

In Section 2.2 we argued that in the case of the reaction being an ac-
tivated process (diffusion on the finite lattice) the mean first-passage time
does not depend on the position of the most initial sites [ and equals directly
to the chemical relaxation time x~1, Eq. (32). On the other hand side. the
mean first-passage time for diffusion on the unbounded lattice is divergent
(this holds, e.g., for survival probabilities given by formulas (A.24) to (A.27)
in Appendix). To determine correction to the time x~! for the position of
initial site ly and, simultaneously, to make convergent values of the mean
first-passage time corresponding to Eqs. (A.24) to (A.27), we follow Eq. (66)
and express the survival probability C(t|lg) for the bounded, finite lattice in
terms of the survival probability C(t]ly) for the infinite lattice:

C(tllo) = [(1—a) C(t]lo) + a] e~ (68)

Following Eq. (43) we get the corresponding first-passage time distribu-
tion density:

ftlio) = (1=a) { £tlt0) + w [Clelo) + =] e (69)
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Fig. 13. Enzymatic reaction involving a single covalent transformation. (a) Con-
ventional kinetics of Haldane [1, 2]. R and P stand for the reactant (substrate) and
the product, respectively, E stands for the free enzyme, and ER and EP stand for
the enzyme-reactant and enzyme-product complexes, respectively. (b) The actual
kinetics involving a large number of conformational substates of the enzyme and
its complexes. (c) A scheme of enzymatic reaction gated by the conformational
transition dynamics. The vertical lines labelled with 0, 1 and 2 symbolize the lat-
tices of conformational substates composing the chemical states E, ER and EP,
respectively. Three chemical transitions are localized at the sites 0, z’ and z”.

and following Eq. (27), the corresponding mean first-passage time:
[e e}
7(lo) = (1—a)/dtC(t|lO)e"“ +axl. (70)

The integral has the meaning of the Laplace transform of the survival prob-
ability C(t]lo); the finite value of x secures the cutoff of its long-time tail.
After integration by parts and taking into account Eq. (43) we get finally:

Flg) = Kt — (l—a)%/dte_”tpollo(t). (71)
0

In general, the mean first-passage time is always smaller than the value
determined by the reaction rate constant x. This result, when applied for
calculating the enzyme turnover number means that under the steady state
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conditions the enzyme macromolecule can pass to the succeeding chemical
states with the process of internal equilibration omitted [11].

For the continuous one-dimensional model considered in Appendix A, Iy
is replaced by x, vy is replaced by 7, and after applying Eq. (A.21) one gets

e~ K/n

VEM+1

This can be used to describe how the mean first passage time depends on
the effective, in this context, distance z.

lz) = P (1—a) k™t (72)

5. Summary

The substantial majority of biochemical processes are influenced by
purely stochastic dynamics of conformational transitions in the proteins in-
volved. We know at present that native proteins reveal such a dynamics in
the whole range of time scales from 10~!! to 10°s or more, and that at least
in the range from 10~!1s to 10~7s the corresponding spectrum of relaxation
times is practically quasi-continuous. Despite the fact that the experimen-
tally provided picture of conformational transition dynamics is still far from
complete the time has come to start thinking about the formulation of a sta-
tistical theory of biochemical processes taking this dynamics into account.
This paper is an attempt in this direction.

We started with an outline of general ideas of the theory of reaction
rates based on stochastic models of intramolecular dynamics. Some impor-
tant experimentally realized reactions involving proteins and, perhaps, most
reactions in vivo [8,11] take place in the conditions under which the initial
conformational substate of protein already belongs to or is very close to the
reaction transition state. Special attention has been paid to such conditions.
Under them the initial, non-exponential stage of a reaction can be very im-
portant, even if the reaction is a usual activated process. In more detail we
considered the case of gated reactions, when the transition state is reduced
to a single conformational substate of the protein (the gate).

Next we considered a particular model of the conformational transition
dynamics in proteins — a random walk on fractal lattices — and its applica-
tion to describe gated reactions with the initial conformational substate of
protein coinciding with the gate. The computer simulations performed for
the planar Sierpiniski gasket and the planar percolation cluster indicate in
general three stages of the reaction:an introductory one, the one of the decay
according to the algebraic power law and the final one of the exponential
decay, present for finite fractal lattices.

We propose to describe the whole time course of the reaction in terms of
three simple formulas (64), (66) and (67). Apart from the basic unit of time
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n~!, the proposed description introduces six parameters: two exponents «
and 3, two rates x and A, and two probabilities (molar ratios) a and b. Four
of those parameters: x, A, @ and b depend on temperature in the Arrhenius
manner so it should be no problem to describe in these terms a time course
of any experimentally observed reaction including its variation with temper-
ature. We refrain here from discussion of any particular experimental data
as reaching the really valuable conclusions needs, in any case, much more
careful and detailed analysis.

At the end we suggest a general formula for the mean first-passage time
for diffusion on finite fractal lattices depending on the effective distance
between the initial state and the gate. It can be useful in description of
complete enzymatic reactions proceeding under the steady state conditions.

The study has been supported by the Polish State Committee for Scien-
tific Research (project 2 P03B 053 09) and the Alexander von Humboldt
Foundation.

Appendix A

Ezactly solvable continuous one-dimensional model

In the continuous limit the process of one-dimensional diffusion is de-
scribed by the partial differential equation of the general form [66,67]
J J
—p+ —j =0, Al
ETLANE. (A1)

where t and @ denote. respectively. time and position, p(z,t) is the prob-
ability density and j(z.t) the diffusion flux density, linearly depending on
p(z,t). As acomplement to Eq. (A.1) we assume the general reactive bound-
ary condition at & = 0:

7(0,t) = —np(0,1), plz,t) =0 for z < 0. (A.2)

In the limit 5 — oo the condition (A.2) determines the absorbing boundary:

p(0,t) =0, (A.3)

whereas in the limit 7 — 0, the reflecting boundary:

7(0,8) = 0. (A.4)
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There is a jump of the flux density j at @ = 0, thus Eq. (A.1) with the
boundary condition (A.2) is equivalent to the very equation

7] a ‘

- _— == A5

5Pt g0 = —ni)p (A.5)
with a delta-type sink.

A general solution to Eq. (A.5) with an arbitrary initial probability den-
sity p{z,0)} can be written in the form of the integral

pat)= [ do'pla,tla’) pla’.0) (A.6)
with the kernel (Green function or the propagator) p(z, t|z’) being the solu-
tion to Eq. (A.5) with the delta-type initial probability distribution

p(z,0]2") = §(z—2'). (A.7)

Our goal is to calculate in this Appendix the survival probability in the
region R = [0, 00),

Cltlz) = /dx’p(a",tlm). (A.8)
0
The continuous counterpart to Eqgs. (43) and (44) are the equations
C(tlz) = = f(t|z) = —np(0,t|z) (A.9)
and
t
Cltlz) = 1 - n/dt’ (0, 7)2), (A.10)
0

respectively. On assuming that the solution p°(z, t|z’) to the equation (A.1)
for the free diffusion, without any boundary condition or a sink, is known,
one can find the solution p(z, t|2’) to the full equation (A.5) by treating the
sink term formally as an external time-dependent perturbation. Following
the theory of temporal Green functions [99] the particular propagator we
need p(0,t|z) satisfies the self-consistent integral equation

¢
p(0,t]z) = p°(0,t|z) - n/(lt' p%(0,¢'0) p(0,t—t'|2). (A.11)
0
This can be solved in the Laplace transforms:
~0

T 1+ np°(0, s[0)’



1884 M. KURZYNSKI

where

50, slz) = /dte_Stp(O, t)z). (A.13)

The exact solution to Eq. (A.11) can be easily found in the case of the ho-
mogeneous one-dimensional diffusion with the reactive boundary condition,
described by the equation

0 0?

—p—-D=—sp=—ad A.14

b~ Dasp = —ab(z)p (A-14)
with D denoting the diffusion constant and «, the transition probability to
the sink per unit time. In this problem there is a natural unit of length:

¢=4D/e, (A.15)
and of time:
n7! = 4D/a’. (A.16)
On passing to the dimensionless position variable
§le =, (A.17)
Eq. (A.14) reads
0 n 62
—p—~2_—_p=—né . A.18
5P " 1520 = 8P (A.18)
The free propagator, in the absence of sink, is the Gaussian:
1 2
00, tfe) = — =2/ Al
P (0,t]z) \/7r_77te , (A.19)
and its Laplace transform [96]
500, s|z) = g~ e = 25V/37, (A.20)

Vs/n
Following Eq. (A.12) the Laplace transform of the full propagator

e 2= s/n
30, s]z) =t E—
(0.512) = 7 S

It can be exactly inverted [96]:

(A.21)

p(0,t|z) = \/—%ﬂt e~ /" _ exp (nt + 2z) erfc (\/ﬁ-i— %) , (A.22)
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where the symbol erfc denotes the complementary error function,

1 2
——e % forz> 1
erfcz = ——-—-—/d eV x~ { V2 A.23
Y { “2/VT for0< z < 1. (4.23)

After integration of the propagator (A.22) following Eq. (A.10) we get, finaly,
the exact expression for the survival probability for the model considered:

T T
Ctlz) = ex t+ 2z erfc( Tt+—)+l-—erfc——. A.24
(t|z) p(n ) v N N (A.24)

In the limit n — oo (the absorbing boundary) Eq. (A.22) goes over the
well-known Smirnov distribution [22]:

z - -
p(0,tlz) = —= (mt) /% ot (A.25)

and Eq. (A.24) is reduced to

Cltlz) =1 — erfc % (A.26)

For 7 finite but large with respect to t~! we find, following the asymptotic
expansion of the complementary error function, Eq. (A.23), that the survival
probability C'(t|2) decreases asymptotically in time according to the power
law

C(t|z) ~ (1+42z) (xqt) /2, (A.27)

For = 0 we get from Eq. (A.22) the probability density of returning to
the initial state:

p(0,t]0) = ——\/;—77_2 — e erfc(\/nt) , (A.28)

and from Eq. (A.24), the corresponding survival probability:

C(t|0) = e erfe(v/n1)
exp [— (477t/7r)1/2] fort < 7!
(mqt)~1/2 for t > L.

&
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