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We integrate analytically the total cross section of the small-angle
Bhabha scattering over the complete multiple photon phase space. Some
inclusive distributions are also obtained. The differential distributions are
taken from the Monte Carlo event generator BHLUMI and correspond to
the second-order matrix element with Yennie-Frautschi-Suura (YFS) expo-
nentiation. In the integration we control terms up to leading third-order
and sub-leading second-order, in the leading-logarithmic approximation.
The analytical results provide a vital cross-check of the correctness of the
BHLUMI program. The analytical and Monte Carlo results agree to within
1.7 x 10™%. On the other hand, the calculation gives us unique insight into
the relation between exclusive YFS exponentiation and naive inclusive ex-
ponentiation.

PACS numbers: 12.20. -m, 12.20. Ds, 12.38. Bs

1. Introduction

The Bhabha scattering process ete™ — ete™ at LEP energies consists
in fact of two distinct processes (especially at the Z peak): one is the
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Small-Angle Bhabha (SABH) process below about 6° in scattering angle,
which is dominated by the gamma t-channel exchange and another one,
the Large-Angle Bhabha (LABH) process above 6°, which gets important
contributions from various s-channel (annihilation) exchanges. The SABH
process is employed almost exclusively to determine the luminosity in the
et e~ colliders, using dedicated luminometer sub-detectors. The LABH pro-
vides input data for precision electroweak tests of the Standard Model (SM),
in particular the electron partial width I, of the Z boson. In this work
we shall concentrate on the SABH process at LEP. At /s = Mz, in the
1°-3° angular range it gives about four times more events than Z decays. It
is therefore ideally suited for precise measurements of the luminosity from
the point of view of the statistical error. Even more important; it is dom-
inated by “known physics”, that is by t-channel exchange of a photon; it is
therefore calculable from “first principles”, i.e. from the Lagrangian of the
Quantum Electrodynamics (QED) with methods of the standard Quantum
Field Theory such as Feynman diagrams, etc. This work presents a major
contribution to the problem of a reliable theoretical calculation of the SABH
process with a precision of 0.1% or better. Let us now review briefly the
main aspects of our work.

1.1. Theoretical error in the luminosity

At present, the luminosity measurement at LEP using the SABH pro-
cess has a very small statistical and experimental systematic error, typically
0.07-0.11% [1] for the single LEP experiments and 0.05% for combined LEP
results [2-4]. The uncertainty of the theoretical calculation of the SABH
process has to be combined with this error. It is called the “theoretical er-
ror” (the theory uncertainty) of the luminosity. Last year, it was reduced
to 0.16% [5] and is now at the level of 0.11% [6,7]: in spite of the progress,
it is still a dominant component of the total luminosity error. This error
enters into that of the total cross section measured at LEP. The experimen-
tal precision of the so-called invisible width of Z (number of neutrinos) is
strongly dependent on the precision of the luminosity measurement. The
other quantities used for tests of the SM are also affected. An example of
the influence of the luminosity error on the LEP measurable used in the test
of the SM is illustrated in Table 20 of Ref. [6]; see also Ref. [7].

Obviously it would be worthwhile to lower the theoretical uncertainty in
the calculation of the SABH cross section below the combined experimental
precision of the LEP experiments, which is already at the level of 0.05%.
From the beginning of the LEP operation both experimental and theoretical
components in the error of the luminosity went from the level of 2% to 0.1%.
Why was it always difficult to reduce the theoretical error even further? The
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main obstacles were the need for non-trivial calculations of the higher-order
contributions and the complicated Event Selection (ES) in the actual mea-
surement. Due to the complicated ES, the phase-space boundaries in the
calculation of the SABH cross section are too complicated for any analytical
calculation: the calculation has to be numerical, most desirably in the form
of Monte Carlo event generator (MCEG). How does one improve the preci-
sion of the theoretical calculation of the SABH cross section? Of course, one
has to add higher-order terms in the perturbative expansion. On the other
hand, the theoretical calculation would be completely useless if in the calcu-
lation of the SABH cross section we did not control its “technical precision”,
corresponding to all possible numerical uncertainties. The control over the
technical precision is probably the most difficult and labour-consuming part
of the whole enterprise. The present paper is addressing both questions —
we demonstrate new methods of determining the technical precision of the
theoretical calculation of the SABH cross section and we add certain numer-
ically important higher-order contributions in the perturbative expansion.
For an up-to-date review on the precise calculations of the luminosity cross
section we refer the reader to Ref. [8].

1.2. The BHLUMI Monte Carlo event generator

In the last five years the LEP collaborations have used the BHLUMI
MCEG in order to calculate the SABH cross section for any type of exper-
imental ES. The program, originally written in 1988 [9], was published for
the first time in 1992 [10}, at that time with the first-order exponentiated
QED matrix element, O(a!)exp (exponentiation according to the Yennie—
Frautschi-Suura theory). BHLUMI provides multiple soft and hard photons
in the complete phase-space in all versions. The Monte Carlo multi photon
integration over the multi photon phase-space was slightly improved over
the years, but its basic Monte Carlo algorithm has remained essentially un-
changed since the first version. Gradual improvements concern mainly the
matrix element; this was recently upgraded by adding the missing second
order in the leading-logarithmic (LL) approximation [11]. The new matrix
element is fully described and discussed in this work. The aim of the ana-
lytical integrations over the phase-space presented here is to cross-check if
the new matrix element has indeed the correct second-order LL behaviour
and whether it is correctly implemented in the version 4.04 of the BHLUMI
MC program [11]. The BHLUMI package also includes the LL sub-generator
LUMLOG, featuring a strictly collinear emission of photons in the initial and
final states. The third-order LL analytical results of the present work are also
implemented in the newest LUMLOG. More and more cross-checks are built
up in order to better determine BHLUMI’s technical precision, see [5,12].
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This paper contributes substantially to all above-mentioned cross-checks —
in fact these are based on the calculations presented here.

The aim of this work is to consolidate these earlier calculations and to
present the complete results in a single, self-contained paper.

1.8. Importance of the various QED corrections

The electron mass is very small and the LL approximation in terms of
the big logarithm L = In(|t|/m2) ~ 1 is a very useful tool. In Table I we
show numerical values of the “canonical coefficients” for various LL and sub-
leading QED radiative corrections. As we see from the table, for a precision
of order 0.5% it is enough to include the entire first-order O(a) and the
second order leading-log O(a?L?), while at the present precision, of order
0.05%-0.10%, it is necessary to have control over O(a?L) and O(a®L3).
The contributions of O(a?), O(a®L?%) and O(a*L*), not shown in the table,
are definitely below the level of interest of 10~%. In the present version of
BHLUMI 4.04 or Ref. [11] we have complete control over O(a3L3) photonic
(bremsstrahlung) contributions (thanks to results of this work) while O(a2L)

is still incomplete.
TABLE I

The canonical coefficients in units of 10~3 indicating the generic magnitude of
various leading and sub-leading contributions up to third order. The big-log
L = In(Jt|/m2) = 1 is calculated for fpin = 30 mrad and pin = 60 mrad and
for two values of the centre-of-mass energy: at LEP1 (/s = Mz), where the corre-
sponding values of |t| = (s/4)82,, are 1.86 and 7.53 GeV?, and at a LEP2 energy
(v/s = 200 GeV), where the corresponding values of |t| are 9 and 36 GeV?, respec-
tively.

Omin = 30 mrad 8, = 60 mrad
LEP1 LEP2 LEP1 LEP2

O(aL) @4 137 152 150 165
O(a) 2le 23 23 23 23
0(?L?) i(24L)° 94 11 11 14

O(e?L)  =(24L) 031 035 035 038
O(3L%) X (24L)® 042 058 057 074

For the purpose of the present paper we shall denote the entire first-
order O(a) plus the second order leading-log O(a?L?) as the second order
pragmatic approximation, O(a?)prag in short. Adding O(a?L) and O(aL?)
brings us to the third-order pragmatic approximation, O(a?®)prag-



Semi-Analytical Third-Order Calculations. .. 1911

The present work provides all of the ingredients for a definite answer
about the importance of an O(a3L3) contribution of the pure bremsstrahlung
type, i.e. of the so-called photonic type. The Monte Carlo tool (the LUM-
LOG event generator) for calculating O(a®L?) corrections for arbitrary ES
is included in the version 4.04 of the BHLUMI package [11]. Numerical
results obtained using analytical formulas from this work (implemented in
LUMLOG) were already shown in Ref. [12], and the question of the im-
portance of the photonic O(a®L3) corrections seems to be closed. In the
matrix element presented in this work and used in BHLUMI, the O(a?L)
contributions are still incomplete. The first attempt at its direct numerical
evaluation for realistic ES was presented in Ref. [13] and this work is still in
progress.

1.4. Why analytical integration?

The main content of this work is the analytical integration of the matrix
element, exactly the same as in the last version of BHLUMI, over the phase-
space, keeping in the calculation the ezact soft photon behaviour and all
terms up to O(a®L3) and O(a?L). The first immediate question is: Since the
matrix element has only correct terms! up to O(a?L?), why bother to trace
exactly all terms of O(a3L3) and O(a?L)? There are basically twoimportant
reasons: (a) our principal aim is to get in the future version of BHLUMI
all these terms completed; (b) we have to keep in mind that ultimately we
have to have control over the technical precision of BHLUMI down to 10™4.
The comparison of the analytical and Monte Carlo phase-space integrations
down to the 10~ precision level is not possible without accounting for terms
of O(a®L3) and O(a?L), even if they are (perturbatively) incomplete! The
actual status of terms of O(a3L?) is even more interesting than described
above: the analytical calculation presented in this work can be used to
show that the incompleteness of the O(a®L?) is numerically at the level of
2 x 107* [12] and therefore it is not even worth upgrading the BHLUMI
matrix element to full O(a®L3). A similar conclusion for O(a?L) is not yet
reached?.

In spite of its importance and usefulness we want to stress that the
analytical integration is not a substitute for the Monte Carlo. As we shall
see, it will be limited to one or two examples of the rather unrealistic ESs.

! The terms beyond O(a? L?) in the BHLUMI matrix element are present. The terms
of O(a’L) are based on an ansatz and of O(a®L?®) are generated by exponentiation.

% It is not yet clear if we shall be able to argue that the missing O(a*L) contribution
is negligible for a wide class of ESs, because it seems to depend more strongly on the
type of the ESs than does the missing O(a®L?).
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We would like also to give justice to the authors of a classical paper
Yennie, Frautschi and Suura [14], as an early precursor of the analytical
approach presented here. These authors also integrate analytically over the
real single photon phase-space using the LL approximation and taking into
account “spectator” soft photons. This is very much in the spirit of the
present work. The important difference is that we keep track of two more
orders in the LL approximation and we keep account also of NLL terms
up to second order. Much as they did, we regard the analytical integration
within LL+NLL as a pure technical method? of dealing with the phase-space
integration. In 1961 the analytical approximate calculation over the multi
photon phase-space was the only available method — it was unthinkable
at the time that such integrals could be evaluated exactly using numerical
methods! (The precision requirements were anyway at that time at the
level of a few per cent only.) Nowadays, we are in a much more comfortable
situation — we can evaluate such integrals without any approximation using
Monte Carlo methods?, and the analytical calculation is only an additional
useful tool to test the Monte Carlo program.

1.5. Exclusive YFS exponentiation

The analytical integration presented here sheds light also on the ques-
tion of the relation between “exclusive YFS exponentiation” and so-called
“inclusive naive exponentiation”. In the exclusive YFS exponentiation for-
mulated in Ref. [14] and later implemented in several Monte Carlo event
generators [9,16,17] the summation of infrared singularities to infinite order
is done at the level of the differential distributions, before the phase-space
integration, including an arbitrary number of hard photons all over the entire
phase-space, without any artificial distinction between hard and soft pho-
tons. This leads to complicated phase-space integrals, which in 1961 could
be dealt with only using an approximate analytical approach. Nowadays
we can evaluate these phase-space integrals using MC methods and even
provide in this way a MC event generator.

In many works, the analytical partial results from Ref. [14] were used to
devise an ad hoc method, which we refer to as the “naive inclusive exponen-
tiation”. In this method one takes a finite-order (typically O(a!)) inclusive
(partially integrated) distribution, typically one-dimensional, for instance
the total energy lost due to photon emission, and combines it by means of
extrapolation with the analytical result similar, or identical, to results in

® Quite often, casual readers of Ref. [14] get the wrong impression that the YFS expo-
nentjation is limited to the LL approximation because this approximation was used
there for the integration over the phase-space.

* The first example of such a calculation was presented in Ref. [15].
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Ref. [14] for the same distribution, but with an infinite number of photons
being soft, see Ref. [18] for more discussion.

The interesting question always was: can this obviously ad hoc method,
without any systematic generalization to higher-orders, be put on more solid
ground? The answer is Yes, provided that we do not take fragments of the
results in Ref. [14], but rather the relevant YFS multi photon integral as
it stands and calculate the relevant inclusive distribution analytically. It
is not a simple task but, as we shall see in this work (and some examples
were already given in Ref. [14]), it is possible, provided we integrate over
the phase-space using a numerically reasonable approximation. Not surpris-
ingly, the resulting inclusive distribution obtained by the integration over
the exclusive YFS fully differential distributions often looks quite similar to
the result of the typical “naive inclusive exponentiation”. The advantage of
our method is, however, that the procedure is unique, well understood, with
a definite meaning at every perturbative order. In one word, the naive in-
clusive exponentiation gets replaced by the analytical phase-space integration.
The analytical calculation of this paper represents a perfect example of such
an approach.

1.6. Outline

In the following Section 2 we shall describe in full detail the new matrix
element used in BHLUMI, which will be integrated analytically over the
phase-space. In Section 3 we demonstrate the basics of our analytical inte-
gration technique using the simple case of the contribution from the so-called
Bo as an example. In Sections 4 and 5 we calculate further components due
to the so-called B; and §; the total result is presented in Section 6. Cross
checks of the LL part are done in Section 7 and another variant of the cal-
culation for calorimetric ES is discussed briefly in Section 8. Appendix A
proves the correctness of certain basic approximations.

2. Differential distributions

In this Section we define completely and exactly the differential multi
photon distributions used in BHLUMI 4.04 and used later in this work as
a starting point for the analytical integrations over the phase-space. There
are two types (A) and (B) of such a matrix element, which coincide within
O(a?)prag- For the first time they were defined explicitly in Ref. [5]. Choice
(A) is the natural extension to second order of the matrix element imple-
mented in the BHLUMI 2.02 version of Ref. [10]. The new choice (B),
which is a starting point for this work, looks at first sight more complicated,
but it turns out to be integrable analytically more easily, especially beyond
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(’)(az)pmg. The numerical difference between cross sections obtained with
the matrix elements (A) and (B) at the level of O(a?)exp is very small, below
0.01%. It is quite sizeable at the O(a!)exp, up to 0.3%. The relevant MC
numerical result will be shown at the end of the paper.

2.1. Second order — no exponentiation

The second-order integrated cross section for the process e~ (p;)+e*(g1)—
e~ (p2) + e*(g2) + nvk; + n'y(ki) reads in terms of the Lorenz phase-space
integration over the differential distribution as follows:

, 1 1 d3p2 d q92 dak dakll
SR EYE e WS W
1=

0<n+n/<r .7 =1 k'¢.r2

x 6t )(Pl P2+ q—ga- Z‘ k- Zk’ )D(")n](kl...kn;k;...k;,) . (1)

j=1 i=1

where {2y, 1, are 3-dimensional regions around the infrared soft singularity ex-
cluded from the phase-space. Usually, this is done by requiring the photon
energy to be above some value F,,« in a certain reference frame®. Virtual
contributions and real soft photon contributions below Epax (regularized
typically with photon mass A) are combined and are included in the corre-

sponding D[(;’)n,].

Let us show explicitly all the O(a”) r = 0, 1, 2 distributions D[( r)B o for the
new type (B) of matrix element. At the end of this Section we also show the
older choice D[(;')f,], which in the O(a) coincides with the matrix element
implemented in the BHLUMI 2.x version of Ref. [10]. The older choice
(A) is simpler, but its serious disadvantage is that it cannot be integrated
analytically beyond O(a?)prag using methods presented in this work.

Let us start defining various components of the differential distribution
with expressions for the functions Dg,)(f,r = 0,1,2 in the O(a")prag; see
Sect. 1.3 for the definition of the O(a”)prag approximations. It is given
simply by

4 2
Dy = S bo (1+01),
tptq

b= 20+ 0-g), e=1

® The reference frame might be different for upper and lower lines — provided the
upper/lower line interference is neglected.
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3 o
(0)= (1)_—_ —_ — —
v 0, v 2ylnA+ 5y -,
3 « 9 3a
(2 — 21.2 3« 9., 3a
v 2yIn A+ 24%In A+(1+2'ylnA)(2'y 7?)+87 5=
(2)
where
2%l 1), 5= o (g —pe - STk 3)
r=2p{lngot) S t=momm kN

The case of r = 0 with v(®) = 0 represents the Born approximation, v(!)
represents the exact O(a!) from the Feynman rules (up-down interference
excluded), while 9y2/8 in v(?) stands for the LL approximation in the O(a?).
At this point we should define the infrared domains 2y, and the infrared
cut parameter A. Let us postpone their definition to the moment when we

define D[(lr ?0?. Let us only remark now that the virtual corrections in Eq. (2)
are given for the {2y 1, which are exactly the same as in the actual Monte
Carlo phase-space algorithm — the cut on the photon energy is done in the
Breit (rest) frame of the p; + p; or ¢y + ¢2; the minimum energy of the real
photon in such a frame is ~ Al,/2p;ps.

Let us now define the O(a) prag and O(a?) g single real photon emission
distributions D[(I,)o](kl) and D[((;’)I](kl), r = 1, 2. In the following we explicitly
show expressions for the upper line emission part D[(lr,)o](kl)' The lower

line distribution D[((’;,)l](kl) is defined in a completely analogous way. The
first-order distribution (r = 1) has no virtual corrections (tree level) and
the second-order distribution (r = 2) includes the one-loop virtual photon
correction, which is calculated in the LL approximation®. The case of the
type (B) matrix element reads as follows

r ra® -, - . s -
D) = o (@, ) (14 of]y (@0, B0) ) H (@, B, 4y)
p*q
1
”{(1,2)1 0,

3 a 3 = 1 .
v[(lz,)OI = (p+7)nd+ LA Z’Yln(l -B) - Z"/lﬂ(l - &)
1 N
=) (- ),

v = &1 4 61— @b, (4)

¢ This is done by convolving twice the non-singlet Altarelli-Parisi kernel with itself,
see Ref. [19] for many examples of such a procedure.
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H (@, Bu) = (L 530, B0) 21+ (1 155 )

1—-&1
FR(Gy, Br, ) + (R(Gr, B ) — (1 an)?],
R(&y, By, ) = (1= @1)(1 - By)
+2cos /@i (1 — ar) (1 — Bu) + G,
1 (63 + B3)?

5;(071,51) = 61)&131 (14 (1 -a)2( - 31)2)’

a 1 lo% 1
'y,,-?—;(lng—l), 7q—2;(1n3;——1),

6 = mﬁ/ltpl, 6y = m?/ltql, tp = (p1— P2)27 ty = (g1 - Q2)2, (5)

where
2 2

- _a 2pipp . m”  m
Sp(k1) = 72 ((kpl)(kpz) (k1p1)? (k1p2)2) ©

is the standard Yennie-Frautschi-Suura soft factor. Note that H =
(s + u? + s? + u?)/(4s%) in the notation of Ref. [10]. Theé last term in
v[(fj)] proportional to (v, — 7) is pure sub-leading and it is added ad hoc in
order to simplify the exponentiated version of the matrix element, see below.

Since the above distributions are given in terms of the normalized Su-
dakov variables é; §; of paper [9], let us therefore recall their definition. Be-
low we define them in the more general case of n photons emitted from the
upper line. In the ¢-channel Breit (rest) frame QRS,, where p§ = p3 = E,,
P+ p2=0and Q, = p; — p1 = (0,0,0,2F,), we define

k) = (i + B)E,, k= (—ci+B)E,,

k}:: kTCOS¢ia k?::kTShl¢h kT'::QEbV&EZE;
o = &Ky, Bi = BiK,p,
. LGB | n
Ky = (I"Zﬁj) :PI(P2+ij)/p1p2. (7)
=1 =1

The angle v, (present implicitly in the formulas of Ref. [9]) is defined in
another frame QMS,, where Q = (0,0,0, |¢|) and p; = (£1,0,0, —|p1]). It
is an angle between two planes, one spanned with Cj and p> and another
spanned with Q and ¢;.

From the perturbative calculation point of view let us remark that in

(2)

[1,0] COmes from the LL

Eq. (4) the only one-loop O(a?) virtual correction v
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ansatz — the rest originates from the tree-level O(a!) Feynman diagrams.
Two approximations were employed: rejection of the up-down interference
and of some mass terms giving rise to O(m?2/|t|)~ 10~7 contributions in

the integrated cross section. Let us also stress that in the v[(i)o] a term
proportional to In A is totally constrained by the YFS soft limit derived in

Ref. [14]. We obtain the logarithmic terms in ”[(12,)0] from a double convolution
of the non-singlet Altarelli-Parisi splitting function and the non-logarithmic
term is chosen arbitrarily (such that, later, the expression for 3, is simpler).

Now, having defined all kinematics, we are able to define the infrared

domains
{2y : ma,x(c"v,-,ﬁg) < A}, {2 : max(&;-,[?;-) < A}, (8)

which enter in many places throughout our calculation. Needless to say,
nothing depends on the actual choice of 2y 1, and we always witness perfect
cancellations of the infrared real and virtual divergences.

The distribution describing double photon emission from the upper line
is pure O(a?) and it is based on the LL ansatz. The main ingredient in the
ansatz is the double convolution of the non-singlet splitting kernel for the
longitudinal momenta. Both photons feature non-collinear transverse mo-
mentum distributions. It is very important that we require the distribution
to have the correct soft limit in the case when both photons are soft and in
the case when one of them is soft and the other one is hard. This is fulfilled
by taking the product of the O(«) single photon distribution for the harder
photon and the soft factor times the splitting kernel for the softer one. The
advantage of the LL ansatz (as compared to exact expressions known in the
literature) is that it is quick in the computer evaluation and its LL content
is manifest. There is obviously freedom in the choice of the above LL ansatz
(up to non-infrared O(co?L) terms). It was exploited in such a way that the
analytical integration (which is our main goal) over the phase-space in the
later stage is feasible and as simple as possible. The complete ansatz for the
type (B) distribution reads as follows:

A7’
tptq

y [sp(al, B1)5, (2, B2)8((61 — 1) (G2 — B)

Dé’_:)zy)o?(&h Bl» ¢17 é?v B% ¢2) =

{800 = va) § [ (G, po)x(08) + H(GE, B, ) (00)]

+0(vy — v1) & [H(@Z,/;z, ) x(v}) + H (&3, 55, ¢p)X(U1)] }
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+Sp(611, 1) Sp(2, B2)0(61 — B1)0(~G2 + Ba)
{B(0n — va) (85, 35, ) x(02) + 002 = o0) F (G, B ) (07) )
+8,(61, B1)Sp(é2, B2)8(~ a1 + B1)8(&2 — Ba)

< {801 = 02) H (@, B, i x(05) + 0(02 — ) H (85, 5, «zfp)x(vl)}} 9)

where x(z) = 1(1+ (1 - z)?) and, because of the “cascade” character of the
double emission, we use “starred” variables, defined by:

(lgv;) ?

=2y (10)

We can easily check that we reproduce the proper soft photon limit in the
case (1) when both photons are soft, i.e. v;,v2 — 0 and (2) when one
photon is hard and one is soft, for instance vy — 0 and v, = const. The
first requirement is quite natural and is fulfilled trivially because in the
soft limit v; — 0 both H(&;, fi,¢,) — 1 and x(vi) — 1, ¢ = 1,2. The
second requirement is fulfilled thanks to the ordering of the energies. Do
we reproduce the proper collinear (leading-log) limit when both photons are
hard and collinear? If the first photon is hard and collinear, v, is finite and
we have either &; — 0 or §; — 0 (not both). For two hard collinear photons,
we encounter two situations: (a) both photons are collinear with the same
fermion (initial electron or final electron), (b) each photon is collinear with a
different fermion, i.e. one is associated with the initial-state (beam) electron
and the other with the final-state electron. We can easily check that for our
ansatz both in the case of the collinear limit (a):

'L

1
L)
*
o

il
"?r—ﬁ
= iy

bavu ~ FIx(v)x(v3) + x(v2)x(v7)]; (11)

and in the anticollinear case (b):

bavu ~ x(v1)x(v2) (12)

we recover expressions expected from the convolution of the LL kernels. Let
us note that the following property H (d&;, B;, ¥p) — x(v;) was instrumental
in obtaining the above proper collinear limits.

Finally, let us turn to the LL ansatz for the double photon emission
distribution for the simultaneous emission of one photon from the upper



Semi-Analytical Third-Order Calculations. . . 1919

line and one photon from the lower line. We require that the same LL and
soft limits are fulfilled. The type (B) ansatz reads as:

4ra’

Dfi)l?(dlnéhqsl,&,l, ¢1) =

Ptq

X 0(01 - v;)g(&lsﬁl)g(d’;,ag)H(&l’ Bla "/)p)X(v{)

+0(v] — v1)S(é1, B1) S (&), BY) H (&4, By p) x(v1) |- (13)

It is simpler than the previous ansatz because the two photons are now
attached to different fermion lines and we do not need to use “starred” vari-
ables.

The LL expression for the case of double emission from the lower line

ng,)zl]; is constructed in complete analogy to Df )?

We shall now present choice (A) for the O(a”), r = 0, 1, 2, distributions

DErM] The DET)?» r=0,1,2,in the O(a" )prag reads

A 4ma? .
fo,)ol =73 G(p1, P2, q1,92) (1 +v1),
pYq

(ab)? + (cd)? + (ad)? + (bc)?
4(ab)?

D

G(a,b,c,d) = , (14)
where the virtual corrections are the same as in Eq. (2). We note that in the
case of n 4+ n’ = 0 under discussion the identity bo = G(py, p2, ¢1,¢2) holds.

The single photon distributions, D{(; )o](kl)* r = 1,2, are defined as follows

Dt (k) = tra? & S, (k1) (1+v(10(a1,ﬂ1)>
p*q
x (14 85(61, 1)) G(p1,p2, 91, 92) » (15)

where ”[(;,)()] are the same as in Eq. (4) and, for the one photon case under

discussion, the identity H(dl,ﬁl,@bp) = G(p1,P2,91,92) holds. As we see,
up to O(a) the two choices (A) and (B) are identical (no exponentiation!).
The double bremsstrahlung distribution for two photons on the upper line
reads as follows (second-order LL ansatz with correct soft limits):
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DY (ks ko)
= Sp(k1)Sp(k2)8((G1 — B1) (G2 — B2))
x{()(vl —v2) 1 [G(p1,p2 — k2, 41, 42) X (v3)

+G(P1 kzypz,(h,(Iz) (02)]
+60(v2 — v1) 1 [G(p1,p2 — k1, 1, 42) X (v7)

+G(p1 — k1, P2, a1, q2)X(U1)]}
+8, (k1) S, (k2)0(d1 — Br)B(—63 + f2)
x{O(vl — v2)G(p1, p2 — k2, 01, 42) X (v2)
+0(0 — o0)Gpr ki, a1, )X (07) |
+8, (k1) Sp(k2)8(—d1 + B1)6(a2 — B2)

X{0(01 — v9)G(p1 ~ k2, P2, g1, G2) X (v3)

+0(v2 — v1)G(p1, p2 — k1, q1, Q2)X(U1)} ; (16)
where v} are defined as previously. Finally we define
4ra? ~
[(12)1/]1('1‘:17]9;) = it Sp(kl)s(kll)G(PhP%‘Ilyq'z)- (17)
rlq

The above function, although remarkably simple, has all soft limits and the
O(a?L?) limit correct!

2.2. Exponentiated second order

The complete master formula for the O(a”), r = 0,1, 2, exponentiated
total cross-section for the process e~ (p;) + e¥(q1) — e (p2) + et (q2) +
n7y(kj)+n'y(ki), as implemented in the BHLUMI 4.xx Monte Carlo program,
reads

o = oo oo /d3p2 / &gy Y (uip1,p2) oY (21591,92)
n—‘On’_O
- d3k; 3K
x ]I k—QJS(PhPka)H / 'k—,l(rs(qu(Iz;kf)
7 J
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=1

><6(4)( p2+q1—q2—2k -—Zk'){ (Q: P1, P2, G1, 92)
A

+ Zn: (Q p17p27q1’q27k )
S(plap2’k])

:V_: B&) (Q: P1, P2, q1, 92, k)
=1 S(q1,92; k)

B (Q,p1, 2, a1, @2, kjy K
n>j>m>1 S(Phpz;kj)g(l’l,m;km)

BérL)L(Q,Pl,lelh,(h»kf» k';n,)
woism>1 O (@192 K1) 5(q1, 425 k7))

+Zzﬁ2ULQp1 VP2, 41, G2, K; )}_ (18)
TS S, paik)S(a1, a2 k)

Let us also write the above expression in equivalent but more compact no-
tation

. N 1 d3 d®
‘T()"Z_:Z_:;';LT'/ P2/ g2
I1

X

X

s (Pl —P2t+q1—q2— Z ki — ZM) e¥p(20)+¥e(f2L)

n _( (") l
A(r) ﬂx ﬁ (kl IBZUU( m)
+ S i m)
g { L Z 5,() n>J§>ls<kj>sp<km>
ﬂzLL(kl» " Bk, )}
+ Bapn (b k) . (19
,}% ATACH) ZZ ETSEATTS

Let us explain all ingredients in the above expression.
The YFS form factor for one fermion line is generally defined as follows:

Y(QU§P19P2) = QQB(QaPI,P2) + 20%3(1’1,?2)

.« / d3k(171 P2 )2
=1 | 5 e s
T kEDy P1 P2
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d“k i 2p — k 2py — k \2
+2a$2/ <2kp1 — k2 2kp; - k2) - (20)

It is completely determined by the definition of the infrared domains 2y .
For our “rectangular” definition of {2y;, see Eq. (8), the upper-line YFS form
factor reads as follows

Y,(R2u) = vpIn A + éyrs,

o 1
dyrs = —Ypln (I—Zﬁx)'f' ~vYp + — (‘“ 5);

1=1

o 1

and the lower-line form factor is completely analogous. Let us note that in
the latter analytical calculations we shall switch to a “triangular” definition
&; + Bi < 6 of the infrared domain 02, for which

n 1 2
(1 8) hr (1)

Il

T

see also discussion in Ref. [10].

Let us start defining various components of the differential distribution
with the expressions for 5(({) functions, r = 0, 1, 2,in O(0)prag, respectively.
These functions in the YFS scheme are generally defined as

587 = { Dy exp(~Y, () - Yy(2)}

b

O(aT)
B (k) = {D{7 (k) exp(~Y, (20) - Y (21)}

- S, (ki) BTV,

Ofar)
By (ki kj) = DY (ki kj) — B (ki) S, k)
B4 (k;) S, (k; ) — B 5, (ki) S k5) |
Do (ki k) = DI, (ki k) — B (k) S, (k)
ﬁ“)( K)$ () B 5 (ki) Sy (KS) - (23)

We have to stress a very important feature of the above definitions. The

raw distributions Df;)n,] are originally defined in the corresponding N-body

phase-space, N = 2+ n + n’ = 0, 1,2, while 3(") have to be defined in the
presence of any number L = 1,2, ...00 of additional real photons, i.e. in the
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(N + L)-particle phase-space. This requires an interpolation of the original

formulas for D[(;)n,] to higher-dimensional phase-space. This interpolation
is of course to some extent arbitrary and it is a well-known feature of the
(r)B

YFS scheme already discussed in the original paper [14]. For instance D[o,o]

is defined originally in the 2-body phase-space. In Eqs. (23) this function
is used beyond the 2-body phase-space. This case is simple because Dg,)o?

depends only on ¢ and s and its extension to the N-photon case is trivial.

The case of Dg,)o?(ki) is already less trivial. In this case the interpolation to
multiple-photon phase-space is done with the simple substitution k; — k;,
.e. (a1, 01) = (&, B) in Eq. (4). The same method using the mapping of
the Sudakov variables is employed for Dflr’)l? (ki, k;) and the two other double

bremsstrahlung distributions. Generally, for the type (A) expressions, the
interpolation is done through Mandelstam variables and Sudakov variables,
while for the type (B) the interpolation is done using almost exclusively
Sudakov variables.

For the purpose of the analytical phase-space integrations over the type
(B) differential distributions, we write in the following the explicit expres-
sions for the 3’s. In this case we express all distributions and the phase-
space integral in terms of the Sudakov variables. In particular the “soft
bremsstrahlung integration element” is parametrized as follows

d3k; N S .3
[ S5k = [des [ dadi 6+ B - aibi - 2) 5,(a,5)
k,ﬁﬂu '

= /dw,- 0(a; + B; — &:if; — 4),
. o &:3; me
N b 5, = —=%. 24
Sp(al, ﬂt) 2 (511' + 6pﬂi)2(ﬂf + 5pdi)2 ) P ltpl ( )

The new soft factor S,(éy, ,5,) differs only by normalization from the stan-
dard YFS soft factor

S(p1,p2, k) = Sp(as, Bi) K;/(p1p2), (25)
see Eq. (7) for the definition of K.
Let us begin with the O(a")prag expression for ﬂ(()r)B, r=20,1,2:
~ 2
(()r)B = dma bo (1 + K(r)),
tptq
O =0, V=9 P =741y (26)
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Note that this choice is different from (simpler than) the corresponding one
in Ref. [10]. Next, we also write explicit expressions for the upper line

emission function ﬁg}B, r=1,2.

, : ara® KX |,
,B( )B( uﬁz) = _t-“t‘_ (pl;Z) gU)(au/Bzadh),

(&, Bir #i) = Sy, Bi)H (&, B, ) — boSp(di, Bi)
b (&, iy i) = sp(ai,ﬂ,«)(l +w(a¢-,ﬂ;))H(ai,5i,wp)

—boSp (&, B:) (1 + 7 (0, 0)) :

s 1 (1-5)?

iy Mi) — —1 . 27
The lower-line function B§ is defined in a completely analogous way. The
explicit expressions for the O(a?) double photon emission 3, distribution

4ra? K4

IBQUU(alag1’¢lsajaﬁjv¢]) tt ( 11))

B dra? K2K? L - s
2) (a’z, ﬂn ¢z7 Qe aﬁ] y ¢] ) P_¢ b2UL(ai, ﬂi’ ¢ia Qg ry /8_7"9 ¢J’)’(29)
tpty (P1P2)
are easily deduced from their definitions.

Let us finally comment on the exponentiation of the type (A) matrix el-

b2UU(anﬂu &, 0‘]1/6]7 ¢J) ( )

ement. As in case (B) we substitute the corresponding D[(;?ﬁ] into Egs (23)
and the only non-trivial matter to be discussed is the (off-shell) extrapolation
of the distributions D[( )A ] into the multi-photon phase-space. The extrapo-
lation is here even s1mpler than in case (B) because instead of the function
H(&l,,él, ¥p) we employ the simpler function G(py, p2, q1,q2), Which con-
tains momenta only of fermions, and is therefore, by construction, “blind” to
any individual spectator photon. The usual substitutions k3 — k;
(1-photon case) and (ky, k2) — (ki, kj) or (k1, k7)) — (K, k}) (2-photon case)
are obvious in the realization of the extrapolation.

3. Semi-analytical integration

Analytical integration over the multi-photon phase-space for the true ex-
perimental ES, i.e. set of cuts, is practically impossible’. What we may try

7 See Refs. [20,21] for an example of semi-analytical integration over the phase-space
for another unrealistic ES.
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to achieve is to perform an analytical calculation for the ES as close as pos-
sible to the true experimental ES. The primary aim of this work is to obtain
analytically the total cross section for the matrix element of the BHLUMI
multi photon MCEG with a precision of at least 0.03%. This exercise is,
first of all, a zero-level test of the correctness of the implementation of the
O(a?) prag matrix element in BHLUMI. The exercise has great importance,
even if it is done for unrealistic ESs, provided that the high precision below
0.03% is really achieved. In the above spirit the type of ES was chosen in
such a way that the analytical calculation is maximally simple. Of course,
gaining experience from this step we are now in a much better position to
repeat a similar high-precision semi-analytical (SAN) calculation for a more
realistic ES in the future.

Having the above in mind, we have defined here an “academic event
selection”, called for short an “academic ES” or AES, for which the task
of analytical integration over the phase-space is feasible and the result is
not overwhelmingly complicated. We define the cuts of our AES as follows:
[tmin| < |t| < |tmax] and V < Vjhax, where the variable V' represents some
kind of measure of the total energy carried away by all emitted real photons.
The requirement of 0 < V < 1 represents the condition of completeness of
the phase-space and the particular case 0 < V < ¢ represents the condition
that all photons be soft. The V-variable we actually use is defined as

V=1-2,2, (30)
7 = (p1p2) l¢] ) zZ, = (q192) |t} . (31
[(pir2) + S (o1ky) [(0102) + T (k)]

With the above definition of the phase-space window, it is quite straight-
forward to integrate the O(a?)prag matrix element, keeping all terms within
the O(a?)prag approximation. This we found insufficient to establish a tech-
nical precision at the 0.03% level because some terms beyond O(a?)prag —
especially for partially incomplete results — are of that size. See Sec. 1.3 for
the definition of the O(a")prag approximations and for a discussion of the
numerical importance of the various perturbative corrections.

We have therefore decided to integrate analytically up to terms® of the
O(0®)prag. In the O(a®)prag approximation we include by definition all terms
from O(a?)prag plus terms of O(a®L3) and O(a?L). In other words, terms of
O(a’L), due to our LL ansatz, and terms of O(a>L3), due to exponentiation,

8 This is to our knowledge the only example of analytical integration over the full
phase-space up to three photons.
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are integrated analytically over the entire phase-space (within our AES)
exactly! The first results of the analytical integration (without any details
of the calculation) were presented in Ref. [5]. ~

In the following we shall integrate analytically contributions from Bo, 51
and B,. These three calculations differ substantially. For 3y the main diffi-
culty will be in the very precise integration over “spectator photons”, because
@0 contributes most of the total cross sections. At the other extreme, for the
B2 contributions, the integration over “spectator photons” is either absent or
can be done easily in the LL approximation. However, the integration over
the “active photon” variables, which sits directly in the G, is very compli-
cated and is the main source of difficulty. The case of 3; is intermediate and
the most complicated, because both integrations, over “spectator photons”
and “active photon”, are difficult and interrelated. We start with the 3y case
because results of integrations over “spectator photons” will be useful for
the rest of the calculation. It is also well suited for an introduction of the
notation and basic calculation methods.

8.1. Preliminaries

Here we calculate the contribution to the total cross section from the Go
part. For fixed Q2 =t let us consider the corresponding distribution

dot?) 4
Bo Ta? (r) 4 47ra/
qav = o Pe BV = e )

x [ dw, > . 1 [ (@ + B - s — ) rvin s
n=1 " i=1

xO(l-2 )5(v - zn:(&i +B8i - diﬁi)) (¢xk,)

=1

i 5> ,.H/ du(&} + Bi — GLB1 — A) el A+ors

n'=1
x 61 - 2,)6(v' = Y& + B - &) )0,
=1
X ﬁ_or) (V —v—v +uvv))
dral

= Wbo(l + &) / dvdv'§(V — v — v’ + vv')) Bo(v) Bo(v') , (32)
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where

— 1 S -
Bo(v) = /d¢p z_:l ] q/dwg 6(&i + B: — @B — A) e¥pinA+8yrs

x O(1 - 2,) ié(v - (ai+Bi - &,ﬂ})) §(x,) (33)
=1

=1

corresponds to the emission of photons from a single line and will be calcu-
lated in this Section.

Let us note that the constraint 6(¢x,) reflects the requirement that in
the QRS,, frame where p; = (E,, 0,0, —|p|) and p; = (E}, 0,0, |p|), the total

N
three-momentum of all photons K = }_ k; is in the z—z plane, 1.e. K, =0.

=1
(In the actual Monte Carlo algorithm, this is realized easily with the help
of the rotation around the z-axis, which makes K, = 0.) Note that in the

single photon case kisin the z-z plane while %, is simply its azimuthal angle
around the t-channel momentum transfer ). This kind of parametrization
of the single photon was employed in the early work reported in Ref. [22],
which later led to Monte Carlo of Ref. [23]; it was also quite essential in the
analytical O(a) calculation of the luminosity cross section in Ref. [24]. The
multi-photon generalization was given for the first time in BHLUMI 1.x [9].

Furthermore, for any semi-analytical calculation it is crucial that we
also know ezactly and ezplicitly the (upper) phase-space limits. Here they
are given with the following condition®

2, = (ui&,) (1-2%&) -%1’(2 > 0, (34)
=1 =1

where K = Y, k; and the dimension-less k; are defined as in Ref. [9].
The above expression is totally equivalent (no approximations) to that of
Eq. (31). Note also that the following identity holds

3

5 — Z__ ZP mg
PRI T a T
o) T

(35)

Y

We shall use the completely analogous parametrization in terms of variables
&, and ! for the lower line.

® The same condition has already been implemented in the BHLUMI Monte Carlo [9].
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3.2. Collinearization

In the first step in our analytical calculation we introduce a series of
O(a®)prag approximations, which leads to collinearization of the integral
(3.1), i.e. in the resulting integrals we shall be able to factorize initial- and
final-state photons and sum up infinite sums over photon multiplicity. A
very similar collinearization procedure will also be applied in the calculation
of the B; contribution in the next Section.

We start with approximating the function Z,, which monitors the upper
limit of the phase-space, as follows

Zp—*z_p=1-zn:(5ti+ﬂ~i—5zi5i)= - v (36)

The above approximation leads of course to

V=1-(1-Y(6+8-&8)) (1 - @ +8-ab)). (37
J !

The above two approximations are valid not only in O(a?)pmg but also
within the LL and next-to-LL approximations to any order!

The above ansatz is crucial for all further O(c?)prag approximations. It
is valid for one non-collinear photon and an arbitrary number of collinear
photons (as can be checked with explicit kinematic considerations) - it is
therefore valid not only in O(a®)prag but in LL+NLL to infinite order. Let
us now reorganize the integral as follows (no further approximations). We
separate photons in the sum into two categories: (i) photons with &; > 3;,
which will be referred to as initial-state photons and (1) photons with &; <
B; called final-state photons. Using the identity

dw; = 0(&; — B;)dw; + 0(5; — &;)dw; = dw! + dwf (38)

we obtain the following expression
By(t,v ) = /dvldvpdvlé(v — vy — UR) / dippf(1 — v — vp)

. © 1 n n
X [eE”PI“AZ——'H /dwf&(v,-Zv,-)]
n=0 n: i:Iv,’>A =0

!

X [e%wnd i % ﬁ / dwF §(vp — Zu,-)] e5vFs §(gc.).(39)

n
n'=0 " " j=1 v;>A 1=0
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Our aim is to integrate and sum contributions from the initial- and final-state
photons in square brackets, in the first place. This is non-trivial because all
parts of the integral are interconnected through the variable

5p =

1—v m
T

(1 ~Bz—ﬁp>

which is present in all parts of integrand. We achieve the separation of
the multi photon integration/summation by means of the following crucial
approzimation

2
e
|’

BI = Zﬁzla BF = Zﬁf‘7 (40)
i=1 J=1

2
1—-v mg

(1-vp)? It
As is shown in the dedicated Appendix A (Sect. 10) we are allowed, within
O(0®)prag, to do the above approximation in all bremsstrahlung distributions
dw; — do; and in part of the form factor eWwnd _y 03904 The rest of

the form factor requires, however, more discussion. Much as in Appendix A,
we may prove that for

6y — 8, = (41)

< = S 1 af 1 2
Ovps (Yp, b1+ BF) = —vpin (1 = Br = Br) + 7% + — (—5 - ?) (42)
we are allowed, within O(a3)prag, to approximate!®

8vFs (Yp, Br + BF) — Syrs(Tp, Br + BrF). (43)

With all the discussed approximations we obtain the following expression:
1
By(t,v) = fdvldvp5(v — v — UF) /dwp

[ezVPl“AZ H /dwlévl—zn:vi)]

= U>A =0
,nl
ina F
[eﬂp n Z = H / da; §(vp — Zvj)}
n'=0 1= 1vJ>A 1=0

X 8(6x,) eSvFs(Wp.B14+0r) (44)

' We have checked with a special dedicated MC run that the relative error introduced
by the above approximations is below 107!
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In the above we have introduced the self-explanatory notation
o _oaf, (1-vr)® [t ) i (L= vr)?
=2—{lh—— -1 2 . 4
e ”(n 1-v m2 LA 1—-'0 (45)

At this stage the only contribution that prevents us from separate inte-
gration and summations over multiple initial and final photons is the dyrs
form factor. Let us discuss this point in a bit more detail. We would like to
replace 1 — 0 and B — vr as we did prev1ously in é,. We cannot do it,

however, because the difference exp(dyrs (7p, Br+ Br)) — exp(dyrs(¥p, vF))
may give a non-zero O(ay) contribution. In fact only the first term in the
expansion

e5YFs("/p,ﬂ§f+5F) — &Yrs(Apivr)
=% (=In(1 = 1 + fF) +In(1 - vr)) + O(52) (46)

matters. Furthermore, this term may yield a non-zero O(ay) contribution
only in the single-photon case. This single-photon contribution to By reads

1
Bgi“g(t, v) = /dvldvpé(v — vy — vF) /dd)p
0

x [5(UF)/da{ §(v1 — v1) (= In(1 = A1)
+5(vr) /d@{‘ §(vr — v1) y(In(1 = v1) — In(1 51))} 5(éx,). (47)

Luckily, the two terms in the above formula (from initial- and final-state
emissions) cancel after integration over d@y, so in principle we may drop out
this contribution. (It has to be kept, however, for the future applications
in which one will distinguish between the initial and final bremsstrahlung,
so we shall calculate it later in this Section.) In the resulting expression we
may finally pull the form factor completely out of the multi photon integrals

1
Bo(t,v) = /dvldvpé(v — vy — vF) /d¢p
0

X eSYFS (WPY’UF)

[eE’YP‘"A io: nl” / dw} §(vp — Zv] ] 8(¢k,)- (48)

n'=0 Jlu_,}A
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The integration [ di, can be done at the expense of §(¢x,), which is not
completely straightforward; for more details see the next Section on f; cal-
culation. The integral

1
By(t,v) = /dvldvpé(v — v — VF)
0

% e®YFs(3pvF) f (—%7],, UI) f (%’—)’p, 'UF) (49)

clearly factorizes into a convolution of the two functionally identical expres-

sions
InA
f1< =T & )-—eﬂpn ZR'H /dw 52,"—4 v;). (50)
n=0 =1,>5a4

Note that the convolution is not completely trivial because 7, still depends
on vp.

For the sake of completeness let us also give an explicit expression for
the initial-state contribution in B5™8

BirS(v) = — [ dof 8(v ~ é1 - iy + @) 7 In(1 - B1)

= 72 2 (gt - v +Lis1 - v)

+Liz(1) - 2Liz (VI=v)) . (51)

3.8. Single hemisphere multi photon integral

In the following we shall calculate the multi photon integral f;. We
immediately find that the integration over the photon angles leads to

~ _ dUi _ (a4
v, >4 vi>4 vi>A4

and hence

fl( o @ )—

N]'—

i=1

x/ ‘izr[ _%ln(l—v,) (:s—Zv,). (53)

v, >4

oL
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The function f; at the z — 0 soft limit coincides with the well-known soft
photon integral

folg eglndifl,n [ Lse-3 v =Flo)e 64

n= ti=l uSA 1=0

where
eCyg

PO = 1079

and C'is the Euler constant. We did not attempt to obtain a close expression
for f; distribution because it is rather easily expandable in powers of « and
in fact, in the O(a3)prag, We need only the first term beyond Eq. (55). More
precisely we replace

(55)

I1 B - 2 (1= w)] =35 - 35712 Zln 1 - v), (56)
=1

and we evaluate two multi photon integrals using Eq. (55):

£i(¥imz) = 1 (430.2)

In(1 - 1 1
2P () [ 22 e - i o)

Expanding the second integral in powers of ¥, we find

1_ 1. i, _

N (57’”:))) = F (571’) 7271

1_ la 1o

X[;y,,— E—ln(l—m) - g—'ypln (1—x)]. (58)

The above formula was checked with the help of the dedicated one-dimen-

sional Monte Carlo program. We have checked numerically the transition

from Eq. (53) to (58) and we have found agreement better than 3 x 107°.

It should be noted that we have also calculated analytically the explicit

O(a*)prag expression for the f; function (we do not include the relevant
results here).
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3.4. Conuvolution integral

Our integral

Bo(t, v) — /dvF eSYFS(’—YP(UF)v'UF') fl <%75/p(vl;v)’ v - ’UF) f] ('21' ( ) UF)
4]

(59)
is singular (but integrable) at the end points vp = 1 and vg = v. For exam-
ple its integrand behaves like ~ vg/ (0= 5 vp — 0 and the integration
J dvr contributes 1/%,(0). Because of that we cannot expand it simply up
to O()prag terms and integrate term by term. The proper way of proceed-
ing is to isolate two singular contributions and integrate them separately.
The non-singular remnant is truncated to O(a>)prag and integrated term
by term!!. Of course, there is a freedom in the choice of the two singular
components and we shall choose them to be maximally simple. We define

the first singular contribution as follows

BOA(t U /dva‘sYFS(’Yp(O) ,0)

%p(0)

% fi (37(0),v) fo (3%5(0), vr) (v~—vvp> . (60)

where the additional factor ({v—vF)/v)? at the end of the formula is chosen
in such a way that it does not affect the residue, i.e. ((v — vp)/v)? =1 at
vp — 0. It is introduced to facilitate the transition from FZ%(%,(0)/2) to
F(%,(0)) and later to the standard normalization factor F(y). The second
singular contribution we choose in the analogous way

N)b—l

BOB(t,U) o= /dvFesYFS(;?p(v),vp)

<o 3300w = vr ) i (3000, (£) O o

The non-singular integral (expandable to O(a3)prag prior to integration)
reads, of course, as follows

BQR(t, ’U) = Bo(t, v) - BgA(l, ’l)) — B()B(t, ’U). (62)

"' The actual calculation was done by hand and also using the program formi for
algebraic manipulations [25].
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Let us introduce a short-hand notation, which will be useful also in the
following Sections:

7.(.2
Avrs(y) = %’)’"F %( - % - _6—>’ (63)
Y =y -22In(1-v) = 3,(0), (64)
7'(0) = 7+ 2 In(1 = 0) = 5(0). (65)

The two singular integrals read

S’

Boa(t,0) = ¢4 £, (/)0

Byp(t,v) = edyrs(?v") =" In(1-v) fl(l’)‘” v)
v -1_’7
Jousfirow) (2
0
r’(1+4v) 1.

— edyrs(?")—7" In(1-v) 1.7 ity —~ 2 7/
— edvYF fl( =", v)F(27) F(1+7”) v2’

(66)
and the non-singular is found, as usual up to O(a?)prag, to be:
Avrs() a1 3 3a 2
Bog(t,v) = e2YFs\V) F(y)0” -37 + 17 In*(1 - v), (67)

so that the total result is
Bo(t,v) = F(y)v" tedyrs(v {7 - (—:-m(l - v)

—%72111(1 -v) + é—'yalnz(l -v) - %71112(1 - U)} (68)
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3.5. Combining upper and lower line

Combining upper and lower line is done using exactly the same methods
as combining initial- and final-state contribution for the upper fermion line
described in the previous Section.

The two-line contribution from B(()r) reads, in three consecutive orders
r = 1,2, 3, as follows

0t V) = b (14 £0)) / dvdv'§(V — v — v + vv')) Bo(v) Bo(v')

= by F (27) V¥1—1e28vrs(v) (1 4 k(1) {27 - 279:- In(1-V)

-2¢%In(1 - V) + 2731112(1 -V) - 7%1112(1 - V)}. (69)

8.6. Numerical results on fo

In Fig. 1 we compare our semi-analytical result of Eq. (69) with the
numerical Monte Carlo result of BHLUMI. We plot the quantity

Vmax da'(.o)
Rt Vi) = 20— = / POt V) av (70)

as a function of the cut on the total photon energy Vinax, for the fixed transfer

T

0010

RV..) f"ﬁ#’v U
P — MC x10™?

0008 ooo ANL x10-?
- MC-ANL
0000 frettererserereuiiiereetoniannrer
- 0005 -
—.0010 | anmx 4

1 L

.25 .50 .75 1.00

Fig. 1. The _comparison of the Monte Carlo and semi-analytical results for the
lowest-order Gy.
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t = —4.612982 GeV2. We plot and examine the difference of the MC and
the SAN results. The actual MC and SAN result are also plotted — they
have to be multiplied by a factor 10~2 in order to be seen in the plot. In
the semi-analytical result the integration over V is performed numerically
(using the standard Gauss integration method). As we clearly see in the plot,
the MC and SAN results agree to better then 1.5 x 10~*! The same level of
agreement was reached for ﬂ—(()l) and 332). In spite of the simplicity of Eq. (69),
the above result is very important — it is a cornerstone in establishing the
overall normalization of the BHLUMI Monte Carlo at the level of 1 x 1074,
simply because (B represents 95% of the total cross section.

4. Contribution from 3,

In the following we consider the emlssmn from the upper line only, 7.e. we

concentrate on terms proportional to ﬂIU, r = 1,2. The total contribution
from the lower line to total cross section is the same. For fixed Q2% = ¢, let
us consider the corresponding distribution

dalU _ (,.) 4ra?
T = It|2 2 V) = T /dvdv

x /dlplf7 Z o H/d‘*’i 6(&; + B — &f; — A) e In A+byrs

n 3(r) n - .
xO(1~ Z,) ) - b ((Oi"gz; (U - (& +Bi - &iﬂi)) 6(¢k,)
i=1 S i i=1

/d¢q Z ,' H/dw/ 0( +,8/"' :ﬁ*:_A) eYaIn A+50pg

nl_

n'

<601 = 2)5(o - S+ B~ ald)) a(or,)

x8(V — v —v 4 vv')
dra?

= /dvdv'5 V-v—v 4o )Bgr)(v) Bo(v'), (71)

where we know the function By(v') from the oy calculation and the new
function

Bgr)(v) = /dgbp Z % H/dwﬂ(&z’ +/éi — &P — A) &pin A+dvEs
n=1 ‘=1
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(T) n . -
xe(l_z,,@ ((a :g)) (v-;(aim—aiﬂ,—)) S6x,)  (72)

is to be calculate in this Section.

4.1. Collinearization

In the first step in our analytical calculation we introduce a series of
O(03)prag approximations, which lead to collinearization of the integral (4),
i.e. summation/integration over an infinite series of photons. We start, as

in the Gy case, by approximating the function Z,, which monitors the upper
limit of the phase-space, as follows

Zp_)zpzl—Z(di+/éi—diBi)=1"2”:’- (73)
=1 =1

Let us now reorganize the integral as follows (no further approximations).
First we separate the photons in the sum into two categories: these that enter

into b( ") and those that do not. Each of the above categories is split into
two categories, which will be tagged with the index K = I, F: (i) photons
with &; > B;, which will be referred to as initial-state photons (K = I) and
(i) photons with & < f;, called final-state photons (K = F). Using the
identity }

dw; = 0(&; — B;)dw; + 8(B: — &;)dw; = dw] + dw (74)

we come to the following expression

B (t,v) = B (t,v) + Bt v)
B{Atv) = [ dordvrdvy 6(v = vr - vr = v1)

x/dt,bp()(l-vl—vp—vl)
x [ dwff6(un = 1 = B+ &1B1) (G, B)/SplGn, Bu)
[ez“’ﬂ'"“ Z H / dwlé(vy - i”t)]

n=0 'z- v>A 1==0
'ﬂ,
=vpinA F 6
[ebmna 3 ,,n /dij > )| bom,).
n'=0 SA =0

(75)
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The next step in the collinearization is similar to what is done in the case
of [p (using the theorem proved in Appendix A) by means of the crucial
O(0®)prag approximation:

2 2
1-v m; 5K _ 1-v mg

N N N 3 ltl — 5 3 TT (76)
(1 — b= B1 - ﬁF) (1 — V1K — UF)
where v;;7 = 0 and vy = vy, in all bremsstrahlung distributions d@{‘ and

doX and also in part of the form factor e3wind Iy the remaining part of
the form factor within O(a3)prag We are able to substitute

op =

8vrs (Y, B1 + Br + Br) — Syrs(¥X,Br+ Br+ 1), K =1I,F. (77)

Here we have implicitly introduced the following self-explanatory definition:

. - - - - -)2
,7{’( — 2_(_7:_(11,1 (1 VR ’U1[\) |tl ) — ’)‘+2%1ﬂ (1 73 le\) . (78)

1-v m2 1—v

With the above approximations we arrive at the following expression:

Bg\), / dvrdvpdvié(v — vy — vF — v1) /d¢p
7/81)
ok 8(vy — " b{D(é
'/ (o= 0 =+ 2 Sp (@1, B1)
[2’Ypln42 H /dw(s’l)[—zvz]
. i=1 9u>A
1 I R B n'
[ es Z T, H / diof §(vr — Zvj)]
'=0 j=1 u; >4 i=0
% eSYFs(ApBr+Br+b1) g (‘f’!\’p) ) (79)

As we see, the only thing that now prevents us from integrating and summing
over the mﬁmte series of photon contributions is the form factor dependence
on B; + Br + B1. Similarly to the fg case, we expand

eSYPs(3 Br+Br+h1) — oSyrs(,vr k+ur) {1 + "yf[ln(l ~ vp — V1K)

~n(1- B - fr - Bl + O} 60
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and we are able to perform the integration and summation over the infinite
series of photon contributions for the first term in the above expansion,
while for the second term the summation is irrelevant because the only
O(ay) contribution of interest comes from the single-photon configuration.
Consequently, after performing the multi-photon integrations/summations
we obtain

BYAl(t» v) = /dvzdvpdvlé(v — v —vFp —v;)
d L
X/'é%/dd’uﬂs(m —a; — B+ é16)

s A3 - ]
@B hvnstif ) £, (455, 0r) fy (195 vr)

Sp(dlyﬁl)
- [dy N I o))
+ /dwm/#é(v—al -5 +01ﬁ1)m
xv[In(1 = vig) — In(1 = B1)]. (81)

Note that the elimination of §(¢x,) gives rise to the 1/2x factor!2. Concen-
trating on the more general second-order case the corresponding integral is
brought to the following nice form, which is the starting point for further
work

sz;\,)—(t, v) = /dv;dvpdm&(v — vy —UF — V1)
X / %%/d&-}l[{ (S(’U] - 5[1 - ,51 -+ &1,@1) [bol/(‘vl) (1 + ’)‘7((0))
+box(v1)7 (m(vik) — 7(0)) + (1 + vy (vik)) h(é1, B1, d)p)}
% edvFs(3 vrtuk) fi (%.7;7\" 'UI) fi (%75" UF)
+/d5111\' / %"5(11 — @1 — B + @1 51)[bov(v1)

+h(@r, B, Yp)YlIn(1 — vik) —In(1 = B1)].  (82)

In the above formula we have isolated the leading-logarithmic contribution,
using the following decomposition into leading-log and sub-leading parts
(prior to integration over the phase-space):

H(&1, B1, ¥p) = box(v1) +h(&1, Br, ¥p) = bo+bo v(v1) +h(Gr, Br, ¥p) , (83)

' The formal proof goes as follows: one may add integration (27)~! f d¢$ = 1 over
dummy ¢ angle, then rotate all photons with ¢. All of the integrand is invariant
under such rotation except §{¢x, ), which transforms into §(¢x, — ¢). This now can

be removed at the expense of f do.
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where

x(@) =301+ (1-2)%), ve)=x@)-1=z(-1+%). (84)
Let us still reorder our integral, perform some relatively trivial azimuthal

angle integrations and do the integration over 1, and d¢; in dw;. Neglecting
unimportant terms of O(af) and O(m?/t) we find!3

/dzpp/dwl (vy — @& — By + &1 B1) h(dy, Br, ¥y)

= /déldﬂl (vy — & — B + @ f1)g(é, B1) (85)
where
2 s =
5, ) = (2 ég) _ x(v) L
o, ) =5 (45 ) 420 - D+ Jand - € 22 =
vi =i+ Bi6), 2= B+ &k, (86)

With the help of the above identity we obtain

Biz)( v) = Bﬁi\)m( v) + Bii\)smgl(t Ul)?
Bgi\lm(t’ U = /dvIdUdelé(v - V7 — VU — Ul)

—/ [oylllf: (bou (v1) (1 + 7#(0)) + boX(Ul)’Y<7T(U1K) - ”(0)>)

+(1 + 7”(011&'))!](&1731)] eSyrs(ptvrtuk) ) (%’?,f(, UI) h (%’7;{,”1?) ,

1—-w
Bg\)smgl 2 Ul = _7/ [ bOV vl) + g(al’ ﬂl)] 1 ﬁ”\ (87)
- b
where we use the following short-hand notation

/ = / déndBi8(vy — é1 ~ B + &1B),
u &>
/ = / dédf16(vy — @1 — Br + éu1fr) . (88)
LF &1<h

13 We have checked numerically with the help of a dedicated MC run that the approxi-
mations in the above equation introduce only 10~ of relative error.
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We are now ready to integrate over the direction of the first photon. Let
us start with the single-photon sub-leading integral in Bg I\) “sing (£ V1) As in
the Bp case we find that it does not contribute to the total result because
cor%;;rlbutlons from(t%le initial K = I 'and final K = F state d(? cancel due to

By rsing(t:v) = =By Fsmg( v). This is generally true for any integral of the

form
1-— ’01]\

-6’
where f (971, Bl) is symmetric. Note that here the non-symmetric O(§) part

in g(é4, 1) can be neglected. Nevertheless we calculate this contribution
explicitly, for the purpose of some important future tests, see Section 8:

2 o v
Bil\lsingl(t’ v) = 7;{ -1+ 5 + m
+1n2(1 — v) [— - v+ —

+(1/0)[Liz(1) + Lia(1 - v) - 2Liz(y/(1 ~ ))]}. (90)

In the main leading logarithmic integral

A (vy) = / (@B tn (89)

B?I)\.)—m(t, v) = /dvldvpdvlcs(v — v — vF — V1)

1- (%1
+g(&1,Bl){1 +7< +-1In _(11‘_1’101;')2) H

x efvrs (g wrtuix) g (%’7;{", UI) h ('21"7;{{} UF) (91)
we need the following elementary integrals
©GH (1) = _/A lefll 11 [ - 2 n(l-w), K=LF
o) = 2 [ g, )
= % % (—3+ gv) In(1-wv)+&7y %U:I-)M’
%gf(vl) = %/F ‘(011,31)
:%%( 342 )m( HMS—(T%' (92)
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The integration over the photon direction with the help of the above formulas
leads to the following results with a 2-fold convolution

B (t,v) = B{7), (6,0) + BiZ,, (t,0),
Bg}n (t,v)= /dvldvpdvlé(v — vy — UF — V1) efxrs(ipvr)

X [1_1_. {’_7;{ -2 In(1- vl)} (bol/(vl)(l +7) = box(v1)73In(1 - vl))

2v1 T
+= ga(vl) {1 +7 (1 - ihn(1- Ul))}] (2%,01) fi (%“7;, UF) ;

Bﬁﬂ)m (t,v) = [dvldvpdvlé(v — vy — UF — V1) eSyrs(3g wrtu1)

X B v11 {‘?{ - % In(1- Ul)} (bov(m)(l +7) + box(v1)v3 In(1 - Ux))

+%gf(v1){1 + (14 Hn(1 - vy)) }] fu (835 o) £ (335 0r) -
(93)

4.2. Last integrations

In the following we shall evaluate two double-convolution integrals start-

ing with Bi F) , which is a little bit easier. Generally, we shall use the same
“pole decomposition” procedure as in the By calculation and it will be used
twice in the process of integration. We have some freedom in the order of
integration, which we will exploit to facilitate the integration. In the case

of Bﬁ-)m it is easier to perform first the sub-convolution in variables v and
v; keeping u = vp + vy constant because u enters in a natural way into

7F (vp + v1) :7+231n£}_"f___"i "(v)+4 p LTV Z U (94)
T - v 1-v
Let us recall also the definition of the form factor
5YFS(’7£(UF +v),vF+v1) = — ’yf(vp +v1)In (1 —vp — vy)
1—F (44 1 72
+ Z’Yp (vk+v1) + p (—‘2‘ - —6") , (95)

see the notation in Egs. (63)-(65). Summarizing, the non-trivial dependence
of f1 on vg +v; = v— vy through 7F dictates the following economical order
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of integration
Bi?m(t, v) = /Ov dvrdud(v — vy — u)
x ebvestis (0 £, (158 (w), o) RP (35 (w),w),  (96)
where _
Rg)ﬁ;’, u) = /dvpdvlé(u —vr—v) fi (%’75, vp)
X [1 kS {’75 - % In(1 - %’1)} (bou(vl)(l +7) + box(v1)v5In(1 - Ul))

20,
+%gf(v1){1+7(1+ih‘(l‘”')) }] ®7)

The inner convolution is done with the usual techniques, see the case of o,
and the result reads as follows:

x{:y}f (—— + Zu) + %ln(l —u)(~1+u) + (%) (——é—u)

_ 1 1 1

11 11
+riin{l—u) {75 - gu) +rLiau{-g + ¥

1 1 1
3 a2 f_ 1 1
+7°In(1 — ) ( 16+32u+16u)

+ g§u-{- 21 (l—u)( §-+§u)
Tagt T " 8T8

o 2f 3 3 1)
+77rln(1 u) ( 4+4u 1u
5

(43

where we have replaced *'/f — 7 wherever possible. The second integration
yields us the<total second-order result

B3 (t,v) = 160 F (") v exp(Ayrs(1”) — 7" In(1 - v))
e :U_ 9_ _ _ "2 _2
x{'y ( 1+2>+7r1n(1 0)(~2 + 20) + ( 2)
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(99)

In the latter discussion we shall also use the corresponding results for the
first-order matrix element. It reads as follows

B, (t,v) = Lbo F (4") v exp(Ayrs(v") — v"In(1 - v))
ni_ v a _ _ w2 ¥
x{'y ( 1+2>+W1n(1 v)(—2+4+ 2v) + v ( 2)
3(2) 4811 - _1) 31n2(] — (1 _ z)
+v (4>+‘yln(1 v)( 1 +v°In“(1 - v) 173

. 1 v 7
a0 (3-5) +12 5

4 T 2
o 7 3 a,
+7;ln(1 - ) (-2— - —2—> +’y;ln (1 -v)(—3+4+2v)
o, v

In the remaining initial-state contribution, the order of convolutions is
dictated again by the vy dependence in

=1 _ a (1-vr)? A a _
‘yp(vp)_'y+27rln g _7(v)+4ﬂ‘ln(1 VF), (101)

which suggests that we convolute first v; with v; and next u = vy + vy with
vr as follows

Bgﬁn(t’ v) = /dvpdué(v - v — u) eSvrs(ip(vr).vr)
0
X fi (%7;(’010)» UF) Rfr?)(?,f(vp*), u), (102)

where

R Ghu) = [ dordvid(u— v — i) i (334, 01)
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X [1 1 {'yp T In(1 - U1)} (bol/(vl)(l +75) - bOX(vl)’Yi‘ll’l(l _ 'Ul))

210
+;ga(v1) {1 +7 (1 — +In(1- Ul))}] . (103)
The result of the inner convolution reads
R(I2)(»I£7u) - F (171) (1/2)%
(—% + —u) + 2 In(1 - u)(-1+w) + (7)? (——%u)
+77; —% -}Iu) +7'7;ln(1 —u) <i - éu - %)

1 11
3 _ = 3 - B el
t ( 8”)+7 In(1 “)< 161 16" )

11 1
B2 (L 1 1
+77In(1 - v) (16 32" 16u)

a3 o 5 5
+7;§u +7;r—ln(1 — u) (—— + —u)

8 8
+7—:§ln(1 — u)? (i - lU-i- 41u)
+7 2 Lig(u) (——% + -gu) - 762{{(_2_‘)@ } : (104)

where we have replaced ’7; — v wherever it was possible. The second in-
tegration/convolution leads to the following results for the corresponding
O(0a?1) prag matrix elements

Bgm (t,v) = lbo F(¥) v edvrs(v)

x{y’(—l + 5) + %ln(l —v) (=24 2v) + 47 (—-;-v)

(1.0 "] — 3_2___1_)
+77<1+2>+7'yln(1 v)<2 1 5
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2L O\ a1 — v — £ XV }
+77rL12(v) (1 + 2) Ev0(1 —v—¢§) T ol (105)
Bgllz-n (tv U) = %bo F(’yl)v’Y, eAYFS(’Y')

x{7'( 14 g) + i;‘—lnu —0)(=2+20) + 4" (—-g)
+ﬁ(§>+7%nﬁ—wﬂ<—%+g>

+73Lis (v) (—% + z)
+ﬁ%(%)+7%mu-m(;—%§

+72In(1 - v)(-1+v)

+’7%Li2(v) (1 + -’2’-) —§y8(1-v - «S)M}- (106)

l1—wv

In the above expressions we still kept the v/ and " resulting directly
from the integrations. In the final expression for the B;-function we expand

them

BP (v) = by F (y) v edvrs®)

x{'y(— 14 g) + %ln(l - 0) (=24 2v) + ¥3(-1)

£ In(l - v) (% B g) 42 (_2) +~%In(1 - v) (i—+-§>

1—-vw
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v) v eAyrs()

F(
x{’y(— 14 g) —l—%ln(l—v)(—2+2v)—}—’y2 (—g)

31n(1 - _lﬁ) 31n2(1 — (_l_”_)
+v°In(1 v)<4+8 +7°In*(1-v) 8+16

+ g(7—”)+ “in(1 — v) (3_5—”)
Ta\2) % 272

2?1 -0) (1= 5) +951a0) (-3+ F)
et —v-05 0 (5) | (108

The above result represents the 4, contribution in the total absence of the
photon emission from the lower line. In the presence of the photon emission
from the lower line (at the 3y level) we have to perform the convolution of
the above results with the function By from the lower line

P, V) = /dvdv'é(V —v =+ o) B{" (v) By(v'), (109)

see also Eq. (4). The corresponding second- and first-order results read
(remember that virtual corrections are here as for emission from two fermion
lines!)

PD(LV) = bo FA (7)Y eavrs)

X{'y(—1+%)+%1n(1—V)(——2+2V)
1% 3 1%
2 1 2 2 _ v_vr
oy < 1 2)+7 In(1 V)<2 4)
v 3 7
3 M 3 _ et s
oy <4>+7 In(1— V) (4+8v)
3 3V 1 v

+7v31n2(1 - V) (“g + 15 4—‘7) + v3Lig (V) (1 - 5)

o o 5V
+25(6V) + ZyIn(1 - V) (4 - 7)
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+ ZyIn(1- V) G - -‘17) + ZyLin(V)(~6 +5V)
- %vﬁﬂ(l-v—f)(f(_vv),)}, (110)

p 1(} t,V) = bo F2(7)V2'Y e24yrs(7)
{ - 1+ + ;In(l ~V)(=2+2V) +~43(-V)
3 3V

@ -v) (5 -5+ (%)

+m(-v) (24 B0 ppma vy (<24 38

4" 8 8 ' 16
+7°Liz(V) (1 - K) + :7(6")
+%7L12(V)(-6 +5V) - %750(1 —v =) (1"(_‘/‘)/) } (111)

The total 3; contribution is the sum of the above with an analogous contri-
bution from the lower line. It is simply twice the upper line result.

4.3. Numerical results on 5y

In Fig. 2 we compare our semi-analytical result of Eq. (110) with the

numerical result of BHLUMI. We plot the quantity R(B?); t, Vinax) defined
in a way analogous to the definition of 3, in Eq. (70), as a function of the cut
of the total photon energy Vihax, for the same fixed value of the transfer t. As
before, we plot the difference between the MC and semi-analytical results,
showing in addition 3, itself, multiplied by a factor 1072, Again, the MC
and SAN results agree to better than 1 x 10™* (for the contribution from one
line) in units of the Born cross section. This result marks an important step
towards a similar agreement for the second order total cross section, because
81 is relatively complicated and, at the same time, numerically sizeable.
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Fig. 2. The comparison of the Monte Carlo and semi-analytical results for the
second-order f;.

5. Contribution from 3
5.1. Upper line emission Boyy

In the following we shall calculate the contributions to the differential
distribution from the simultaneous emission of two real photons from one
electron (upper) line as defined by Eq. (29). Again we shall split photons into
those that enter directly into B,y and the other “spectator” photons that do
not, as in the case of ,50,1. Here, summation over spectator multiple photons
is generally done more easily because Bypy is already O(a?) from the start,
so that additional smearing due to spectator photons will be sufficient to
discuss in the leading-log approximation (keeping however the correct soft
limit as usual!). Introducing dw; = dw! + dw¥ we obtain for “non-spectator”
photons

dwldw2 b2UU(d17 Bla ¢17 d2, B?a ¢2)
= (dwidw] + dwf dwl)

X [6(0r = va) HH @, By, )x(0) + H (1, B, v)x(w2))
1002 — v1) 1{H (da, B, ) x(}) + H(&3, B, ) x(0)}
~(H (@1, B, ) = bo) — (H (G2, By ) = bo) — bo
+dwldof |8y = 02) H (&5, B, ) x(02)
+0(v2 — v1) H(da, B, )X ()
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—(H (61, B1,4p) — bo) — (H (&2, B2, vq) — bo) — bo]
+dof dof [0(02 = v1) H(&3, 67, vp)x(o0)
+6(v1 — va) H (G2, B2, ¥p) x(v5)
—(H (61, B1, ¥p) — bo) — (H (@2, a2, ) — bo) — bo] . (112)
When both photons are in the initial-state or both in the final-state, using
the usual decomposition H(&, 8, 9) = box(v) + h(&, 3, ¥) into leading-log

and sub-leading parts, the above expression can be split into leading and
non-leading parts:

dw{\dwg‘ b?UU(dlv Bl’ ¢1» &'27 1527 ¢2) = dw{\dw;,{\’ {bﬂlc;\’l\"(vh UZ)

+6(v — vz)[h(dhﬂh;‘/)p)X(US) 4 h(&;’mf”)"(”"’)
_h(&lw Bl» wp) - h(dQ, BZv djq)]
+0('U2 _ Ul) [h(d% :62321[)P)X(vl‘) + h(d;, /3;’2'(/)17))((”1)

—h(&2, B2, ¥p) — h(&x»Bh%)]}, (113)

where K = I, F. In the remaining case of one photon in the initial and one
in the final state, we obtain, for instance:

dwldwfbuu(an, Br, b1, a2, B2, ¢2) = dwidwf {bOK;F(vIa va)
+0(vy — v2) [h(di'»é;: PYp)x(v2) — h(G1, B1, ¥p) — h(Gz, B2, 1/%;)]

+6(vy — v1) [X(vf)h(&mﬁm ¥p) — h(@z, B2, ¥p) — h(é, B1, %)] } ,
(114)

and the expression for dwf'dw] by is quite similar. In the above formu-
las we have introduced the following short-hand notation for the leading
logarithmic part

K:;{L(Ul,vz) = V1,09 k}\»L(vl,vg), I{,LZ I,F,
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kip(vi,v2) = kpp(vr,v2) = §[k7p(v1,v2) + kip(vz, v1)],
* x v

kip(v1,v2) = kpr(vs,v1) = X<1 _1v2> x(v2) — x(v1) = x(v2) +1

11 1w 1w

21—’02 41—’[)2 4(1—’02)2'

(115)

N | =

The integrated contribution including the spectator multiple photons
now reads:

dowwy _ 4ma® _ 4ma? ,
diav = T P V) = 3 [ v o

x© 1 n _ _
x / a3 =11 / dus (G + Bi — @iffi — A) exp(r,1n A + yps)
n=l " 1=2

bovu(&;, B, ch)
n>isk>1  Op(@r B5)Sp(ak, Br)

n

xO(1 - Zp)c?(v =D (Gt Bi - &Bi))‘s(@\’p)

=1

© 1 n' 3 _ L
x [ 32 S T [ s (a4 B - 645 - ) explagin 4+ B

<601~ 2,)3(v ﬁj o+ B - ) ) 5(6n,)
x 6(V —v——v—vv;

4|7T|C; /dvdv’5 (V ~ v =0 —wvv'))Bo(t, v') B2, v); (116)

we know Bg(t,v’) from the 8o calculation and the new function Bs(t,v),

after substitution dw; = dwf + dwf for all photons, can be expressed as
follows

By(t,v) = H(t v)-{-BFF(t v}-}-B%F(t v)+BFI(t v),

Bg"L(t V) /dv1 dvy dvy dvp 8(v — vy — v — v] — UF)

x [ / Aol 5(o — a1~ B+ ) [ dokb(vs - G2 = Ba+ dab)
XbZUU(QIHBI» ¢1902,B2a ¢2) fl <— v[)fl (_ UF)

X exp (8vFs (¥p, vF + B1 + B2)) - (117)
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Note that in the current case the form factor and 7, depend on B1 + ,52 in
the following way:

(1—vp — f1 — B2)?

1—v

vp(l—vF—ﬁ~1—52)=7+2%ln )
SYFs(Vp, vF + B1 + B2) = —vpIn (1 — vp — 1 — fa)

1 @ 1 2
- - -===). 118
+47p+7r( ) 6) ( )

Our immediate aim is now to integrate over photon directions. The first
step is again a “collinearization” procedure (as in (g ; cases) which allows us
to replace

Yo(vF + B1 + B2) — Fp(vr + ik + v2r),
OyFs (Yp, vF + B1 + B2) — Syrs(Vp, vr + B1 + B2), (119)

where vi; = vo;y = 0, v3F = v1,V9F = vy. Since we are dealing with the
genuine O(c?) contribution we are allowed to simplify even further

7p('UF' + ,Bl + B2) — 7,
Ovrs(Vp, vF + B1 + B2) — byps(y, vF + vik + varL), (120)

thus obtaining a nicer expression
- 1
BZI,‘L(t, v) = 3 /dv1 dv, dvy dvp 6(v — vy — v, — vf — VF)
d . . N .
X / ﬂ/dwf\fs(vl — 61 — B+ &151) /dw%‘é(vg ~ &g ~ B2 + G22)

X bauv (@, B1, é1, &2, B2, $2) f1< ; I) fi (— ’UF)

X exp (8yrs(7, vF + vik + vaL)). (121)
The integrations over photon directions will be done differently for the lead-
ing and sub-leading contributions. We split BXZ accordingly into a leading
part

B?—L(t v) /dm dvy dvy dvp (v — vy — v — v — VF)

d"/}p K - - - o=

X | =2 [ dwfb(vy — @& — By + @Br) [ dwk(ve — G — B2 + &)

X bo /CAL(U1,U2)f1( Ul)f1< )

X exp (dyrs(7, vF + vik + var)) (122)
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and a sub-leading part

dz/;p
2n

X /dwl §(v1 — &1 = B + é151) /dwz 8(ve — G — B2 + @2f32)

BEE (¢, v) /dv1 dvy 6(v — vy — v2)

x26(vy — vz) [%h(&l,ﬁl, V) x(v3) + 3h(GF, BT, ¥p)x(v2)

_h(dhéh "/Jp) - h(&z, 32, ¢q)] , (123)
B{f(t’ v) = /dvl dvy §(v — vy — vy) d;frp

X _/dwllfs(vl — & — B1 +é151) /dw2 (v2 — Gg — B2 + G2f3a)
X{O(Dl - U2) [h(d’l‘(7B;y Q»bp)X(U?) - h(thh wp) - h(d% B21 wq)]

+0(vy — vy) [X(‘vf)h(dm Ba, ¥p) — h(éa, B2, ¥p) — h(én, Bi, T/)q)] } ,
(124)

where, due to the fact that it is of pure O(ya), we have neglected the
convolution with the “spectator photons” completely. In BEX we have also
folded the two cases v; > vy and v; < v, into one.

5.1.1. Leading part of Bauu

Let u‘; now concentrate on the photon angular integrations for the leading
part BEL. With the help of the integrals in Eq. (92) over photon momenta,
we ﬁnd

Bé\;r{l(tv ’U) = bO‘l‘ /d’U] d’U2 dU[dvF 5(’0 — v — vy — V] — UF)
11 1
XZ 1 (’Y- - ln(l“vl))_—' (’y-— — ln(l-vg))
Kk (v1,v2) exp (5YFS(’7,vp+v1A + var)) f (7,v1>f1( F), (125)

The above leading-logarithmic contribution can be rewritten as

Bg‘;,f‘(t, v) = bgl /dvl dvy dvy dvp (v — vy — v — vf — UF)

< (1= 72 = ) =92 01 - ) )
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X ki (v1, v2) exp (§yrs (7, vF + vik + v2L)) fo (7 v1> fo (5 ’UF) (126)

We have to consider all cases K, L = I, F separately, starting with the case
of both “active photons” in the initial state:

Bl (t,v) = bo é /du dvp 8(v — z1 — vF)
X exp (5YFS(7,UF))U('Y’xl)fO(%vUF) ’ (127)
where
Uly,z1) = /dvl dvy dvy §(zp — vy — v — v1) fo (%, vl>
(7 ~12 (=) =72 (1 - vz))k;,(vl,vz)
= /dvlz dvy 5(931 = V2 — UI)fo (%7 UI)
x (72d(’§(v12) - 292 (o) )
= of" (Pditen) + 17 dien) 1S dien). (29

In the above calculation we have used the following identities and integrals:

dg(v) = /dvl dvy §(v — vy — v2)ki(v1, v2)

1 1 v
_toa2(1.7Y _ 2
2v+2(1 2>ln(1 v), (129)
/ dz vzt d(v — ©) = vdg(v) + 7di(v), (130)

4 (v) = /dm dg(v - :2 —d§(v)
0

:—%v—i(l-—v)ln(l—v)i-(—l-i- )le(1+ ) (131)

»11(v) = dypp(v /dv1 dvy 6(v — vy — vg) kjr(v1,v2) In(1 —v1)

; 8 [Liz(;v) "Li?G:Z)]
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5 1 1
+(—1+§v+z2~v)ln(1—v)
+21_6v1n2(1—v)+ 2——Uln(l—v) In(2 - v). (132)

We omit indices K, L = I, F wherever the relevant function is independent
of them. In the second convolution, see Eq. (127), we may neglect the
convolution altogether for “saturated” terms of O(ay) and O(y3) setting
simply z; — v and similarly vg — 0 in the YFS form factor. The only
non-trivial integral involves the term dy in the U, and it can be evaluated
using the identity of Eq. (130). The final result reads

B% (t,v) = _;_72% edyrs(7) vV d3(v)
1
+%"73bo edvyrs{v) di(v) — Z‘Y:— bo edyrs{v) & (v). (133)

The case of both “active photons” in the final state looks almost identical

BFF(t,v) = bo% /du dvp (v —vr — zF)
xexp (vrs(r, a0 fo( 3,01 Ulnor). (134)

The only important difference is in the YFS form factor, where we set vp —
v. This leads to an additional term of O(7?) in the final result

BEF (t,v) = BIL (¢, v) - 37% bo €2 In(1 — v)d3(v). (135)

2m

The case when one of the “active photons” is in the final state and the
other is in the initial state is the most complicated, because we have to
convolve k7(vy, vg) with fo; using the following identities

[ dva dor 8(ar = vr = v)kipos,00) fo(,01)
= 2] kip(er, v2) + yw'ip(21, v2),
/dvl dvp 6(zr — vi — vp)kip(v1,v2) fo (%vF)

= zp kip(v1,2F) + 0" p (v, 2F),
m k* _ _ k*
w'Tp(vi, vp) = /0 dz 1r(v1 x’v'é’a): 1r(v1,v2)

¥

1
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w;F’(vl'} 1.)2) = wl;F(Ulv vg) + w”;F(UI’ U2)

)
1 1 1 v I ]

- - z = , (136

+In1 ”‘)[ 5T 0 110, "1 0=0pz] 139

1 U1

2 ].—’U2

we obtain the following results:

BiF(t,v) = boé‘ /dw; dzpé(v—2r—2F)

x exp (0yrs(v,2r))V (v, 21, 2F),
l 1

V(v,an,2r) = v e} 2 & kzF(w1,$F)+2 v wip(er, zF)

a
- In(1 — zp)kip(zr,zF) — 7—7—(- In(1—zp)kip(zr,zr). (137)

Again, we do not really need to integrate directly all of the integral in
Eq. (137). It is enough to observe that Eq. (125) can be rewritten as

Bg{n{’(t, v) = lbo eAYFS(W)/dvl dvq dvy dvp §(v — vy — vy — v — VF)
% fi (-— vf)fl( ,uF)kK (vl,vz)[v ~7% (1 - w)
2 01~ ) = 7*In(1 - vp — vigc - sz)]. (138)

If we neglect the last term of O(¥3) from the YFS form factor then the
integrand can be symmetrized in variables v; and v, leading to the re-
placement k%, (v, v2) = k};(v1, v2); consequently, the result is the same for
all K,L = I,F and we have to calculate it only for one case, for example
(K,L)y= (I,1I). (In fact for (K, L) = (I,I) the contribution from the YFS
form factor is zero.) For cases other than (K, L) = (I, ) we use

BEL(t,v) = BIL(t,v) - %73 bo eAYFS(W)/dvl dvz (v — v1 — v2)
X k;{L(UI’ 'Uz) ln(l — MK — ’02L), (139)

where we see explicitly the O(y>) contribution from the YFS form factor,
which has to be recalculated for each (K, L) # (I,I). In the present case
the result of the second convolution integration reads

B3f (t,v) = BIL (t,v) — 1y3bg exp(Ayrs (7)) dip(v), (140)

where

dyrr(v /dvl dvy 8(v — vy — v) kip(vi, v2) In(1 — vy)
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4 v
+ Jun(52) -1 (3=)
+In(1 - v)In(2 - v)]. (141)

The total sum is
Bam(t,v) = B3l (t,v) + BEE (t,v) + 2B3L (¢, v)

1 «
= 572b0 exp(Ayrs(y))vds(v)

1 .
+573bo exp(Ayrs(7))di(v)
a £
7 bo exp(Avyrs(7))d37(v)
1
—57350 exp(Ayrs (7)) In(1 — v)dg(v)

—i73b0 exp(Ayrs(7))d3r(v)- (142)

5.1.2. Sub-leading part of Fouu

Let us now calculate the sub-leading part By, starting with the function
BiI(t,v) = BLF(t,v). In order to integrate over the photon angles, we need
to introduce, in addition to integrals in Eq. (92), the new integral

«
p 921(01, v2)

~ 7] ~ A ~%x % o ~k %
= [ donb(o - &= B+ @) haL B ) = S [ gl@n A
&1<B
_ _1 6’[)11)2
2 (1 — 1)2)4
1 -3 — vy — V2 — v 5/2+vg-v§/2]
=In(1 - . 143
(1o | Pt M (143)
With the help of the above we may now write
BiL(t,v) = BEF(1,0) = 52 7 by 50 d5(v), (144)
s

d;(v) = /dUIdUQ 5(’0 -V — ’Uz) 0(’01 - ’02) S('Ul, ’U2) (145)
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1 (%) ] 1
s(on,00) = 3obo)5ox (1225 ) + oo, v0)ox(o)

1
——ga(v1) - ;1—93(1’2)- (146)
Let us note that the integral defining d%(v), although it may not be im-
mediately obvious, is finite. It is so because in the limit v9 — 0 we have
x(v3) = x(v2) and h%(vi,v9) = he(vi). The apparent singularity 1/v; is
out of the integration domain due to ordering. This integral is more com-

plicated than others due to presence of the “shifted” variable vi and the
ordering vy > v;. The function d3(v) reads as follows

0= (-302) i 522) )
(-5 - )

+ln(1—g> (—2-&-%0—23”‘*‘(2_1”)2_ (2—21))3)
(

+1n%(1 - v) (—§ + iv) +In(1 - v)In(v) <3 - gv>

8 16
v 3 11 . 5)
+In (1— 2) In(2 — v) (Z— -—S—v) +In(1 —v)In (5v) (—3-{— 5V
SEPRPRINY A . NS S S S T
8 4 42-v ' 2(2-v)2 1(2-0v)3
9 1 13 1 1 1 1

_L1,_13 1 _ , 4
g 8 B2-v tiovE S@Eoop (147)

The “spectator photons” contribute beyond O(ca? )prag and therefore the con-
volutio_n’with them may be kept or neglected. Below we show a variant of
the BEK with explicit “spectator photons” for the latter purpose
I lo
B25(t,v):§;7b0 derdep (v — a5 — aF)
< exp(byes (.2 d5(er)fo (3, 2r ),
FFE la
By (t,v) = 37 Ybo | deydzp 6(v—z1 —2F)

x exp(éyrs (v, zF)) fo (%,xl)dg(wp). (148)
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We now come to the two-hemisphere case, see Eq. (124), which reads as

Bgf(t,v) = %% ~ bo exp(AYFs('y)) /dm; dep (v —zr—zr)S(zr,zF),

S(:l:[,:L‘F) = 9(:1:1 - xp) SI(II:[,:Z:F) +0(:1:F —- mj) SF(:L'I, zp),

. T 1 1
Si(enar) = g2l (ener) X _ glen X _ glapy L,
o o} rE zy
% 1 1
Srener) = X glap) — glap) L - glen) L. (149)
Ty x oy o

Folding together two cases (z; > zr and 27 < zF) and using the relation
between Sk and s(v;,v2) of Eq. (146)

S1(v1,v2) + Sk(ve, v1) = 2s(vy, ve), (150)
we find
1 .
Bif (t,v) = Bjl(t,v) = 5% v by exp(Avyrs(7y))d3(v). (151)

This completes the calculation of the sub-leading part By, of Bayu.
Combining the above partial results we obtain

1 £ 3 1 £ 3 a £ 3
Bs(t,v) = by exp(Ayrs(y)) v” (572 dy(v) + 573 di(v) - T dyrr(v)

1 1 £ o *
—§‘73 In(1 - v) dg(v) - ;;’73 dyrr(v) + e/ dz(”))- (152)

The final result reads

Ba(t,v) = bo F(7)v” exp(Avrs(7))

x{72 (z) + 72 In(1 - v) (% _ %v)
T
(e B) o () (e
+431n(2 = v) In(1 — v) (—1 + —”—)

1-v 1 v
371 >
+77Liz (2—v) (8 16)
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o /9 3U_§ _ -1 L - -2 _ _ _3)
2 (3+F -5+ 72032 -)
o 15 7v
Y 1n(1 - 2_ v
%I v)(8 .

~2(2-0) + (2- )72 - 2(2 - v) ™)

o, 4 1 3v) o 2< v) <3 5v)
bl - R 2 _9y (2 .2r
It ”)< 5T %) T 72) 8 16
o 1 1
+7;r-ln(1 - v)In(2 - v) (—Z + -8—v)

a Sv
+’)’;{—ln(1 - v) lng (3 - -2-)

vy o, (120) (1)
8 7% 2 2—-v 4

s v 201 — v) T 9
+72Li ( —Y )( 3+5—”) (153)
T\ Ty 2 )

5.1.3. Total result for Buu

The total contribution to $; due to double emission from the upper line
alone reads:

pﬁzvu(t’ V) = %bﬂ F2(7)V2’Y exp(zAYFS(’Y))

{ (%) +sm-n (3- 1)
+7° (_%/_) ++3In(1 - V) (—-%V - -;-(2 - V)‘1>

1 1 1V
31n2(1 - (__ il ) 314 (,__.)
+7 In*(1-V) TRETA R Lia(V) 577
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31001 (1 _‘i)
+7°In(1-V)In(2 V)( 8+16
i (77v) (5 16)
+7L‘2(2—v 8 16

i (52) (-5 15)
+7L‘2(2—V s 16

+=9 <§+ %V

—%(2 _0) 4 ;11-(2 —n)?-3(2- v)“3>
+ % (1 - V) (-1; a4

20+ 520 - 2 - 0))
+Zy1n (1—%) <_Z_+§8K

—202-v) '+ (2-v)"2-2(2- v)"B)

+%71n(1 —V)In(2-V) ><-—1 + K)
+24In(1 = V) In(V) (3 - -2—>
+25In(1 = V)In % (—3 + %)
+%71n(2 ~V)In (1 - ‘—2/-> (i- _ 1;—‘/)
+ (3) (-3 + )

() (1)
e AU AV

1961

(154)
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5.2. Numerical results on Bayv

In Fig. 3 we compare our semi- analytical result of Eq. (154) with the

numerical result of BHLUMI. We plot R(ﬁwwt Vinax) the quantity defined
in a way analogous to that of Eq. (70) for fo, as a function of the cut on the
total photon energy Vayx, for the same fixed value of the transfer . We plot
the MC and semi-analytical results and their difference. As we see, although
ﬁwU is analytically the most complicated of all beta’s, it is numerically very
small. It is at most 2.5 x 10~* (contribution from one fermion line), and the
difference between MC and semi-analytical results is completely negligible,
much below 1 x 104,

T 1] T
o010 b E
(2
R(t, Viour) ﬂ')U)U
e MC
0008 | Soo ANL 5
« MC-ANL
0000 SR— u
—~.0005 | ]
—0010 f ] W1}ax . 3
25 50 75 1.00

Fig. 3. The comparison of the Monte Carlo and semi-analytical results for the
second-order f3,, both photons on one fermion line.

5.3. Upper and lower line emission Bayy,

The contribution from B,y is due to double real photon emission, one
from the upper line and one from the lower one. Generally, the calculation
of the 3oy 1, contribution is easier than that of the 85y, because up to terms
beyond O(a?)prag, Baut is a product of two O(a?)prag contributions of the

B1 type, i.e. by ~ b( )b&), so that we may use the results of calculations
that were already done for the 3, case. More precisely we have

bavr (@1, B1, 1, G, Brv, 1) duwr dus)
=60(vy — v})dwdw][H (61, B1, ¥p)x(v])
— (H(é, B, %p) — bo) — (H(&}, B, %,) — bo) — bo]
+0(v] — vi)dwidwi[H (&, 81, ) x(v1)
— (H (&1, b1, ¥p) — bo) = (H(&}, B, %,) — bo) — bo]. (155)
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Employing the usual decomposition H (&, 8, %) = box(v) + h(&, 8, ¥) the
above expression can be rewritten as
bavr (61, B, b1, 6, Brv,y 1) dwrdw] = dwydw)

X{"(vl — v})[bov (v1)v(v}) + h(dy, By, bp)v(v]) — h(&, B, %))

+0(v} — v1)[bov(v1)v(v}) + h(&}, B, ¥p)v(vi) — h(61, B, ¢p)]},
(156)

where v(z) = x(z) - 1 = z(-1 + 1z).
The integrated contribution reads as follows:

doyyr,  4ma® tV 47ra /d o du’
dit[ v~ Jt? PBauL |t|2

’ o0 1 n _ - s
X /dz/)p Z ; H / dw; 8(&; + B; — @;f; — A) exp(ypIn A+ yrs)

o ﬂ’g])L OZJ,B],&I,/@;) }
+ == >.
J"L:; E (O‘Jvﬂj) (81, B7)

X @(1 - Zp)(s(v zn:(az + ﬂz - alﬁt)) (¢Kp)

i=1

x vy 3 =TT [ ) 63+ Bt — a4~ A) exp(yyIn A+ i)

x 01— 2,)8(v — (& + B - i) ) 8(ox,)
=1

X8V —v—v' +vd). (157)

With the usual decomposition dw; = dwz-I + dwf , the total contribution
splits as follows:

I 4 FF IF FI
PBvr = Phyyy + PBout + PBoyr + Pou.
pgl = bo/dvdv’é(V —v - v'-l—vv')/dvldvp/dv}dv’p
d ‘ d
/ ¢pdw1 o(v — vy — vy — vF) / %d 6(v'—v{—v’1-—v§,)

(Bt = oD (wn)w () + (@, o, () = h(a, B, o)
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+0(v) — v1)[p(v})v (V1) + h(&}, BY, ) v(v1) — h(éy, B, wp)])
X fi ( ,v1> f (- vF) exp(8yrs(p, VF + Vik))
< fu(B0r) £ (L. ok ) exp(Bres i v + 01, (158)

where we have also done the maximum simplifications allowed in O(0)prag
mmﬂarly to the fyyy case!®. The above should be compared with the
O(a?)prag expression, see Eq. (82), from the 8; calculation

B&)-(t, v) = /dvldvpdvlé(v — v — UF — )
X / %%3 /du—JlK §(v1 — &1 — B + é1B1) bo [V(Ul) + h(&l,ﬁlﬂﬁp)}
x exp(dyrs (v, vF + vik)) fi (%7, vz) h (%‘/, UF)- (159)

Neglecting purely non-logarithmic O(a?) contributions we may use the re-
lation

[V(vl) + h(ay, Blv 2»bp)][‘/(vi) + h(&ll’ Biv ¢7P)]~
= v(vy)v(v]) + h(é1, Br, ¥p) + (&1, B1, ¥p) (160)

in order to get a partial factorization:
B(v1 — v})[v(v1)w(v]) + k(@ Br, ¥p)v(v]) — h(th;l‘/’q)]
+0('Ui - Ul)[y(v;)y(vl) + h(&ll’léi7 d]q)’/(vl) - h(&lwglv ’l;bp)]
= [v(v1) + h(éu, 1, ¥p)llv(v1) + Al Bl bp)] )
—8(v1 = v})x(v1)h(&h, B ) — (0} — v1)x(v])h(an, B, ). (161)

Regrouping terms as above and using the elementary integrals (92) for the
photon angular integrations we find

KJ KJ
p’i32UL + p”BzUL’ (162)

K
pﬁva

P - %bo/dvdv'é(V —v—v'+ UUI)/dv]dUF/dU}dU}:*

BauL
X /dvlé(v — vy — v — UF) /dvié(v' - v] — v — UF)

'* The bo = x(£) could be moved out in front because we keep only O(£v) contributions.
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X exp (0yrs(¥p, VF + V1K) + 6yFs(¥q, V& + Vi)

Xfl( ,Ul)f1( ) F)fl( 7v1)f1(27 F>

< [rons- (v =2 m1 = w) + 2o o)
x[wv;)vi;(v—%mu—v;))Jr 25, (163)

phit, = g0 [ dvdd5(V —v— o' 4 o) [ dordop [ dvjant

X /dvlé(v — vy — vy — UF) /dv{é(v' —v] — v — VR)

x exp (8yrs (¥p, vr + V1K) + Syrs (g, vi + viL))

Xfl(— Ul)fl(g UF)fl(27vl)fl<2 )7%“’(”1,”;),(164)

where, in

v v}
W (on, 1) = ~0(0n — o) X g6 - 0 - o) XM gl)  169)
1
we are able to neglect the & dependence of g& (v), getting a truncated version
o 5
gt(v) = ;r—%ln (—3 + —2—0) . (166)

In the leading-log part p’ é‘; im the only dependence on K, L = I, F survives
in the form factors dyps(7, vrF+ v1k and dyrs(7y, v+ 0] ). The sub-leading
part p"g;{u is completely symmetric in K,L = I, F and the integrations
over the spectator photons can be neglected.

The leading-log integral can be rewritten as

BaueL

p’I—"’L = bo /dvdv'&(V—- v—uv +UU)BS\)( )B?L)(t v), (167)

where the B( ) . functions are O(a) versions of the similar O(e?) functions
in the ca,lculatlon of ;. Let us give them explicitly for the upper line in a
form suitable for further exercises as described in Sect. 8:

Bipn (t,0)
v - 1
= [ dvrdus(v - v =) exp@yrs(r o) i (57,07 ) BV (3 (wr) )
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B (t,v)
v - 1
- /0 dvdub(v — vy — u) exp(dyrs (v, v)) f1(5«,,v1)R§3)(7§ (u), u),

(168)
where
(WK .\ _ o 1
Ry (¥p yu) = | dvrdvid(u — vy —vy) fo 57 VI
1 (o
X {%—1 { ;‘ - % In(1 - Ul)} v(v) + %gi(vl)}

o~

1 ; 1 1 o 1
— 1 yIsK [ _ 2 = had _ _ _ 20
=F 27)u2 {7;; ( 2+4u>+ﬂln(1 u)(—14u) — 7 8u}.

(169)

The resulting functions are given in Egs. (100) and (108). In fact we need
here only their versions truncated to O(a?)prag.
The non-leading part can be brought to the following form

"5 (V) = %7%b0/dvdv’5(V — v — v + vv') W(uy,vy)

Bt

1
= 760 F (1) V*" exp(24vyrs(7))

x{y%ln(V) In(1 ~ V)(6 — 5V) + 7> In(1 - V)? (g - %v)

+7~:-ln(1 — V)l - (1 = V)}/2)(=6 + 5V)

+y2In(1 = V)(1 - V)2 (:;)

+7%L12(V)(6 ~5V) + 7gLi2 [1- (1 -v)72] (6 - 5v)
+~,% [—2— %V-{-Q(I-V)l/?] } (170)

The total result is given as a sum of the above two and over all initial /final
state configurations:

KJ _ 1KJ nKJ
P = Z P L TP Bayrs (171)
K,J=I,F

and it reads as

Pyt (t’ Vy=bo F (7) v exP(QAYFS(’Y))
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x{72 (%) +9%In(1 - V) (—-% + %)
+~/% [—2 - gv +2(1- V)1/2]

+7%ln(1 -V) [—2+ 2V — §(1 - V)1/2]
-8 1&) o V(6 —
+72 (1~ V) ( 2+ ) 72 In(V) In(1 = V) (6 - 5V)

+7% In(1-V)In[i — (1 - V)/*(=6 + 5V)

+7%Li2(V)(6 ~5V)

Sin(1 — l_ﬂ) 3in(1 — 2(_1._K)
+77In(1 V)(2 1 +v°In(1 - V) 1738

+7%Lig(V) (—1 + %) } (172)

5.4. Numerical results on By

In Fig. 4 we compare our semi-analytical result of Eq. (172) with the

numerical result of BHLUMI. We plot the quantity R(B%EL; t, Vinax) defined
in a way analogous to that done in Eq. {70) for 8p, as a function of the cut

T T T

L0010 3
a(2)
R(tV,,,) Bout
3 MC x1o7! E
0005 coo ANL x10-!
© MC-ANL

..........

~.0005 |- J

0010 - Vinax 3

i i i

.25 .50 .75 1.00

Fig. 4. The comparison of the Monte Carlo and semi-analytical results for the
second-order fJ,, both photons on one fermion line.
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of total photon energy Vinax, for the same fixed value of the transfer . As
before, we plot the difference between the MC and semi-analytical results,

showing also Bgf}L itself, multiplied by factor 10~! (it is of order of half a
per cent). As we see, the MC and semi-analytical results agree very well,
i.e. within 1 x 104,

6. Total result

Finally we add the contributions from all 8,,n = 0, 1, 2,
Pt = P (6, V) + 205006, V) + 205, (6, V) + pp, (8, V),  (173)
getting the total O(a?)prag result, which explicitly reads as follows:
piot = bo F(27) exp(2Avrs(1)29V7 {1+ 7 + 1%}
+boF(27) exp(2Ayrs (7)) VY

X{7(“2+ V) + %In(l - V)(—-4+ 4V — 2v-—l)
+73(-2) + ¥*In(1 - V) (3 - g _ 2v—1>

4P <_9Y,> +7%In(1 - V) [2+ o2 i(z B V)_l]

8 8V
9310 (1 - V)? [—-;- + %v-l} +Lia(V)(2 - V)

- (452 () (-
+2n1-V)in@=v) (=3 + %) +9° (300 ) (- ¢

1 T
i (52y) (-4 %)
Ty (gTy 173

1
+73[—+11V
T4

-%(2 V) 4 %(2 —V)?2-6(2-V) 3421 - V)l/z]
+72In(1- V) [3719 - %‘i N

22— V)4 (2= V)2 %—(2 —v)3 - g(l _ V)1/2]
+‘y%ln (1 - -‘g) [— g + % —4(2-V) 1 +202-V)2—4(2- V)‘3]

o 27 49V o 1 Vv
e | S 7T Do = — — S T
#7211 -V) [8 16}+7”1n(1 V) In(2 V)( 2+4>
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+7% In(1 - V) In(V)(12 — 10V) + 7%111(1 ~V)In %(—6 +5V)
+7% In(1 = V)In[l — (1 = V)/2](=6 + 5V)

o 14 3 11V

(1= 1) (3 5) eo2in(3) (3 25)
7r 8 T 2 2 4

+72L1( ) (G- 7) 5 (=) (- F)
T 2~V 4 T 2~V 2

+77O:L12 ( 2(1—_‘/)> (6 —5V) + 7%Li2[1 - (1-=V)"Y¥(6 - 5V)

x(V)
_ VW}' (174)

We have also derived the analogous analytical formulas for the total cross
section for the matrix element without exponentiation and compared it with
the corresponding BHLUMI result, also without exponentiation. Very good
agreement between unexponentiated semi-analytical and Monte Carlo re-
sults has been obtained (a little bit worse, however, than for exponentiated
ones). This variant of the calculation for the moment remains unpublished.

6.1. Numerical results for total cross section

In Fig. 5 we compare our semi-analytical result of Eq. (174) for the total
cross section with the numerical result of BHLUMI. We plot the following
quantity

da(2) (%
f —m—dv— max )
RO, Vi) = 2= [ W0 v)av  (13)

as a function of the cut on the total photon energy Vijax, for the fixed
transfer ¢ = —4.612982 GeV2. We plot the difference between the MC
and semi-analytical results, showing in addition R(?) itself, multiplied by
factor 1073, As we see in the plot, the MC and semi-analytical results agree
to better then 1.7 x 10~*! As seen from the previous plots the dominant
contribution to the difference comes from g, see Fig. 1. The above is the
main numerical result for the academic event selection (AES). Although AES
is far from the typical experimental ES, this result together with the previous
results for individual 3, is nevertheless quite precious and important because
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T T T
0010 F
R0,V [ TOTAL
F — MC x10-3 E
0005 ooo ANL x10~?
+ MC-ANL
0000 frateetsesecre tessessnsurransecttt
—.0005 b E
—.0010 . anlax . -
25 50 75 1.00

Fig. 5. The comparison of the Monte Carlo and semi-analytical results for the total
cross section.

(a) it provides an important test of the correct implementation of the matrix

element in BHLUMI!'3, (b) for the “trivial” matrix element ﬂ_(()o it tests very
precisely the numerical correctness (technical precision) of the basic Monte
Carlo algorithm of BHLUMI (independently of the matrix element). The
main advantage of the above test was that any discrepancy between the
MC and SAN that would have occurred at the early stage of its realization
could be traced back to some mistake either in semi-analytical integration
or in the matrix element in BHLUMI®. The main disadvantage is the lack
of flexibility in the choice of ES in the semi-analytical part of the test.

oo "TTOTAL (B)-(A) -
(Ber) coo Oa?)
R (t, Vo) « OfaMy x10-!
0005 [ ’ ]
0000 pedddis 20 0000 |
—.0005 E
—.0010 ) V",“""x . 3
25 50 5 1.00

Fig. 6. Difference between cross section types (B) and (A) of the matrix element.
Monte Carlo result only.

'* Thanks to the above numerical test we could identify and correct a few bugs in the
early implementations of the matrix element of BHLUMI 4.x.
18 This is almost impossible to do in the comparison of two different MC programs.
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Finally, in Fig. 6 we show the difference of the Monte Carlo total cross
sections for two types of matrix element, type (B) for which an analytical
integration is available and type (A) for which we have only the Monte Carlo
result. As we see, the difference at O(a?)exp is negligible, below 0.01%,
while at O(a!)exp it is quite sizeable, up to 0.3%. We have also checked
(the relevant plot is not shown) that the difference of the total cross sections
O(az)exp - (’)(011)exp is much smaller for the matrix element type (A) than

for (B).

7. Cross-check of the leading logs

Let us consider photon emission from one, for instance, the upper, elec-
tron line. The O(Y?)prag leading-logarithmic formula for the distribution of
the variable v = vy + vF reads

1 1
Bl(i)og(v) = /d21 /d22 5(1 —v - zlzz) D(Y?‘S (%7, zl) D%;S (%’y, zz)
0 0

= D@s(7,1-v), (176)

where

DRs(r,2) = Fx) b =2ty [1- 20 - 2]

2 [— %(1 +32%)In(z) - 2(1- z)2]} (177)

is the O(7?)prag non-singlet (valence) “exponentiated” structure function for
finding an electron carrying the energy fraction 2, within an electron, see
for example Ref. [19] and references therein. In the above, z; equals the
fraction of energy of the initial-state electron after (collinear) emission of
photons while z; describes a similar phenomenon in the final state. In order

to see how to get the above formula, let us note that we start with 6(0 -
Gar{z1,2) — /S’F(zl, 22)) and, with a simple kinematic exercise, we find that

ar(z1,22) = z2(1 — 2z1) and Bp(zl, z3) = 1 — z,. We have explicitly exploited
the well-known self-reproduction property of the non-singlet structure in the
convolution

1 1
Dns(m1+72,2) = /dzl /d22 8(z — z129) Dns(v1,21)Dns(v2, 22). (178)
0 0
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The upper and lower line contributions get combined in exactly the same
way, thanks to our definition of the variable V

4 2
Pg}og = % bo /dvdv'é(V —v—v + o) B&)og(v) B{le?og(v')
4ra?
= g bo D'Q(2y,1-V),
dro’ v 2 -1 1.2
= T bo Fl2y) €37 V2V (1+7+47?)

+ l’y(—? + V) +794(=2) + ¥ In(1 - V)<3 —~ §2Y- - %)]} (179)

As we see the leading logarithmic terms within O(v2) coincide with the
analogous terms in Eq. (174), as expected. Note that in the above formula

we used a variant of the structure function D’ %}«S (7, 2) in which we factorize
off the factor exp(y/2) instead of exp(3vy/4).

8. Calorimetric event selection

In the academic event selection (AES), see Sect. 3, used throughout the
present paper, the total energy of photons is restricted from above using the
variable V, without any regard as to whether the photons are emitted closer
to initial-state fermions or final-state fermions. In real LEP luminometers,
photons close to final-state electrons (positrons) are effectively combined
with the electron into a “cluster”, and only the total energy of the cluster is
restricted. This is called the calorimetric type of ES. In this case the energy

- of the photon close to a final electron is effectively unrestricted, even if two
final clusters are required to carry most of the energy, while the energy of
the photons close to beams can be in such a case limited quite strongly.

In our analytical calculation we have integrated first over the transverse
momenta of photons, dividing the photon phase-space into initial-state and
final-state parts, see Eq. (38), and later the energy of the initial-state pho-
tons vy was combined with the energy of the final-state photons vr, see
for instance Eq. (49). In essence, this was a purely technical calculational
trick and in our final analytical results for AES there is no real distinction
whatsoever between initial state and final state.

Let us, however, stress that our calculation method, summarized briefly
in the above paragraph, opens the way to the introduction of a certain type
of “calorimetric academic event selection”, CAES, in which an integration
over energy of the final state v is performed and vg does not enter into the
overall photon energy cut. This is still not a very realistic ES, so we may
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ask: is the comparison of semi-analytical results with BHLUMI for CAES
feasible, and is it interesting? The analytical integration over vr and Vg,
keeping for instance Vi = vy + v} + vyv} fixed, is probably feasible but it
is not yet done and it is probably not worth being done. What can be
done relatively easily is to implement in the collinear MC of the LUMLOG
type the analytical distribution do/dvrdvidvi-dv} (which is a by-product of
the calculations of the previous Sections) and to integrate over vy and v
numerically.

The above implementation in LUMLOG was partly realized. Only the
LL version of do/dvpdvidvidv} is now implemented in BHLUMI 4.04, see
Refs. [11,12]. Why is it that the LL version was realized first? It was
done first because it was very important to check that the second order LL
content of do/dvpdvrdvidv} is functionally identical to the product of the
four structure functions. This test is even stronger than that of the previous
Sect. 7. The other important and urgent application was the numerical
evaluation of the so-called missing third-order LL correction in BHLUMI,
presented in Ref. [12].

Would it be interesting to implement not only the LL version of the
do/dvpdvrdvpdv} in LUMLOG but its full form given below? Yes, because
it would provide a unique example of comparison between the BHLUMI
MC and SAN calculation, at the level of 10~ for any kind of calorimetric
ES. Generally, the calorimetric ES is substantially different from the non-
calorimetric one and for certain errors in the matrix element numerical effects
may cancel between the initial- and final-state emission, while being non-
zero for calorimetric ES (remember that real luminometers are calorimetric!).
The new test for CAES would provide another valuable test of the BHLUMI
matrix element. In this Section we essentially provide the basis for such a
test, hoping that it will be realized numerically in the future.

8.1. Master formula — sub-leading included

Looking into the simplest example of ﬂ_(()o) in Egs. (49) and (69), we see
that this contribution was written at a certain stage of our calculation as
an integral over the four-photon longitudinal variables vy, v, vT, Vg, each of
them for photons from one of the initial/final state fermions

|t|ma.x Vmax
o= / d|t] / v /dvdv' S(V—v—v +ovv)
|t'min 0

X /d’l)]d’UF §(v—vr — vp) /dv}dv}; §(v' — v — vE) X, (180)
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where

4ra? 5 - 5 5 o
X = W bo exp (5YFS(7P7 UF) + 5YFS(7qv vF))

X.fl (’71)/23 UI) fl (7}?/2’ UF) fl (7(]/27 U}) fl (7(]/27 ’05:') (181)

Simple kinematical considerations lead to relations between vy, vp, v, Vi
and the standard LL variables zy, 23, 23, 24,

vi=(1-2z1)23, vP=1-23, vi=(l-2)z, vp=1-2z, (182)

see also Fig. 7. The phase-space integral transforms into

lttmax 1
o= / d|t| / dz /dzld22d23dz'4 0(z — z1202324) X z124. (183)
Itlmin 1—Vmax

The above integral is ready for implementation in the LUMLOG MC, see
Refs. [11, 12] for more details.

What is very important and non-trivial is that the contributions from
the other 3, can also be written in the form of Eq. (180). Close examination
of the calculations from the previous Sections lead to the following formula
for the integrand in Eq. (180):

X = exp (byrs (¥p, vF) + OyFs(¥g, vF))
X fi ('7p/27 UI) h (71:/2, UF) fi ('7(1/2, v}) fl(:fq/Qa U%‘)

1—2 z1(1 — z3)
Vr (%3
1 21 g 21 z123 -
BORN
k! = 527 29
1 22 R ¥4 2924 R
vy Vp
1— 2 22(1 — z4)

Fig. 7. Leading logarithmic kinematics.
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. X B (5p: vk S TAIGAA
X{X[ﬂO](7) * K=I,F f1(7p/2’ vK) * L=I1F fl(?Q/2’ U},)

Z X[p g?}L]('y,K L,vk,vr)

J1(p/2,vK) f1(7g/2,v1)
" X[B50) (7. K, L, vk, i)
k.i=1.r N1/ 2:vK) f1(3p/2,vL)
=1 ([vq/z] T f ))} (184)
where
X[Bo)(7) = bo (1 +7+ %v"’) : (185)
X[BiRI(1:v) = B (7,0) + B{Ring (7.), (186)

la
X[B3e) (v, K. Lok o) = R (7, 0k) B (,01) + 327 W (o, v1),(187)
= 1 " _
XD, I, 1,01, vp) = [8 Ulv,vr) + —“7d3(1’1)] fi(3p/2,0r),  (188)

. 1
X[/Bg?])U](‘yaFa F5 UfavF) = fl(ﬁp/‘zsvf) [é‘ U(’Y’ UF) + 5%7615(1)1‘-')] ) (189)

1 10"
‘X{ 2UU}(731 FUI»vF) SV('Y,U],UF)"}‘%;‘YS(U],’UF)o (190)

In the above collection Eq. (185) is derived from Eqs. (26,59,69), Eq. (186) is

derived from Egs. (90,97,103), Eq. (187) is derived from Egs. (164,167,168),
Eqgs. (188,188) are derived from Egs. (127,148) and finally Eq. (190) is de-
rived from Egs. (137,149).

The version of Eq. (184) truncated to leading logarithmic approximation
is shown explicitly in Refs. [11,12]. It is already implemented in LUM-
LOG MCEG within BHLUMI 4.04 {11]. The complete Eq. (184) is not yet
implemented in LUMLOG.

9. Summary

The aim of this paper was to summarize the third-order analytical cal-
culations of the total cross section, which were (and will be) instrumental in
the task of the high precision calculation of the small-angle Bhabha process.
We presented in detail the calculation technique and the numerical compar-
isons with the Monte Carlo results; we also discussed future extensions of the
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calculations. The presented analytical calculations are relevant to the ques-
tion of the technical precision of the calculation of the small-angle Bhabha
(SABH) process, because it has allowed us to test the matrix element imple-
mented in BHLUMI Monte Carlo term by term with the precision of 0.01%,

and its basic MC integration algorithm (for B(()o) ) with the same precision.
They are also helpful to partially solve the problem of the physical precision
of the QED calculation of the SABH process because we were able

e to cross-check the correctness of the O(a?L?) matrix element and phase-
space integration to within 1.7 x 1074,

e to calculate the missing O(e*L?) in the BHLUMI cross section,

e to get analytical insight into the incomplete O(a?L) component in the
BHLUMI cross section,

e to gain direct analytical insight into the mechanism of “inclusive expo-
nentiation” in the first order and beyond.

The above wealth of information and the calculation technology will be
very useful in the next step, which consists in bringing the total theoretical
precision of the SABH process below the level of 0.1%. In particular we have
in hand all methods to calculate analytically the contribution of the missing
O(a?L) component in the BHLUMI cross section. Most of the presented
results are restricted to the unrealistic academic event selection. We have
indicated, however, the path to calculation for more realistic calorimetric
event selection. The methods and results presented in this paper are major
contribution to the future, more precise calculation of the SABH luminosity
cross section.

The authors thank, for support and kind hospitality, the CERN Theory
Division, where a substantial part of this work was performed, and, for their
support the ALEPH and OPAL Collaborations. One of us (B.F.L. W.)
thanks Prof. C. Prescott of SLAC for the kind hospitality of SLAC Group
A while this work was completed.

10. Appendix A: Collinearization in O(a3)prag

In the following we shall prove that within O(a?)prag We are allowed to
do a replacement

1—v m?2 - 1—-v m

— b, =

—(1 ~or)? ITIE (191)

Ty

in the real bremsstrahlung distributions dw;(d,). In our calculations this
leads to a very useful “collinearization” of our integrals at the early stages of
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the calculations. As a preparatory step let us examine more closely the real
bremsstrahlung distribution for one photon dw; (on the upper fermion line)

/dw,- 8(vi — &; — Bi + &; ;)

&b
(&i + 6,8:)2(B; + 6pa;)?
In order to see more clearly its singularities we may (in the presence of
O(v; — &; — B; + &;3;)) decompose it as follows

= 2;:2 /ddidﬁidqﬁi 5(1),' — o — ﬁi + &,ﬂi) (192)

&:3;
(& + 6,5:)2(Bi + 6,64)?
=1(~ 1 4 1 ___ 6pv~ _ 5pv~ _1>.(193)
V\& + 6,0, PBi+da; (di+6,0:)% (Bi+ 0pdi)?

The first two terms directly lead to leading-logarithmic contributions, while
the next two so-called “mass terms” provided finite non-log contributions
coming from é-narrow collinear regions (photon collinear with one of the
fermions) — for instance

/ da— Y / 66 (a;). (194)
(G + 6p0:)?

In the above equation, the actual value of §, drops out, ¢.e. the only im-

portant thing is that é, — 0. Consequently in this kind of mass term we

can do the substitution 8, — 4, freely. On the other hand, for any of the
leading-log poles in the photon angle, we have

1L _ 1 (%8B

G+ 6,8, G+ 0,8 (G + 6p0:)*

The correction term ~ (&, — §,) has two important features:

+O(82). (195)

p

(1) it is non-logarithmic and strictly collinear for the ¢-th photon, similarly
to the mass term in Eq. (194) and

(i) it is proportional to A8, = &, — §, which is equal to zero if all other
photons k # 7 are collinear (this is true by construction of 4,).

Let us denote by A the variation due to the operation §, — §, and
consider the general case of emission of n photons!”

A (ﬁ dw,-) = Zn: A(dwy) [ dwi + O(a?), (196)
i k=1 ik

7 In the n-photon case discussed below, we mean by O(az) two powers of & not ac-
companied by big logs.
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where we have used property (i) to eliminate higher powers of A, i.e. for
instance A(dwg)A(dw;) ~ O(a?). The above remnant with a single power
of A is at most O(ya). In fact, it is even of O(a?), because according to
(ii), Adwy ~ Aé,, which is zero if all other photons k # i are collinear;
this means that we lose at least one big collinear log (i.e. we gain one pure
non-log factor a) during integration over other photons directions. ~

To summarize our proof: we have shown that the effects of the 6, — 4,
substitution in the differential and integrated distributions [[}-; dw; are be-
yond (9(&3)prag. The same substitution can be and has to be done simulta-
neously in the related form factor exp (2v,(8,) In A) because here 7,(6,) is
directly related through an integration to dw(é,).

Although we have presented our proof for arbitrary numbers of photons
it is really essential and sufficient to consider the cases with one and two pho-
tons (also in the version without exponentiation). We recommend dedicated
readers to do this exercise.
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