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In this paper we investigate backreaction of excitations on a planar
domain wall in a real scalar field model. The backreaction is investigated
in the cases of homogeneous, plane wave and wave packet type excitations.
We find that the excited domain wall radiates. The method of calculating
backreaction for the general forms of excitations is also presented.

PACS numbers: 11.10. Lm

1. Introduction

The presence of topological defects in the field theoretical models with a
degenerate vacuum is an important aspect of the structure of these models.
Dynamics of topological defects is to be extracted from nonlinear equations
describing evolution of fields they are composed of. The results, even though
it is a formidable task to get them, are of great interest for particle physics
(e.g. dynamics of a flux-tube in QCD [1]), for field theoretical cosmology
(e.g. cosmic strings [2, 3]) and for condensed matter physics (e.g. domain
walls in magnetics, vortices in superconductors or in superliquid helium,
defects in liquid crystals [4-8]).

This paper is devoted to dynamics of domain walls governed by a Poincaré
invariant wave equation. Domain walls appear in the models with the non-
trivial zeroth homotopy group of the vacuum manifold. In the papers [9-11]
two main approaches to the dynamics of domain walls have been presented.
The first one is the polynomial approximation, the second one is the expan-
sion in the width of the wall. Calculations made in the framework of these
two methods indicate existence of an oscillating component in the width
of the domain wall. This suggests that the domain wall can radiate. The
radiation was also observed in computer simulations [12].

The problem we address ourselves to is connected with this special as-
pect of dynamics of domain walls, namely the radiation. We calculate the
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radiation with the help taken from [13, 14] where analogous problem was
considered in the abelian Higgs model. The method consists of two steps.
The first one is to find the excitations of a static domain wall. They are
investigated in the linear approximation and treated as small corrections
to the basic domain wall field which is localized on the wall. The second
step consists of looking for the effects of this excitations on the evolution
of the domain wall, i.e. a backreaction. This procedure can be treated as
the expansion of the domain wall field in the amplitude of the excitation A
(A <1). The zeroth order term is then the static, exact planar domain wall
solution ¢q, the first order term is the excitation ¢; and the second order
term is the backreaction

¢ = ¢o+ Ady + A2pa + O(A®). (1)

The terms of the higher order can be interpreted as more complicated ef-
fects, e.g. the third order term as the selfinteraction of the excitation. We
shall discuss three main cases of the excitations, namely the most simple of
them — the homogeneous excitation, the second case — a plane wave type
excitation and the last one — a localized excitation. In this paper we shall
consider the dynamics of the domain wall in the simplest scalar field model
which has a potential with two degenerate minima.

The plan of our paper is the following. In the next Section we present the
calculation of the backreaction of the homogeneously excited domain wall. In
Section 3 we describe the method of calculating backreaction for the general
forms of excitations. Section 4 is devoted to the detailed analysis of the
backreaction in the cases of plane wave and wave packet type excitations.
In Section 5 we summarize the main points of our work.

2. Radiation from a homogeneously excited domain wall

We consider the planar domain wall in the model defined by the La-
grangian density,

L= _%nwauqsa"gzs - g(gp? _ 0?2, )

where 7, =diag(-1,1,1,1) and A, v are positive constants. The corre-
sponding evolution equation for the scalar field ¢ has the form:

9,8 — 2\($* — v¥)® = 0. (3)

Exact, static solution representing the domain wall localized around the
(z!, z?)-plane is given by the formula:



Backreaction of Excitations on a Domain Wall 1983

dp = vtanh(ax3), (4)

where o = vV \v2.

Let us rescale the scalar field @ and the space-time coordinates z*,

® = vo,

* = az*, (5)

where ¢(#*) and ## are dimensionless. Moreover, for % and 3 we shall use
the following notation,

=8
(=1

e (©)

In the rescaled variables the evolution equation and the static solution take
the form:

8
w

48,0 - 2(¢* - 1)p = 0,

¢o = tanh(¢), (7)
where 9 = %. The first step of our considerations is to find excitations of
the planar domain wall. As it was stated in the Introduction the excitations
are considered as small corrections to the basic static domain wall solution.
Thus the corresponding equation for the excitation field ¢; we shall obtain
as the linear approximation to the initial evolution equation. Inserting the
expansion (1) into Eq. (7) and keeping the terms of the first order in the
expansion parameter A we obtain:

08,61 — 2(3¢0? — 1)1 = 0. (8)

The planar domain wall distinguishes the direction perpendicular to the wall
plane, given in our case by the coordinate lines of £&. Small correction ¢;
do not change this asymmetry. Therefore we assume a special form of the
perturbation in which dependence on the coordinate £ is separated,

¢ = w(f)X(T,.’il,i2). (9)

Inserting the above Ansatz into Eq. (8) we obtain the system of two equa-
tions for the functions ¢ and x with a separation constant c,

24
Frze 6d0%% + 29 = —cip,

%0, x = cx, (10)
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where a = 0, 1,2. From that follows a restriction for constant c. If ¢ were less
than zero the solution of the second equation would increase with the time
infinitely and so would not meet the main requirement of the perturbative
calculation.
Let us solve the first equation of the system (10). It can be transformed
into the following form:
1d%y 3 ¢

—e e = (= — ). 11

5 42 Coshzgw (5-2)¢ (11)
It is the special case of Schrédinger equation with generalized P&schel-Teller
potential. Solutions of this equation can be found in [15]. There exist two
bound states enumerated by n = 0, 1,

nzo"é/)()(é):c—m]?—gy 60:0?

n=1 ¢1(§)=§$%, 1 =3. (12)
Both are localized on the wall in the sense that they exponentially decrease
for large | £ |. The first, even solution 1o(£) can be interpreted as a small
displacement of the domain wall,

6= do+dox=tanhE + —mx > tah(E+x).  (13)

cosh?

This is the zero mode related to the translational symmetry of the model.

In what follows we will not consider this kind of excitation. The excitation

given by the second, odd function 9; does not posses such interpretation.

This solution we shall accept as the proper bound state of the domain wall.
The second equation of the system (10) is of the wave type. In this

Section we shall consider the special case of excitation, homogeneous on the

whole wall and given by the solution independent of the coordinates #!, 2,

x(r) = Acos(\/§1' + 6), (14)

where § is a constant phase which we shall put equal to zero, and A is a
constant amplitude. As mentioned above the described procedure assumes
that A is sufficiently small. Finally, the field of the homogeneously excited
planar domain wall is given by the formula:

sinh &
cosh?¢

¢ =tanh& 4+ A cos(V/37). (15)

From this formula one can see that the excitation introduces periodic changes
of the thickness of the domain wall.
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The second step in our procedure is to find the backreaction. Inserting
the expansion (1) into the Eq. (7) and keeping all terms of order A? we
obtain the equation for the backreaction ¢,

048,02 — 2(3602 — 1)y = 6or 2. (16)

It is an inhomogeneous equation with the r.h.s. including the square of the
excitation component. We will denote the inhomogeneous term by N =
6¢0¢12. For a homogeneous excitation we are dealing with, N is a function
of the two variables (£, 7). Inserting the formulae for the functions ¢ and
¢ we obtain:

h3
N = Ny + N, = 34? S"’hf +342 230 E o 2var). (17)
sh®€ cosh®¢
We shall solve Eq. (16) in two steps, considering each of the two parts of
the inhomogeneous term N separately. At the first step we consider the
equation:
1d%p, 3 2smh &
—Z 2 _ (3tanh?€— )¢y = = .
2 dg? (3 )b2 = cosh® ¢

The general solution of this equation can be found by the standard Green’s
function technique, see e.g. [16]. As the two linearly independent solutions
of the homogeneous part of Eq. (16) we take:

(18)

1
he = are
Fa€) = gsinh(26) + o tanh€ + 5 —* (19)
2 B 8 oshzf

As the Green’s function we take
G(& z) = 2fi(2) f2(8)8(& - ) = 2f1(8) f2(2)[0(¢ — =) — O(—-=)].  (20)
The Green’s function was chosen in such a manner as to obey the condition
G(¢=0,2)=0 Nz€R (21)

Such a choice ensures that an inhomogeneity will not produce any displace-
ment of the domain wall as a whole. The general solution of Eq. (18) has
the form

+00
#2(6) = a1(O) + b€ + A* [ GlE 2)h(z)dz, (22
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where 5
3 sinh” z

— a8 __15
2 cosh® z

and a, b are constants. Formula (22) gives:

$2(€) = A%[e1(€) f1(&) + c2(€) f2(6)], (23)

h(z

¢
a(é) = % —2/f2(:v)h(a:)dz,
0

3
() = 71’12-+2 / fu(@)h(z)da . (24)

The function f; is even while f; is odd. Because f2(§) exponentially grows
for £ — too the coeflicient function ¢y has to vanish in this limit. Therefore
we have to put b = 0 while a is still arbitrary. But we put a to be zero
too because keeping it nonzero would amount to including uninteresting
solution of the homogeneous equation. In the second step we have to solve
the Eq. (16) with the second inhomogeneous term N, containing a periodic
time-dependence.

The perturbatively obtained Eq. (16) for the beackreaction has radiation
type solutions which do not vanish for large £ as will be shown further. In
this case we adopt the Helmholtz condition which states that for | £ |— oo
only outgoing radiation waves are present.

Hence we consider the following form of the solution:

92 = 34° [0 (€) exp (~i237) + o (€) exp (i2V/37)]

where the positive and negative frequency components are related by com-
plex conjugation,

- = [p4]”
This Ansatz leads to the following equation for the functions ¢4,
1 d? 3 3 sinh3¢
- 4 R = ——, 25
[2 dg? + cosh? E)} x (€) 2 cosh®¢ (25)

which we solve analogously as Eq. (18). As two linearly independent solu-
tions we take

1 cos(2v/2€)
2 cosh?¢ '
1sin(2v/2€)
2 cosh?¢

g1(&) :‘ cos(2v/2€) — V2 tanh € sin (2v/2¢€)

92(€) = sin(2V/2€) + V2 tanh & cos(2v/2€) + (26)
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The Green’s function is given by the formula

G(€,z) = ﬁ[gz(ogl(xms — 2) - g1(6)g2(2) (B(€ — z) — 6(~2))]. (27)

The general solution has the form

(&) = [di1(§) + ax]g1(§) + [d2(E) + b1]g2(8) (28)
where
1 ¢
mo/m (29)
1
e =575 Zo 91(2)h(z)dz, (30)

and a4, by are constants.

In order to satisfy the Helmholtz condition imposed on the solution, we
have to find solutions with the appropriate asymptotics given by the formula
below

@+ (§ — £o0) ~ exp [:i:i2\/§ | & I] . (31)

We consider separately the regions £ > 0 and £ < 0 and choose the solutions
which will have the proper asymptotic behaviour given by the formula (31).
Next, we impose the matching conditions at the point & = 0, i.e. the conti-
nuity conditions of the solution and its first derivative. The solutions found
in this way are given by the formula

px = d1(£)g1(§) + [d2(€) £ id1(00)]g2(E), (32)

where

E—+o0

and is finite. Finally, the asymptotic form of the solution is the following
$2(€ — £00) ~ £v/3d1(00) A% cos(2V2 | € | -2VBT £ 8),  (33)
where 8 = arctanv/2, 8 € (0, Z)-

Let us summarize results of our calculations. The full solution consisting
of the static domain wall, the excitation and backreaction is the following,

sinh 2 cos(v3r) + A% [e1(€) f1 (€) + 2(8) fo(€)]

+ %A? [<,o+ (6) exp (~i2V/3r) + p_ (€)eap(i2v37)] . (34)

¢ =tanh& + A
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Backreaction consists of two terms. The first one, independent of time, con-
sists of the static reaction of the domain wall to the homogeneous excitation
while the second one depends on time. Its asymptotics is given by the for-
mula (33) and describes the radiation with the energy fluxes given by the
Poynting vectors:

S+ = 6v/3d?(00) A*v?a® sin® (k4 3, + B)ks (35)

where
E{ = (2v/3,0,0,+2v2) . (36)

and the signs & correspond to the limits 400 and —oo respectively. The fact
that the energy of the radiation is infinite is consistent with the physical sit-
uation considered here where the excitation of the domain wall is constantly
maintained for instance by the interaction with other fields.

3. The method for the general forms of excitations

Our goal in this Section is to present the method of calculating backre-
action for a general form of excitation ¢, defined by the formula:

¢ = P(E)x(r, &', 2%, (37)
where inh ¢
sin
() = coshZe’

and the function x is any bounded solution of the wave equation
9°0,x = 3x - (38)
Let us recall the equation for the backreaction,
049,47 — 2(3tanh®€ — 1)¢y = 6¢od1 > . (39)
The first step is to define the operator f)g by the formuia:

d? 6

Le= — + ———.
¢ d§2+cosh2§

Then the Eq. (39) takes the form:

0°0atp2 + Lepy — 4o = 6001 2 . (41)
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The second step is to solve the eigenvalue problem for this operator. We
shall find all solutions of the equation:

Lewa(€) = Ma(8) (42)

where A is the eigenvalue and ¥, (€) - the normalized eigenfunction corre-
sponding to this eigenvalue. The backreaction ¢, we treat as the expansion
in the eigenfunctions of L¢ given by the formuta:

#a(6.8%) = Yr @) 6). (43)

A

where the coefficients a) depend on the coordinates ®. Inserting this ex-
pansion into the Eq. (41) we obtain

SLUx(€)18°0: + X - 4Jax(e) = N(g,5), (44)
Al

where N(€,%%) = 6¢o¢p12. Multiplying the equation above by the eigen-
function ¥\ (€) (provided the set of them is complete) and integrating over
the full range of variation of £ and using the orthonormality condition for
the system of the eigenfunctions 1, (£) we obtain the system of differential
equations for the coefficient functions a) (%),

(8%9, + X — 4)ar(5%) = hr(3%), (45)
where
+00
M) = [ deva©NE )

The last step in this procedure is to solve Eq. (45). It may be done by
the standard method of the Green’s function. Let us denote by G (&%) the
retarded Green’s function of the operator,

Dy=0%9,+ X —4. (46)

Then the solution of the inhomogeneous equations (45) is given by the for-
mula

ar (&%) = / G(3% — ") ha(2/)da" . (47)

In this solution we have dropped the homogeneous part because it does not
contain any information about the excitation.
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The results of the calculations are the following. The spectrum of the
operator L¢ consists of two parts. The discrete part, for which A > 0,
contains two eigenfunctions,

- V3_ 1 4
Y= 2 cosh?¢’ 1T

3 sinh
= —— . A =1. 48
¢2 \/;cosh2£ 2 ( )

The continuous part, for which A < 0, includes twice degenerate subspaces
corresponding to the eigenvalues A\ = —k?(k € R, ) spanned by the eigen-
functions:

¢k(1)(§) = n(k)[(k? — 2) cos(k&) — 3ksin(k€) tanh € + Mfi)} ,
cosh“&
gb;c(z)(f) = n(k)[(k?* — 2) sin(k€) + 3k cos(k€) tanh € + 3:2:;—716—2—)] , (49)

where
n(k) = [rk(k®+ 1)(K*+4)]72.

One can prove that the set of eigenfunctions is complete [17]. Therefore we
have to find the retarded Green’s function for the following operators:

Dl = 5(15(1(/\ = 4) )
Dy = 8%9, -3(A=1),
Dy = 89, - k* —4(A= —k?). (50)

They are obtained by the Fourier transform method and given by the for-
mulae:

. 1 8z
(20)" - (3)
-0y ® . ) ~0
Gy(z) = - 9C )/dKKS‘“(” K2+ 37) 1o(k3)
27 / VK243
) 0(:°) T, sin(VKZ+k2+45%)
) = _ Jo(K %), 51
Gr(3%) - O/dm oK), ()
where
ga — i:a _ ~Ia,
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The procedure presented above enables us to find the backreaction for the
general form of excitation of domain wall. We shall use it in the next Section.

4. The backreaction for the plane wave
and wave packet excitations

In this section we analyse the backreaction of the excitation of the plane
wave and wave packet type. In the first case x is given by formula:

x = Acos(w(k, kYT — k3! — k33?), (52)

where w(kd, k2) = \ﬂké)z + (k3)2 +3

In the second case we consider the approximate solution of Eq. (38):

(@97 + @ s
X = Aexp[— ——;12——] sin(v/37) = Aw(&) sin(v/37) (53)
where A and A are constants. We assume that A4 > 1 and that the wave
packet has momentum cutoff £ ~ A~1. Then we may neglect for the finite
time interval 0 < 7 <~ A the spreading out of the wave packet, which is of
course present in exact wave packet solutions of Eq. (38).

4.1. The plane wave case

The inhomogeneous terms in the backreaction equation has the following
form:

NO(r 5! 32 ¢) = 3A2 S‘“}l‘l 2[1 — cos(2w(kL, k2)T — 2k — 2k252)]. (54)
COS

It is convenient to pass to the Fourier transform with respect to the coordi-
nates z!, z?

,TZ
oI (g, &, 5%, 1)

/M /dw exp [—iwr + k'3 + ik? 3230 (€, kL, K2, W),

(55)

(e, &', &%, )
/dk‘ /dk2 /dwexp [—iwr + k& + k2N (kL K2, w).

i

3
2

(56)
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In this case,

o sinh3¢

N k! k% w) = 3(21)2 A cost®E [6(w)d(kY)6(K?)

~36(w + 2w(kg, ko))5(k1 + 2k0)5(k2 + 2k)
~ L6( — 2w(kb, KD))S(K! — 2K)S(K? — 242)]. (57)

The equation for the Fourier transform qnﬁgl) has the following form:

2 ~ ~
- k24 L 93tank?e— 1 4 (e, kL k2 w) = NO(E kL k2, w).

dg?
(58)
It is clear from the above equation that the solution has the form:
e R ) = 422, [ (85 ()3
LoW(€)8(w + 2w(k}, k2))6 (k' + 2Kk3)8(k? + 2k3)
zso&”(s)é(w - 20(kh, )5k — 262 - 26D . (59)

The negative and positive frequency components are related by complex
conjugation,
1 1)7*
o =[], (60)

while (,a*él) is real valued. The functions 39(()1), go(il ) have to satisfy the following

equations:

1 d? 3 (1) 3sinh3¢
folindi -2 = —— 61
[2 d¢? + cosh? ¢ ] 0 2 cosh® ¢ (61)
1 d? 3 (1) 3 sinh®¢
S 4 =220 62
kw+mﬁ+} (62)

P = 2 cosh® &

The function cp( )corresponding to the frequency w = 0 contains the in-
formation about the static backreaction of the domain wall while two remain-
ing functions describe the dynamic backreaction. We shall concentrate on
these two functions only. They must satisfy identical conditions as the func-
tions ¢4 in Section 2 and they also satisfy the same equation, see formulae
(25)-(31). Therefore, the solutions are given by the formula (32). The
asymptotic form of the radiation part of the backreaction is then the
following:
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¢5)(&", 8%, 7)
~ FV3A%d) (00) cos[2k3E! + 2k33% + 22 | € | —2w(kd, k2)T £ 8],
(63)

where 8 = arctanv/2, 3 € (0, Z). The corresponding wave vectors have
the components:

(ki) = (2w(k, k3), 2k}, 2k3, £2V/2) (64)

where the signs + correspond to the limit in the oo respectively. The
energy fluxes due to these waves are given by the Poynting vectors:

St = 6d3(00) A*v20Pw(kd, k3) sin® (k4 3, + B)k . (65)

4.2. The wave packet case

Calculations of backreaction are carried out in the analogous steps as in
plane wave case. Instead of formulae (54), (57) we have now:

NO(g 3! 32 r) = 3/12'5"‘1156 w?(#)[1 — cos(2v/37)], (66)
cosh” €

2 smh

N B kW) = 3A

F0(RIB() ~ §80+2V3) = 36w~ 2v3)),
(67)

where
w(k) = 2i /d:El /d:izexp[—iklzil _ k2 wd(3),
Vs

k= /()2 + (k2)2.

We next obtain the same equation for the Fourier transform ¢3§2)(§ kY k2 W)
of ${2(€, 31,22, 1):
& 1(2) _
w? — k? + i 2(3tanh?& — 1)| ) = N@) (68)

Analogously to the previous case the solution can be written as

o = Af;‘;*;si PP (©)5(w) -1 (©)5(w+2vE) - koD (€)8(w-2V)].
(69)
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In the exact solution the functions 99(()2)’ ap(ﬁ) dependent on k, but in the case

at hand the expression in square brackets on the left hand side of Eq. (68)
can be simplified. Namely, we may neglect the term k? because of the cutoff

A > 1. This simplification leads to the same set of equations (61), (62) for

the functions L,pg ), c,o( ) as in the previous case and the solution given by the

formula (69) is then the approximate one. The asymptotic conditions (31)
remain unchanged. Thus the asymptotic form of the radiation part of the
backreaction is the following;:

6P (€ o o0, 5,82, 7) ~ FV3dy(00) A% cos(2V2 | € | —2V/3T £ B)uw ().
(70)

The corresponding wave vector has the components:
kY = (2/3,0,0,£2v?2) . (71)
The energy flux is given by the formula:

Sy = 6v/3d%(00) A*v2aPw? (&) sin? (k4 3, + B)ks . (72)

5. Remarks

1. Let us summarize the main points of our work. We have presented the
calculations of the backreaction in the cases of the homogeneous, plane wave
and wave packet type excitations of the domain wall. We also have described
the method enabling us to analyse the more general cases of the excitations.
The main result of our work is the existence of the long range component in
the backrection which is interpreted as the radiation from the excited domain
wall. The frequency of the radiation, given by ¢,(c.f. formulae (63), (70)),
is twice of that of the excitation function x, (c.f. formulae (52), (53)).

2. The idea of the expansion in the amplitude of excitation, which
all the calculations were based on, was applied to the simplest model of
the real scalar field and the potential V(¢) = 2(¢? — v?)2. It seems that
without much trouble this method could be applied also to the other field-
theoretical models containing domain wall configuration. On the other hand,
we should remember that this method is based on the linear approximation,
what implies that it is reliable for small amplitudes of the excitations only.
In order to consider stronger excitations we have to work out another method
which will take into account the nonlinearity of the evolution equation in a
better manner. One could for instance use the polynomial approximation in
the vicinity of the domain wall and the proper asymptotics at the infinity
and smoothly match them in the intermediate region.
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