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We present an implementation of the Bose~Einstein effect in a Monte
Carlo generator for W~ W™ production in the e~ et annihilation by means
of the weight method. We check that the shift of the W mass in four jet
events due to this effect is similarly small as for the other prescription used
recently by Jadach and Zalewski. Possible generalization of this result is
shortly discussed.
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1. Introduction

The problem of an exact determination of the W mass is crucial for any
test of the standard model. Thus all the effects resulting in the W mass
shift are of great importance. In particular, the possible mass shifts from
the Bose-Einstein effect in the four jet events from the e~e* annihilation
into W~ W pairs have been recently estimated with widely varying results
[1-3].

In this note we use the implementation of the Bose—Einstein effect based
on the Biatas-Krzywicki prescription for weights to be attached to the Monte
Carlo generated events {4]. We avoid the prohibitive increase of computa-
tional time with multiplicity by the approximation used already to describe
the effect of hadronic collisions [5]. We follow closely the recent investigation
by Jadach and Zalewski [3] to check if a different prescription for the weights
influences the physical conclusions.

We describe our method shortly in the next section stressing the simi-
larities and differences with other approaches. The results are presented in
the third section. The last section contains discussion and conclusions.
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2. Implementation of the weight method
for the Bose—Einstein effect

The original discussion of the Bose—Einstein effect in multiparticle pro-
duction assumed the knowledge of amplitudes which have to be symmetrized
[6]. This is not the case for Monte Carlo-based models, where only probabil-
ities are calculated. On the other hand, the multitude of available data can
be analyzed only within the models using Monte Carlo generators. This sort
of analysis seems to be necessary to discriminate among various pictures of
the space time development of multiple production. Therefore various meth-
ods have been devised to implement the effect into Monte Carlo generators.
For heavy ion collisions one used the semi-classical description of the process
to provide the space time distribution of sources producing plane waves to
be symmetrized [7]. For the Lund model of two-jet processes there is a nat-
ural measure for probabilities after symmetrization [8]. However, the most
widely used method imitates the effect just by suitable shifts of final state
momenta to get the experimental two-particle distributions [9]. Apart from
other problems this method includes the momentum rescaling which results
in serious mass shifts for W bosons [1,3]. Thus there is a need for a reliable
and general method to implement the Bose-Einstein effect into any Monte
Carlo generator.

Such a method seems to be suggested by the analysis by means of Wigner
functions pioneered by Pratt [10] and recently recalled by Bialas and Krzy-
wicki [4]. We have described this method in Ref. [5]. For reader’s convenience
we repeat here its main ingredients.

With few simplifying assumptions one arrives at formulae where the mul-
tiparticle density distribution is expressed by a product of original (non-
symmetrized) distribution and the weight factor, representing the effect of
symmetrization. In this way one gets a simple prescription for the Monte
Carlo generators: one should generate events according to the original gen-
erator and then attach to each event its weight calculated from a simple
formula

Wn)= > [lwirw (1)

{P(k)}i=1

Here n is the number of identical particles, w;p(;) is a two particle weight
factor calculated for the pair of momenta (of the ¢-th particle and the particle
which occupies the i — th place in the permutation P(k)). The sum extends
over all the permutations of n elements. Since all factors are positive and
w; = 1, the resulting weight is not smaller than one (a contribution from
identity permutation). One may rescale the weights to keep, e.g., the average
number of particles fixed; we return to this point later.
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Since most of the particles detected in experiments are pions, the final
weight should be actually given by a product of weights calculated sepa-
rately for positive, negative, and neutral pions. In fact, the BE interference
for neutral particles is not observable (apart from the possible effects for
direct photons {11}]): neutral pions decay before detection, and for the re-
sulting photons the effective source size is so big that the BE effects must
be negligible for momentum differences above a few eV. However, the pro-
cedure should not change the observable correlations between the numbers
of charged and neutral pions. Therefore weights for all signs of pions must
be taken into account.

Thus in principle the only arbitrary factor is the function of the difference
of two momenta w;;(p; —p;). As in Ref. [5] we use here the Gaussian function
of four-momentum difference squared

wy; = elPi=pa)*/20° (2)

which is motivated by a commonly used experimental parametrization of BE
effects.

Of course, different components of momentum difference squared may
be multiplied by different coefficients, and the shape may be modified. In
this note we do not discuss these possibilities. Therefore the only parameter
is a Gaussian half-width of the distribution o.

Unfortunately, for more than ten pions of a given sign the calculations
become prohibitively long. Symmetrizing separately in hemispheres [12]
one shifts only the problem to higher energies. There exists a scheme for
calculating the sum (1) in a reasonable time [13], but the method is still
under investigation. In our calculations we have separated the sum of all
the n! permutations into terms where only the permutations which change
places of exactly K particles are taken into account:

w=y w. (3)
—

The higher terms in this expansion correspond to configurations where
many particles have approximately the same momenta, which is very un-
likely. These terms for K < 6 are

n—1 n—2
w® = 1; vV =0; w?® = 35 (wij)% w® =233 N wijwjpwk;

=1 j>1 t=1 3>1 k>j
n—3
w® = 3NN N Rwjwikwjiwg + 2wijwawswi
=1 7>1 k>5 >k
+2wipwywirwi + (waw;e)? + (wizwr)? + (wiw;)?];
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n—4
w® =233 SN S [(wi) 2wk Wi wkm + (Wik) W W W

=1 3>t k> 1>k m>l

+(Wit) > Wk Wi Wrm + (Wim) 2wk wrwi + (WK ) 2 Wi Wim Wi

+ (1) 2 Wik W Wim + (Wim) 20k wriws + (Wkt) Wi W Wim
+{(Wim ) 2 w0k Wik + (Whm) 2035w 1w + Wi W W Wim

F Wik W W Wim Wil + Wi W; j W W jrn W + Ws Wik W51 Wi Whm

F Wik Wim Wik W1 Wim + Wi W)Wk Whn Wi + Wi Wik Wk Wim Wim
FWWH Wi Wik Whmn + Wi Wiy Wil Whm Wil + Wik Wi Wik Wi Wim

F Wik Wirn Wi W WEL + Wil Wi W Wk W) - (4)

The shape of the weight factor (2) should be chosen to fit the “BE ratio”,
defined for the pair of identical pions as a function of Q = v/—(p1 — p2)?

2 (Q) = [ d®p1d®papa(p1, p2)6[Q — V/—(p1 — p2)?% (n)? | 5
[ Bp1d3pep1(p1)p1(p2)d[Q — /—(p1 — p2)?] (n(n — 1))

Without weights it is rather flat and close to one for typical Monte Carlo
generators, if we normalize separately the numerator and the denominator
of Eq. (5) to the same number of entries (which is achieved by the second
factor in (5)). Including weights produces a maximum at smallest Q2 with
the height about 2 (i.e. one unit above the value at large Q2) and a width
o’ close to o of formula (2). Thus we reproduce satisfactorily the shape
assumed for the two-particle weight factor.

We have checked in Ref. [5] for PYTHIA/JETSET generated pp events
at 630 GeV that cutting the series (3) at K = 3 and at K = 4 we get quite
similar shapes of the Q2 spectra, although the normalization is significantly
different. Including the term with K = 5 we change even less all the distri-
butions. Thus we feel that cutting the series (3) at K = 5 we get a reliable
- estimate of the results for Q? spectra from the weight method (up to the
possible change of normalization).

This may seem surprising if we remember that our approximation does
not take into account, e.g., the contribution from such a simple configura-
tion as three pairs of very close (pair wise) momenta. Indeed, in this case
there is a contribution from a permutation of 6 elements. However, the full
contribution of such a configuration to the sum (1) is equal 1+3+3+1=8
(from permutations moving 0, 2, 4 and 6 elements, respectively) and our ap-
proximation counts all but the last term in this sum. We have checked that
for all reasonably probable configurations our approximation seems similarly
satisfactory.

Since the JETSET/PYTHIA parameters were fitted to reproduce in-
clusive experimental data without weights, the change, e.g., of the average
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multiplicity induced by weights should be compensated by the proper refit-
ting procedures. Instead we have applied (as in Ref. [3]) a simple method of
multiplying weights by an extra ¢V™ factor, where 7 is the number of all “di-
rect” pions, and ¢ and V are constants fixed by the requirements to restore
the original number of events and the original average multiplicity. This is
done by assuming that the original multiplicity distribution of “direct” pions
may be well approximated by the negative binomial formula, i.e. that the
NBD parameters 7 and 1/k are given by the experimental values of (n) and
(n(n — 1)/(n)? — 1. If with the weights we get a new average multiplicity
(n'), the original value may then be restored by rescaling the weights with

() + k)
VY + B (©)

and
[14+ Q- V)(n)/k]*
c= ) (7)
(w)

where (w) is the average value of weights before rescaling. We have checked
that this procedure restores indeed the original average multiplicity with
accuracy of a few percent. If this accuracy is not satisfactory, the quantities
c and V can be estimated by direct minimization of differences between
the multiplicity distributions without weights and with the rescaled weights,
respectively. On the other hand, the BE ratios are little affected by rescaling
(only the normalization, which is anyway mainly a matter of convention,
changes by a few percent). As will be shown later this is also true for e~ et
collisions. The BE ratio still reflects mainly the assumed shape of the two-
particle weight (plus 1): for larger ¢ it is wider and starts to increase above
2 for smallest Q2.

The procedure seems to produce too high a value of the BE ratio for
smallest Q2. As already noted, it is about twice the value for large Q?,
whereas in most of the data it is only by some 50% higher. To explain why
the BE ratio does not increase up to the value of 2, one may invoke some
coherent component [6], but a more obvious effect (which also lowers the
BE ratio) is the existence of longer living resonances. Pions coming from
their decay are effectively “born” more than 10 fm from the collision point.
Thus the Gaussian width parameter in a two-particle weight for these pions
should be smaller by an order of magnitude, which allows practically to
neglect their contribution to the BE effect in the experimentally accessible
Q? range. Therefore the Bialas-Krzywicki weights are calculated taking
into account only the permutations of momenta of pions produced directly,
or resulting from the decay of the widest resonances.
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3. Results and comparison with data

We have generated 150 000 events of ete~ annihilation into WtW~
at 172 GeV CM energy by the default version of the PYTHIA/JETSET
generator [9]. For each event the weight factor was calculated by taking the
4-momenta of “direct” pions of each sign, calculating for them a matrix of
two-particle weights w;; according to (2) with o'= 0.14 GeV (the same value
as used to describe the pp collisions), and then the weight w as a series (3)
cut at K = 5 and rescaled as described in the previous section !. As already
noted, the event weight is a product of weight factors for all three kinds of
pions. In Fig. 1 we present the ratio of “BE ratios” (5) for pairs of positive
pions as a function of Q? for the events from our prescription with series (3)
cut at K = 5 and from the standard PYTHIA /JETSET generator (without
weights). Results are shown for the rescaled and unrescaled weights.

3

i

09 " 1 1 1 : 1 i i
Qo 0.05 o1 0.15 0.2 025 03 0.35 04 0.45 05

Fig. 1. The ratio of “BE ratios” (5) for positive pions with and without weights
as a function of @2 [GeV?]. Diamonds and crosses correspond to rescaled and
unrescaled weights, respectively.

We see that without any fitting one can reproduce the main features of
inclusive hadroproduction data at similar energy [14] (there are no data yet
for WtW ™ events) and that the two curves are hardly distinguishable.

Next we analyze the events using the LUCLUS procedure [15] to select
4 jet events and to reconstruct W as the 2-jet system. To reduce the com-

! More precisely, we have used the values of ¢ and V fitted to restore the original
multiplicity distribution for the hadronic decay of a single W.
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binatorial background we select as a partner for the first jet this jet which
maximizes the two-jet invariant mass. Then, as in Ref. [3], we plot the av-
erage of this mass and the mass of the system of two remaining jets. The
resulting W mass distribution with and without weights is shown in Fig. 2.
We see that the introduction of weights hardly affects the distribution. The
average mass for two curves of Fig. 2 differs by less’than 20 MeV. If we fit
these curves by the Breit—-Wigner formula (plus background), the fitted W
mass would differ even less.
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Fig. 2. The two-jet invariant mass distribution (in GeV/c?) as described in the
text. Diamonds and crosses correspond to distributions with and without weights.

It is important to underline that our results are very similar to those of
Ref. [3] both for the BE ratio and for the my distribution, although our
distribution of weights has a much more extended tail, even after rescaling.
As shown in Fig. 3, this tail decreases quite slowly and for 175 events the
values of weights are outside the plot (the maximal value is about hundred).

There are good reasons for this difference: e.g., we do not have a “co-
herence factor” 1 — p decreasing the maximal possible value of weights even
for big clusters of particles with similar momenta values. We do not damp
doubly the momentum differences (by the definition of a cluster and by the
prescription of weights). We also have only one free parameter instead of
three as in Ref. [3]. This, altogether, makes the similarity of the results for
the Q? and my distributions quite intriguing.
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Fig. 3. The rescaled weight distribution in a semi-log scale.

4. Summary and conclusions

We have applied the weight method to implement the Bose-Einstein
interference effect into the Monte Carlo generator for the ete™ — W+W =
process with a four jet final state. With the same value of the only free
parameter ¢ as used for the pp collision we get a reasonable qualitative
description of the Bose-Einstein ratio. The reconstructed value of the W
mass is practically the same with and without weights.

One may argue that this last result is almost trivial: since the weights do
not change the momentum structure of events, there is no reason to expect
mass shifts for the reconstructed unstable particles. This is, however, a too
simplistic argument. Jet algorithms assign the decay products to the two
W-s only statistically. One may easily imagine nonzero correlations between
the degree of misassignment and the weight values, which would introduce
a significant mass shift. The absence of such shifts for two different weight
methods supports the suggestion that such correlations do not exist.

Summarizing, we confirm the claim of Ref. [3] that there seems to be no
significant W mass shift in four jet events due to the Bose-Einstein inter-
ference effect. Since our algorithm is based directly on the original formula
for weights [4] (apart from cutting the full series (3)) and contains no ad hoc
extra assumptions and free parameters, we regard it as a reliable, general
method of implementing the Bose-Einstein effect. Therefore we believe that
our results are relevant for the coming precise W mass measurements.



On the Bose-FEinstein Effect and the W Mass 2047

A financial support from KBN grants No 2 P03B 083 08 and No 2 P03B 196
09 is gratefully acknowledged.

REFERENCES

1
2

{ Lénnblad, T. Sjéstrand, Phys. Lett. B351, 293 (1995).
[

[3

[

[

] L.

] J. Ellis, K. Geiger, Phys. Rev. D 54, 1967 (1996).

] S. Jadach, K. Zalewski, Acta Phys. Pol. B 28, 1363 (1997).
4] A.

5] K.

Bialas, A. Krzywicki, Phys. Lett. B 354, 134 (1995).
Fiatkowski, R. Wit, preprint TPJU-3/97, e-print hep-ph/9703227, Z. Phys.
C, to be published.

{6] D.H. Boal, C.-K. Gelbke, B.K. Jennings, Rev. Mod. Phys. 62, 553 {1990), and
references therein.

[7) J.P. Sullivan at al., Phys. Rev. Lett. 70, 3000 (1993).

[8] B. Andersson, W. Hoffman, Phys. Lett. B169, 364 (1986); B. Andersson,
M. Ringner, e-print hep-ph/9704383.

[9] T. Sjostrand, M. Bengtsson, Comp. Phys. Comm. 43, 367 (1987); T. Sjos-
trand, CERN preprint CERN-TH.7112/93 (1993); T. Sjostrand, M. Bengts-
son, Comp. Phys. Comm. 46, 43 (1987).

{10] S. Pratt, Phys. Rev. Lett. 53, 1219 (1984).

[11] J. Pigat, N. Pigdtova, B. Tomasik, Phys. Lett. B368, 179 (1996); Acta Phys.
Slov. 46, 517 (1996).

{12] S. Haywood, Rutherford Lab. Report RAL-94-074 (1995).

[13] J. Wosiek, Phys. Lett. B399, 130 (1997).

[14] OPAL Collab., P.D. Acton et al., Phys. Lett. B267, 143 (1991); ALEPH
Collab., D. Decamp et al., Z. Phys. C54., 75 (1992).

{15] T. Sjostrand, Comp. Phys. Com. 82, 74 (1994).



